首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 74 毫秒
1.
The study of fluid inclusions in high-grade rocks is especially challenging as the host minerals have been normally subjected to deformation, recrystallization and fluid-rock interaction so that primary in- clusions, formed at the peak of metamorphism are rare. The larger part of the fluid inclusions found in metamorphic minerals is typically modified during uplift. These late processes may strongly disguise the characteristics of the "original" peak metamorphic fluid. A detailed microstructural analysis of the host minerals, notably quartz, is therefore indispensable for a proper interpretation of fluid inclusions. Cathodoluminescence (CL) techniques combined with trace element analysis of quartz (EPMA, LA- [CPMS) have shown to be very helpful in deciphering the rock-fluid evolution. Whereas high-grade metamorphic quartz may have relatively high contents of trace elements like Ti and A1, low- temperature re-equilibrated quartz typically shows reduced trace element concentrations. The result- ing microstructures in CL can be basically distinguished in diffusion patterns (along microfractures and grain boundaries), and secondary quartz formed by dissolution-reprecipitation. Most of these textures are formed during retrograde fluid-controlled processes between ca. 220 and 500 ℃, i.e. the range of semi-brittle deformation (greenschist-facies) and can be correlated with the fluid inclusions. In this way modified and re-trapped fluids can be identified, even when there are no optical features observed under the microscope.  相似文献   

2.
The structure of grain boundaries in some very low-grade slates has been studied with transmission electron microscopy. All phyllosilicate boundaries have structural widths of less than 1 nm. A range of structural types have been observed from apparently coherent basal layer chlorite-muscovite boundaries, semi-coherent chlorite-chlorite boundaries and incoherent boundaries which are commonly defined by a thin layer, 7–10 nm thick, of crystalline second phase. Remnants of isolated fluid inclusions are only found at quartz-quartz boundaries. The cleavage microstructures suggest that a large amount of volume loss occurred during cleavage development at low temperatures. This is most likely to have been achieved by diffusion and/or advection through a fluid-filled network present along grain boundaries or grain edges. The phyllosilicate grain boundaries in their present state could not have acted as the pathways for extensive fluid-assisted mass transport. This suggests that the grain boundary structure during cleavage formation was different from the present state. An interconnected fluid network may be maintained along grain boundaries during deformation by hydrofracturing or by grain boundary migration during dehydration reactions, but as deformation and reactions cease the grain boundaries develop an equilibrium structure with very narrow structural widths and restricted fluid distribution.  相似文献   

3.
Fluid inclusions in quartz are known to modify their densities during shear deformation. Modifications of chemical composition are also suspected. However, such changes have not been experimentally demonstrated, their mechanisms remain unexplained, and no criteria are available to assess whether deformed inclusions preserve information on paleofluid properties. To address these issues, quartz crystals containing natural CO2–H2O–NaCl fluid inclusions have been experimentally subjected to compressive deviatoric stresses of 90–250 MPa at 700°C and ~600 MPa confining pressure. The resulting microcracking of the inclusions leads to expansion by up to 20%, producing low fluid densities that bear no relation to physical conditions outside the sample. Nevertheless, the chemical composition of the precursor inclusions is preserved. With time the microcracks heal and form swarms of tiny satellite inclusions with a wide range of densities, the highest reflecting the value of the maximum principle stress, σ 1. These new inclusions lose H2O via diffusion, thereby passively increasing their salt and gas contents, and triggering plastic deformation of the surrounding quartz via H2O-weakening. Using microstructural criteria to identify the characteristic types of modified inclusions, both the pre-deformation fluid composition and syn-deformation maximum stress on the host mineral can be derived from microthermometric analysis and thermodynamic modelling.  相似文献   

4.
Filling temperature data obtained from tectonic vein quartz varies according to the state of intracrystalline deformation. Strain free domains within grains exhibit abundant primary fluid inclusions, from which internally consistent temperatures are recorded. The onset of optical features associated with intracrystalline deformation by dislocation creep is accompanied by a decrease in the number of fluid inclusions and an increase of filling temperatures. At higher states of strain tectonic recrystallisation, evidenced by the formation of new subgrains, leads to the complete destruction of inclusion arrays. Empty cavities are swept out of the new grains during recrystallisation, into subgrain walls. Heterogeneous deformation of vein quartz at the intracrystalline level may be due in part to selective hydrolytic weakening in areas where fluid inclusions have leaked and thereby increased the structural water content.  相似文献   

5.
The pressure and temperature history of the Tertiary Shimanto belt of south-west Japan has been elucidated by analysing fluids trapped in quartz crystals which grew syn-kinematically along late-stage brittle faults. The samples come from three areas that span the Paleogene exposures on the Muroto Peninsula of Shikoku Island. Applying microthermometric and laser Raman microsampling techniques to coeval water-rich and carbonic fluid inclusions, we have constrained the pressure and temperature conditions that accompanied a widespread and kinematically distinct phase of deformation. The results suggest elevated geothermal gradients during late-stage deformation, conditions that are in disaccord with previous plate reconstructions that have depicted old, thermally mature Pacific crust subducting beneath Eurasia during the early to middle Tertiary. These conditions can most easily be accounted for by including an additional plate boundary in the western Pacific during Paleogene time. Plate reconstructions that include the Kula plate in this region are therefore consistent with our findings. In addition, our results provide clues to the conditions that likely accompany seismogenic deformation at active convergent plate boundaries.  相似文献   

6.
We performed high strain (up to 47 %) axial compression experiments on natural quartz single crystals with added rutile powder (TiO2) and ~0.2 wt% H2O to investigate the effects of deformation on the titanium-in-quartz (TitaniQ) geothermobarometer. One of the objectives was to study the relationships between different deformation mechanisms and incorporation of Ti into recrystallized quartz grains. Experiments were performed in a Griggs-type solid-medium deformation apparatus at confining pressures of 1.0–1.5 GPa and temperatures of 800–1,000 °C, at constant strain rates of 1 × 10?6 or 1 × 10?7 s?1. Mobility of Ti in the fluid phase and saturation of rutile at grain boundaries during the deformation experiments are indicated by precipitation of secondary rutile in cracks and along the grain boundaries of newly recrystallized quartz grains. Microstructural analysis by light and scanning electron microscopy (the latter including electron backscatter diffraction mapping of grain misorientations) shows that the strongly deformed quartz single crystals contain a wide variety of deformation microstructures and shows evidence for subgrain rotation (SGR) and grain boundary migration recrystallization (GBMR). In addition, substantial grain growth occurred in annealing experiments after deformation. The GBMR and grain growth are evidence of moving grain boundaries, a microstructure favored by high temperatures. Electron microprobe analysis shows no significant increase in Ti content in recrystallized quartz grains formed by SGR or by GBMR, nor in grains grown by annealing. This result indicates that neither SGR nor moving grain boundaries during GBMR and grain growth are adequate processes to facilitate re-equilibration of the Ti content in experimentally deformed quartz crystals at the investigated conditions. More generally, our results suggest that exchange of Ti in quartz at low H2O contents (which may be realistic for natural deformation conditions) is still not fully understood. Thus, the application of the TitaniQ geothermobarometer to deformed metamorphic rocks at low fluid contents may not be as straightforward as previously thought and requires further research.  相似文献   

7.
Fine extinction bands (FEBs) (also known as deformation lamellae) visible with polarized light microscopy in quartz consist of a range of nanostructures, inferring different formation processes. Previous transmission electron microscopy studies have shown that most FEB nanostructures in naturally deformed quartz are elongated subgrains formed by recovery of dislocation slip bands. Here we show that three types of FEB nanostructure occur in naturally deformed vein quartz from the low-grade metamorphic High-Ardenne slate belt (Belgium). Prismatic oriented FEBs are defined by bands of dislocation walls. Dauphiné twin boundaries present along the FEB boundaries probably formed after FEB formation. In an example of two sub-rhombohedral oriented FEBs, developed as two sets in one grain, the finer FEB set consists of elongated subgrains, similar to FEBs described in previous transmission electron microscopy studies. The second wider FEB set consists of bands with different dislocation density and fluid-inclusion content. The wider FEB set is interpreted as bands with different plastic strain associated with the primary growth banding of the vein quartz grain. The nanometre-scale fluid inclusions are interpreted to have formed from structurally bounded hydroxyl groups that moreover facilitated formation of the elongate subgrains. Larger fluid inclusions aligned along FEBs are explained by fluid-inclusion redistribution along dislocation cores. The prismatic FEB nanostructure and the relation between FEBs and growth bands have not been recognized before, although related structures have been reported in experimentally deformed quartz.  相似文献   

8.
Preferential leakage of H2O from fluid inclusions containing multiple gas components has been suspected in natural metamorphic rocks and has been demonstrated experimentally for synthetic H2O-CO2-rich inclusions in natural quartz. Knowledge of the physical and chemical characteristics of the leakage mechanism, which may be very complex, increases the value of natural fluid inclusions to metamorphic geology. It is proposed that crystal defects play a major role in nondecrepitative preferential H2O leakage through quartz, and remain effective during metamorphism. Inclusions with either an internal overpressure or underpressure produce strain in the adjacent quartz crystal via the nucleation of many dislocations and planar defects (like Dauphiné twin boundaries). These defects allow preferential loss of H2O from H2O-CO2-rich inclusions at supercritical conditions. The transport capacity of this leakage mechanism is enhanced by nucleation of small bubbles on defect structures. The nucleation of these bubbles seems to be a recovery process in strained crystals. Solubility gradients of quartz in water in a crystal with internally underpressurized inclusions may result in optical visible implosion halos in a three dimensional spatial arrangement, caused by the growth of small bubbles at the expense of the larger original fluid inclusion. Natural fluid inclusions from Naxos (Greece) are always associated with numerous interlinked dislocations. These dislocations may have been produced by plastic derormation or by crystal growth related processes (e.g. crack healing). The presence of small bubbles on these dislocations indicates that a similar leakage mechanism for H2O must have occurred in these rocks.  相似文献   

9.
将四极质谱、分子泵和超高真空流体包裹体击碎装置联机,利用冷阱与外置液氮去除部分水蒸气和杂气,建立分阶段提取不同世代流体包裹体并测定其气体成分的实验平台。以锡田钨锡多金属矿床中石英脉型钨锡矿矿石为研究对象,分阶段提取不同世代流体包裹体并测定其气体成分,对比分析矿石中共生石英–黑钨矿矿物对不同阶段释气成分、气体百分含量特征。研究表明初始阶段和后期阶段提取的流体成分一致,以N_2、CO_2和CH_4为主,含少量~(40)Ar、C_2H_6和~4He;但初始阶段N_2、CO_2和~(40)Ar气体浓度高于后期阶段,而CH_4、C_2H_6和~4He气体浓度低于后期阶段,指示初始阶段和后期阶段提取出不同期次的流体包裹体,即初始阶段提取的主要是次生包裹体,后期阶段提取的主要是原生包裹体,而中间阶段是两者的混合,表明四极质谱和超高真空流体包裹体提取装置联用能够实现分阶段提取不同世代流体包裹体且测定其气体成分。其中,次生包裹体富N_2、CO_2和~(40)Ar,而原生包裹体富CH_4、C_2H_6和~4He。  相似文献   

10.
High-pressure schists (2–2.5 GPa) from the Eclogite Zone in the Tauern Window contain honeycomb garnet in which fine webs of garnet surround strain-free quartz ± carbonate grains. High-resolution X-ray computed tomography shows that the garnet webs form a cellular structure that coats all surfaces of the inclusions. Electron backscatter diffraction analysis shows that the garnet cells are crystallographically continuous with more massive garnet regions, and that the quartz ± carbonate inclusions have random orientations; in contrast, matrix quartz exhibits a prominent crystallographic preferred orientation (CPO). High-resolution transmission electron microscopy shows few dislocations in either the garnet or the inclusion quartz. Most honeycomb garnet is chemically homogeneous, but some displays asymmetric core–rim zoning. Taken together, these observations are most consistent with formation of the garnet sheets via precipitation from a wetting fluid along quartz–quartz grain boundaries, or possibly via wholesale precipitation of garnet + quartz ± carbonate from a fluid. In either case, a silicate-rich aqueous fluid must have been present. The likelihood that a fully wetting fluid existed at high pressure has important implications for rheology during subduction of metasedimentary rocks: strain may be accommodated by grain rotation and sliding in an aqueous silicate slurry, rather than via dislocation creep mechanisms at high pressures. The absence of a CPO in early quartz may thus point to involvement of a pervasive grain-boundary fluid rather than requiring low differential stresses during subduction.  相似文献   

11.
The phase state of the fluid in the H2O–KF ± KCl ± NaF system is studied in the presence of quartz for an experimental assay of the mutual influence of various salts of the fluid-forming mixture on heterogeneous fluid equilibria. The fluid inclusions were synthesized in quartz by the fracture healing method from solutions with KF + KCl and KF + NaF mixtures at 1 or 2 kbar and 700, 750, or 800°C. The results of the fluid inclusion study indicate a heterogeneous state of the fluid and variation in the fluid composition during experiments as a result of its interaction with quartz. The increase in temperature and pressure, as well as variation in the proportions of the salt contents in the fluid-forming mixture, changed the course of chemical reactions. After all the experiments, a glassy phase was observed in some types of inclusions. It is known that aqueous KF or KCl solutions, the solubility of which increases during heating, are characterized by phase equilibria of systems of the first type (Valyashko, 1990), when liquid and vapor are equilibrated for a heterogeneous state of the fluid. In this case, some inclusions should homogenize to vapor. However, no similar inclusions were observed in contrast to denser fluid phases (liquids), which are typical of the upper heterogeneous area of systems of the second (P–Q) type. Some inclusions host solid phases, the solubility of which decreases as the temperature increases. The results of experiments in the presence of KF + NaF solutions showed that the amount of inclusions of heterogeneous entrapment increases at higher temperatures simultaneously with a decrease in the H2O content of the glassy phase.  相似文献   

12.
Cathodoluminescence (CL) of quartz from metamorphic rocks representing a range of conditions from the garnet grade to the migmatite grade reveals a variety of textures, that is, a function of metamorphic grade and deformation history. Ti concentrations, determined by electron microprobe and ion microprobe, generally correlate with CL intensity (blue wavelengths), and application of the Ti‐in‐quartz thermometer (TitaniQ) reflects the temperature of quartz growth or recrystallization, and, in some settings, modification by diffusion. Quartz from garnet grade samples is not visibly zoned, records temperatures of 425–475 °C, and is interpreted to have recrystallized during fabric formation. Quartz grains from staurolite grade samples are zoned in CL with markedly darker cores and brighter rims, some of which are interpreted to have been produced by the dominant stauroliteproducing reaction, whereas others are interpreted as having formed by diffusion of Ti into quartz rims. Quartz from the matrix of kyanite and sillimanite grade samples are generally unzoned, although locally displays slightly brighter rims (higher Ti); quartz inclusions within garnet and staurolite have distinctly brighter rims, which are interpreted as having been produced by diffusive exchange with the host mineral. Quartz from migmatite grade samples displays highly variable CL intensity, which is dependent on the location of the grain. Matrix grains in melanosomes are largely unzoned or rarely zoned with darker cores. Leucosome quartz is strongly zoned with bright cores and dark rims and is interpreted as having formed during crystallization of the melt. Locally within the leucosome is observed oscillatory‐zoned quartz, which is interpreted as a subsolidus recrystallization to achieve strain relaxation. Quartz inclusions within garnet or plagioclase crystals often show bright domains separated by zones of dark CL. These enigmatic textures possibly reflect local melting fluxed by fluid inclusions. Temperatures calculated from the Ti–in–quartz thermometer are a function of the metamorphic grade of the sample, the textural setting of the quartz, the reaction history and the deformation history of the rock. The TitaniQ temperatures can be used to constrain the conditions at which various metamorphic processes have occurred.  相似文献   

13.
Fluid inclusions hosted in quartz and specular hematite from auriferous (jacutinga) and barren veins in the Quadrilátero Ferrífero (QF) have been studied using conventional and near infrared microscopy, respectively. The mineralization consists of veins that cross-cut metamorphosed iron formation (itabirite) of the Paleoproterozoic Itabira Group. The sample suite comprises hematite from veins from the low-strain domain in the W and SW of the study area, as well as hematite samples from the eastern high-strain domain in the central and NE parts of the QF. Halogen ratios of fluid inclusions in quartz and hematite from all studied deposits are consistent with a fluid evolved from dissolving and reprecipitating halite that was subsequently diluted. Fluid inclusions hosted in quartz and hematite are characterized by consistent Na/K ratios and considerable SO4 contents, and suggest similar formation conditions and, perhaps, fluid origin from a common source. Na/K and Na/Li fluid mineral geothermometers indicate water–rock interaction at approximately 340±40°C. Hematites from the high-strain domain contain fluid inclusion assemblages of high-temperature aqueous-carbonic and multiphase high-salinity, high-temperature aqueous inclusions probably due to fluid immiscibility in the system H2O–NaCl–CO2. Fluid inclusions hosted in hematite from barren veins in the low-strain domain, as well as in hematite from jacutinga-type mineralization from the central part of the QF, only host multiphase aqueous fluid inclusions all showing narrow ranges of salinity (7.2–11.7 wt.% NaCl equiv.) and homogenization temperatures (148 to 229°C). Lower homogenization temperatures and the absence of CO2-rich inclusions in specular hematite from these occurrences are attributed to carbonate precipitation and/or CO2 escape due to cooling during fluid migration from the high- to the low-strain domain. Pb–Pb and U–Pb systematics of gold, hematite and hematite-hosted fluid inclusions in combination with geochemical evidence indicate distinct sources for Pd, Au, and Pb. The formation of specular hematite veins may be related to retrograde metamorphic fluids being released during the Brazilian orogenic cycle (600–700 Ma). The Pb isotopic characteristics of all samples are readily reconciled in a simple model that involves two different Paleoproterozoic or Archean source lithologies for lead and reflects contrasting depths of fluid percolation during the Brasiliano orogeny.  相似文献   

14.
Fluid inclusions and clay mineralogy of the Permo-Triassic rocks from the Espina and Espadà Ranges (SE Iberian Chain, Spain) have been investigated to establish their relationship with hydrothermal fluid circulation during the Alpine Orogeny. Primary fluid inclusions in quartz-filled tension gashes in Permo-Triassic sandstones reveal maximum temperatures around 230 °C and very constant salinities of 8.5% wt. eq. NaCl. Secondary fluid inclusions found in quartz from the Santonian Ba–Cu–Hg deposits show similar compositional and thermodynamic characteristics, denoting an Alpine recrystallization. Clay mineral composition of Permo-Triassic mudrocks is characterized by pyrophyillite, indicating low-grade metamorphic conditions. Field observations and experimental data suggest that the crystallization of quartz in tension gashes, the formation of secondary fluid inclusions and the development of the metamorphism are contemporaneous and related to fluid circulation during the Alpine compression. Fluid flow took place along the Hercynian fault system that was reactivated during the Mesozoic rift stage and inverted during the Alpine deformation.  相似文献   

15.
Fluid inclusions in quartz are known to modify their shapes and microstructures (textures) during weak plastic deformation. However, such changes have not been experimentally demonstrated and criteria are not available to relate them to paleostress conditions. To address these issues, quartz crystals containing natural CO2–H2O–NaCl fluid inclusions have been experimentally subjected to compressive deviatoric stresses of 90–250 MPa at 700°C and ~600 MPa confining pressure. Strains of up to 1% cause the inclusions to develop irregular shapes and to generate microcracks in crystallographic planes oriented subperpendicular to the major compression axis, σ 1. The uniform alignment of the microcracks imparts a planar fabric to the samples. The microcracks heal and form swarms of tiny satellite inclusions. These new inclusions lose H2O by diffusion, thereby triggering plastic deformation of the surrounding quartz via H2O-weakening. Consequently, the quartz samples deform plastically only in domains originally rich in inclusions. This study shows that fluid inclusions deformed by deviatoric stresses may indeed record information on paleostress orientations and that they play a key role in facilitating crystal-plastic deformation of quartz.  相似文献   

16.
Southern India and Sri-Lanka are the places where "incipient charnockites",i.e.the local transformation of amphibolite-facies gneisses into orthopyroxene-bearing,igneous looking charnockites,have been discovered in the early sixties.The fact that some incipient charnockites occur along a network of brittle fractures,together with CO_2 remnants preserved in mineral inclusions,had called for the role of fluids during charnockite alteration.The present work presents new observations on fluid inclusions and microtextures of incipient charnockites from type localities in southern India.In addition to CO_2-rich fluid inclusions in quartz and feldspar,all of the occurrences have disrupted remnants of concentrated aqueous alkali chloride solutions.CO_2 inclusions are more abundant in paragneiss(Kerala)than in orthogneiss(Karnataka/Tamil Nadu).The finding of disrupted brine inclusions in the Kabbal charnockite is a key link between closely associated massive charnockites and Closepet Granite,both of which also share the brine remnants.All of the occurrences studied here have feldspar or feldspar-quartz microvein networks along grain boundaries of recrystallized quartz,feldspar and orthopyroxene.These metasomatic veins again indicate the action of alkali-exchanging fluids(i.e.,saline solutions).Feldspar microveins,which have been found in most "massive" charnockites,along with the CO_2-rich fluid inclusions,suggest a commonality of incipient charnockite and massive charnockite,both types differing in intensity of interaction with metasomatizing pore fluids.  相似文献   

17.
Trace elements (Al, K, Ti, Fe), growth and deformation pattern in quartz of the multiple deformed Carcoar, Barry and Sunset Hills granites were investigated by electron micro probe and cathodoluminescence. Zoned quartz phenocrysts with high Ti concentrations (>70 ppm) that show blue cathodoluminescence originated from the early stage of magma crystallisation. Multiple deformation of quartz causes the redistribution of Al and K in the quartz lattice, which results in the accumulation of these elements in submicroscopic inclusions (<0.5 µm) of muscovite-like composition. In contrast, structural Ti in quartz is mostly kept in the lattice. Common halos of defect-poor, secondary quartz around fluid inclusions result from re-equilibration of fluid inclusions because of differences between fluid pressure and lithostatic pressure, e.g. during uplift (isothermal decompression) and/or !/#-transition of quartz. During healing, defect-poor secondary quartz grows at the cost of the host quartz and releases or replaces defect centres. The results of micro-structural investigations combined with Al-in-hornblende thermobarometry allow the reconstruction of regional processes. Carcoar and Barry granodiorites and Sunset Hills granite were intruded in the Late Ordovician-Early Silurian at depths of 4-8.6 and 10-12 km, respectively. In contrast to the continuous crystallisation of the granodiorite magmas, the magma of the Sunset Hills granite ascended in a stepwise fashion, causing multiple quartz nucleation. The two granodiorites were multiple, post-magmatically deformed, first, during Early Devonian under more brittle conditions at temperatures of 350-400 °C, whereas the Sunset Hills granite experienced more ductile deformation at temperatures of around 550 °C.  相似文献   

18.
Abstract Deformed quartz veins in garnet-zone schist adjacent to the active Alpine Fault, New Zealand, have fluid inclusions trapped along quartz grain boundaries. Textures suggest that the inclusions formed in their present shapes during annealing of the deformed veins. Many of the inclusions are empty, but some contain carbon dioxide with densities that range from 0.16 to 0.80 g cm−3. No water, nitrogen or methane was detected. The inclusions are considerably more CO2-rich than either the primary metamorphic fluid (<5% CO2) or fluids trapped in fracture-related situations in the same, or related, rocks (<50% CO2). Enrichment of CO2 is inferred to have resulted from selective migration (wicking) of saline water from the inclusions along water-wet grain boundaries after cooling-induced immiscibility of a water-CO2 mixture. Inclusion volumes changed after loss of water. Non-wetting CO2 remained trapped in the inclusions until further percolation progressively removed CO2 in solution. This mechanism of fluid migration dominated in ductile quartz-rich rocks near, but below, the brittle-ductile transition. At deeper levels, hydraulic fracturing is also an important mechanism for fluid migration, whereas at shallower levels advection through open fractures dominates the fluid flow regime.  相似文献   

19.
ABSTRACT The decrepitation behaviour of fluid inclusions in quartz at one atmosphere confining pressure has been evaluated using pure H2O synthetic inclusions formed by healing fractures in natural quartz. Three different modes of non-elastic deformation, referred to as stretching, leakage or partial decrepitation, and total decrepitation have been observed. The internal pressure required to initiate non-elastic deformation is inversely related to inclusion size according to the equation: internal pressure (kbar) = 4.26 D-0.423 where D is the inclusion diameter in microns. Regularly shaped inclusions require a higher internal pressure to initiate non-elastic deformation than do irregularly shaped inclusions of similar size. Heating inclusions through the α/β quartz inversion results in mechanical instability in the quartz crystal and leads to mass decrepitation of inclusions owing to structural mismatches generated by pressure gradients in the quartz around each inclusion. Long-term heating experiments (∼2 years) suggest that the internal pressure required to initiate non-elastic deformation does not decrease significantly with time and indicates that short-lived thermal fluctuations in natural systems should not alter the inclusion density and homogenization temperature. Inclusions that do exhibit decreased density (higher homogenization temperature) are, however, always accompanied by a change in shape from irregular to that of a negative crystal. Observations of this study are consistent with elasticity theory related to fracture generation and propagation around inclusions in minerals. These results indicate that an inclusion will not be influenced by a neighbouring inclusion, or other defect in the host phase, as long as the distance between the two is >2–4 diameters of the larger of the two inclusions.  相似文献   

20.
A fluid inclusion study on metamorphic minerals of successive growth stages was performed on highly deformed paragneisses from the Nestos Shear Zone at Xanthi (Central Rhodope), in which microdiamonds provide unequivocal evidence for ultrahigh-pressure (UHP) metamorphism. The correlation of fluid inclusion density isochores and fluid inclusion reequilibration textures with geothermobarometric data and the relative chronology of micro- and macro-scale deformation stages allow a better understanding of both the fluid and metamorphic evolution along the PTd path. Textural evidence for subduction towards the NE is recorded by the orientation of intragranular NE-oriented fluid inclusion planes and the presence of single, annular fluid inclusion decrepitation textures. These textures occur within quartz “foam” structures enclosed in an earlier generation of garnets with prolate geometries and rarely within recrystallized matrix quartz, and reequilibrated both in composition and density during later stages of exhumation. No fluid inclusions pertaining to the postulated ultrahigh-pressure stage for microdiamond-bearing garnet–kyanite–gneisses have yet been found. The prolate shape of garnets developed during the earliest stages of exhumation that is recorded structurally by (L  S) tectonites, which subsequently accommodated progressive ductile SW shearing and folding up to shallow crustal levels. The majority of matrix kyanite and a later generation of garnet were formed during SW-directed shear under plane-strain conditions. Fluid inclusions entrapped in quartz during this stage of deformation underwent density loss and transformed to almost pure CO2 inclusions by preferential loss of H2O. Those inclusions armoured within garnet retained their primary 3-phase H2O–CO2 compositions. Reequilibration of fluid inclusions in quartz aggregates is most likely the result of recrystallization along with stress-induced, preferential H2O leakage along dislocations and planar lattice defects which results in the predominance of CO2 inclusions with supercritical densities. Carbonic fluid inclusions from adjacent kyanite–corundum-bearing pegmatoids and, the presence of shear-plane-parallel fluid inclusion planes within late quartz boudin structures consisting of pure CO2-fluid inclusions with negative crystal shapes, bear witness of the latest stage of deformation by NE-directed extensional shear.This study shows that the textures of early fluid inclusions that formed already during the prograde metamorphic path can be preserved and used to derive information about the kinematics of subduction that is difficult to obtain from other sources. The textures of early inclusions, together with later generations of unaltered primary and secondary inclusions in metamorphic index minerals that can be linked to specific deformation stages and even PT conditions, are a welcome supplement for the reconstruction of a rather detailed PTd path.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号