首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the daily NCEP/DOE reanalysis II data,dates of the boreal spring Stratospheric Final Warming(SFW) events during 1979–2010 are defined as the time when the zonal-mean zonal wind at the central latitudes(65°–75°N) of the westerly polar jet drops below zero and never recovers until the subsequent autumn.It is found that the SFW events occur successively from the mid to the lower stratosphere and averagely from the mid to late April with a temporal lag of about 13 days from 10 to 50 hPa.Over the past 32 years,the earliest SFW occurs in mid March whereas the latest SFW happens in late May,showing a clear interannual variability of the time of SFW.Accompanying the SFW onset,the stratospheric circulation transits from a winter dynamical regime to a summertime state,and the maximum negative tendency of zonal wind and the strongest convergence of planetary-wave are observed.Composite results show that the early/late SFW events in boreal spring correspond to a quicker/slower transition of the stratospheric circulation,with the zonal-mean zonal wind reducing about 20/5 m s-1 at 30 hPa within 10 days around the onset date.Meanwhile,the planetary wave activities are relatively strong/weak associating with an out-of-/in-phase circumpolar circulation anomaly before and after the SFW events in the stratosphere.All these results indicate that,the earlier breakdown of the stratospheric polar vortex(SPV),as for the winter stratospheric sudden warming(SSW) events is driven mainly by wave forcing;and in contrast,the later breakdown of the SPV exhibits more characteristics of its seasonal evolution.Nevertheless,after the breakdown of SPV,the polar temperature anomalies always exhibit an out-of-phase relationship between the stratosphere and the troposphere for both the early and late SFW events,which implies an intimate stratosphere–troposphere dynamical coupling in spring.In addition,there exists a remarkable interdecadal change of the onset time of SFW in the mid 1990s.On average,the SFW onset time before the mid 1990s is 11 days earlier than that afterwards,corresponding to the increased/decreased planetary wave activities in late winter-early spring before/after the 1990s.  相似文献   

2.
李琳  潘静  李崇银 《地球物理学报》2013,56(6):1825-1834
极涡崩溃是平流层大气环流一个重要的变化过程,本文利用31年的再分析资料研究了南半球平流层极涡崩溃早晚年的异常特征.研究结果表明,南半球平流层极涡崩溃偏早年极涡崩溃前后平流层环流场异常表现为整层一致的变化,即都为正温度异常、正位势高度异常和负纬向风异常;而南半球平流层极涡崩溃偏晚年极涡崩溃前后平流层环流场异常的整层一致性的变化不典型,而在符号上与极涡崩溃偏早年的异常相反.与北半球平流层极涡崩溃前后环流异常相反明显不同,南半球平流层极涡崩溃偏早或偏晚年在极涡崩溃前后的环流异常保持相同的性质.进一步分析表明行星波活动在南极极涡的崩溃过程中起到了重要作用,极涡崩溃早年上传行星波比极涡崩溃晚年强,并且持续时间长.通过波流相互作用,行星波的异常使得极涡崩溃早年和晚年10月的平流层高纬地区分别为位势高度正异常和负异常,环流异常持续保持可能最终影响了南半球平流层极涡的崩溃时间.分析显示南半球极涡崩溃偏晚与La Niña事件之间可能存在一定的联系,但在极涡崩溃偏早年与赤道太平洋海表温度异常(SSTA)并无明显关系.  相似文献   

3.
毕云 《地球物理学报》2011,54(10):2468-2476
北极地区(60°N~90°N)平流层纬向风和气压场有明显的季节变化,不同高度层季节变化的时间有差异.北极平流层从冬至夏,季节转换从上向下推进,从夏至冬,季节转换从下向上推进.以20 hPa为例,平均而言,4月上旬以前,北极被极涡控制;4月中旬北极地区高压的势力开始超过低压,5月上旬,北极高压正式建立;7月份达到最强,8...  相似文献   

4.
冬季太阳11年周期活动对大气环流的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
刘毅  陆春晖 《地球物理学报》2010,53(6):1269-1277
利用气象场的再分析资料和太阳辐射活动资料,对太阳11年周期活动影响北半球冬季(11月~3月)大气环流的过程进行了统计分析和动力学诊断.根据赤道平流层纬向风准两年振荡(QBO)的东、西风状态对太阳活动效应进行了分类讨论,结果表明:东风态QBO时,太阳活动效应主要集中在赤道平流层中、高层和南半球平流层,强太阳活动时增强的紫外辐射加热了赤道地区的臭氧层,造成平流层低纬明显增温,同时加强了南半球的Brewer-Dobson(B-D)环流,引起南极高纬平流层温度增加;而北半球中高纬的环流主要受行星波的影响,太阳活动影响很小.西风态QBO时,太阳活动效应在北半球更为重要,初冬时强太阳活动除了加热赤道地区臭氧层外,还抑制了北半球的B-D环流,造成赤道平流层温度增加和纬向风梯度在垂直方向的变化,从而改变了对流层两支行星波波导的强度;冬末时在太阳活动调制下,行星波向极波导增强,B-D环流逐渐恢复,造成北半球极地平流层明显增温,同时伴随着赤道区域温度的下降.  相似文献   

5.
This paper attempts to establish a connection between stratospheric anomalies in the North Pole and rainfall on the Iberian Peninsula through the occurrence of major midwinter warmings (MMWs) and cold events (CEs), taking February as a preliminary approach. We define the MMWs as the warmings which break down the polar vortex, whereas the CEs are the episodes in which the polar vortex remains cold and undisturbed. Both anomalies lead to a wind anomaly around the north polar stratosphere, which is connected with a shortly lagged tropospheric anomaly through a stratosphere–troposphere coupling in winter. A T-mode principal component analysis (PCA) was used as an objective pattern classification method for identifying the main daily surface-level pressure (SLP) patterns for February for the 1961–1990 reference period. Subsequently, those February months with an MMW or a CE influence in the troposphere are identified in the whole study period (1958–2000) by means of the Arctic Oscillation Index (AOI). Thus, performing the same analysis for the selected February months, new principal patterns for detecting changes in surface circulation structure and morphology are obtained. The results show a significant decrease in the westerlies and a southward shift of the storm tracks in Western Europe some weeks after an MMW occurrence, leading to an increase in precipitation in western Iberia and a slight decrease on the eastern Mediterranean fringe. The results are quite the opposite under a CE influence: the westerlies are strengthened and shifted northwards due to the displacement of the Atlantic anticyclone towards Central Europe; dry conditions are established throughout Iberia, except for the Mediterranean fringe, where precipitation shows a considerable increase due to the greater frequency of the northeasterly winds. Finally, an 11-year sunspot cycle–quasi-biennial oscillation (QBO) modulation might be demonstrated in Iberian rainfall in February through the occurrence of these stratospheric anomalies.  相似文献   

6.
Quasi-biennial oscillation (QBO) is a predominant phenomenon in the tropical stratosphere and troposphere. The possible interactions between the stratospheric QBO and tropospheric biennial oscillation (TBO) over the Indian monsoon region as well as the equatorial region is investigated using the zonal wind data of 23 vertical levels (1000–1 hpa) from 1960–2002. The structure of lower stratosphere and troposphere are entirely different over the equator and India. In biennial scales, both the stratosphere and troposphere over the Indian region are closely related and winter season QBO is a good predictor of Indian summer monsoon rainfall.  相似文献   

7.
An observation by UHF ST radar of a subsidence pattern on the right side of the exit region of a jet streak is reported. The onset of the subsidence pattern occurred at 23:30 UTC on the 29 November 1991, when a downward motion was initiated above 14 km. The injections of stratospheric air in this region seem to have an intermittent nature; they occur during at least three intervals during the lifetime of the subsidence pattern. Comparison of these results with an ECMWF analysis suggests that it is an unfolding case. However, observation of turbulent intensities w’ greater than 60 cm s−1 at the tropopause level also suggests the existence of a turbulent flux between the stratosphere and the troposphere. From the turbulence characteristics measured by the radar and the potential temperature profile obtained by radiosonde data, the eddy diffusivity at the tropopause level has been calculated. An eddy diffusion coefficient ranging between 5 and 7 m2 s−1 is found. From these values, and with the assumption of a climatological gradient of the volume mixing ratio of ozone in the lower stratosphere, it is possible to deduce a rough estimate of the amount of ozone injected from the stratosphere into the troposphere during this event. A rate of transfer of 1.5×1020 molecules of ozone per day and per square meter is found.  相似文献   

8.
The aspect sensitivity of SOUSY-VHF-radar oblique-beam echoes from the troposphere and lower stratosphere has been examined for a number of jet stream passages during the years 1990 - 1992. When the core of the jet is overhead or nearly so, vertical profiles of the aspect sensitivity display two notable features. First, the distinction between mainly isotropic and strongly aspect-sensitive echoes in the troposphere and the lower stratosphere, respectively, often reported for measurements made during calm conditions, does not necessarily prevail in the vicinity of the jet stream. Second, echoes obtained at altitudes near the height of the horizontal wind maximum are found to be more aspect sensitive for beams directed parallel to the horizontal flow or nearly so, than for other beam directions. It is demonstrated that time-averaged horizontal wind speeds estimated from the radar data, taking into account the reduced effective oblique-beam zenith angle resulting from aspect sensitivity, may exceed uncorrected wind speeds by as much as 10 m s−1 in these circumstances. Implications for wind profiling and for describing the backscattering process are discussed. Doppler spectral widths examined for one jet stream passage are found to be narrower in a beam aligned with the horizontal wind at heights near the wind speed maximum than corresponding widths measured in a beam projected at right angles to the jet. The narrowest spectra thus coincide with the most aspect-sensitive echoes, consistent with the hypothesis that such returns result from specular backscattering processes.  相似文献   

9.
北极地区低平流层惯性重力波的观测研究   总被引:1,自引:0,他引:1       下载免费PDF全文
南极地区重力波活动有大量报道,相对而言,北极地区重力波的研究还很少.本文利用极区Ny-Alesund站点(78.9°N,11.9°E)无线电探空仪从2012年4月1日到2017年3月31日共5年的观测数据,统计分析了北极地区低平流层惯性重力波的特征.观测显示,月平均纬向风在20 km以下盛行东向风,再随着高度增加,逐渐呈现出半年振荡现象.对流层顶高度在5~13 km范围内变化,其月平均高度显示出年循环,最高出现在夏季,约为10 km,最低出现在冬季,约为8.5 km.对流层和低平流层月平均温度都显示出明显的年周期变化,这与中低纬度观测结果有所不同.结合Lomb-Scargle谱分析和矢端曲线方法,估算了准单色惯性重力波参数.个例研究表明,低平流层惯性重力波呈现出远离源区的自由传播性质.统计结果显示,惯性重力波的水平和垂直波长分别集中在50~450 km和1~4 km范围内,本征频率集中在1~2.5倍惯性频率间,这些值都比中低纬度观测值稍小.垂直方向本征相速度主要集中在-0.3~0 m·s-1,而纬向和经向本征相速度集中在-40~40 m·s-1之间.在5年的观测中,大约91.5%的惯性重力波向上传播.在冬季和早春,由于极地平流层极涡活动,激发出向下传播的惯性重力波,因此,向下传播的比例上升到相应月份的20%左右.由于低层大气盛行的东向风的滤波效应,低平流层大部分惯性重力波向西传播.波能量呈现出明显的年周期变化,最大值在冬季、最小值在夏季,与北半球中低纬度观测结果一致,表明北半球重力波活动普遍冬季强、夏季弱.  相似文献   

10.
The planetary wave impact on the polar vortex stability, polar stratosphere temperature, and content of ozone and other gases was simulated with the global chemical–climatic model of the lower and middle atmosphere. It was found that the planetary waves propagating from the troposphere into the stratosphere differently affect the gas content of the Arctic and Antarctic stratosphere. In the Arctic region, the degree of wave activity critically affects the polar vortex formation, the appearance of polar stratospheric clouds, the halogen activation on their surface, and ozone anomaly formation. Ozone anomalies in the Arctic region as a rule are not formed at high wave activity and can be registered at low activity. In the Antarctic Regions, wave activity affects the stability of polar vortex and the depth of ozone holes, which are formed at almost any wave activity, and the minimal ozone values depend on the strong or weak wave activity that is registered in specific years.  相似文献   

11.
Ozone depression in the polar stratosphere during the energetic solar proton event on 4 August 1972 was observed by the backscattered ultraviolet (BUV) experiment on the Nimbus 4 satellite. Distinct asymmetries in the columnar ozone content, the amount of ozone depressions and their temporal variations above 4 mb level (38 km) were observed between the two hemispheres. The ozone destroying solar particles precipitate rather symmetrically into the two polar atmospheres due to the geomagnetic dipole field These asymmetries can be therefore ascribed to the differences mainly in dynamics and partly in the solar illumination and the vertical temperature structure between the summer and the winter polar atmospheres. The polar stratosphere is less disturbed and warmer in the summer hemisphere than the winter hemisphere since the propagation of planetary wave from the troposphere is inhibited by the wind system in the upper troposphere, and the air is heated by the prolonged solar insolation. Correspondingly, the temporal variations of stratospheric ozone depletion and its recovery appear to be smooth functions of time in the (northern) summer hemisphere and the undisturbed ozone amount is slighily, less than that of its counterpart. On the other hand, the tempotal variation of the upper stratospheric ozone in the winter polar atmosphere (southern hemisphere) indicates large amplitudes and irregularities due to the disturbances produced by upward propagating waves which prevail in the polar winter atmosphere. These characteristic differences between the two polar atmospheres are also evident in the vertical distributions of temperature and wind observed by balloons and rocker soundings.  相似文献   

12.
Scattering ratios of stratospheric aerosol obtained by lidar at McMurdo Station, Antarctica (78°S, 167°E), during February–December 1993, have been analysed in relation to the stratospheric polar vortex. Seasonal changes in their properties are used to infer dynamic processes occurring in the Antarctic stratosphere during the year. Descent rates are calculated and compared to values obtained with different studies. Our analysis suggests that the apparent springtime cleansing of the Antarctic stratosphere is the result of subsidence of air masses inside the vortex and of sedimentation of larger particles. Below 20 km of height, an enhancement of the aerosol descent rates during July was associated with high occurrence of Polar Stratospheric Cloud events above McMurdo Station in that period. A synoptic approach using potential vorticity values at 425 K above the station has been employed to figure out the behaviour of the aerosol across the vortex boundary during its early formation.  相似文献   

13.
Analyses of evolutions of the kinetic and thermal energy associated with the major and minor stratospheric warmings in the winters of 1976–77 and 1975–76 respectively indicate that the predominant ultra-long waves in the stratosphere oscillated at periods of 10–20 days, whereas in the troposphere the predominant long waves oscillated at periods of 8 to 12 days. These tropospheric long waves are almost out-of-phase with the stratospheric ultra-long waves for the minor warming, but in-phase for the major warming. The kinetic energy of the zonal mean flow in the stratosphere for the minor warming is much greater than that for the major warming, indicating that the occurrence of a major warming depends on the magnitude of the kinetic energy of the zonal mean flow relative to that of the meridional convergence of the poleward flux of sensible heat. In both the major and minor warmings, most of the stratospheric eddy kinetic energy is contained in waves of wavenumbers 1 and 2, whereas the stratospheric available potential energy is primarily contained in waves of wavenumber 1. The kinetic energy associated with waves of wavenumber 1 appeared to be 180° out-of-phase with those of wavenumber 2, indicating that nonlinear transfer of kinetic energy occurred between waves of wavenumbers 1 and 2. The occurrences of wind reversals were accompanied by decouplings of the stratospheric and tropospheric motions, and blockings in the troposphere.  相似文献   

14.
Using the monthly mean NCEP/NCAR reanalysis and NOAA Extended Reconstructed sea surface temperature (SST) datasets, strong correlations between the SST anomalies in the North Pacific and calculated three-dimensional Eliassen–Palm vertical fluxes are indicated in December 1958–1976 and 1992–2006. These correlations between the interannual variations of the SST anomalies and the penetration of planetary waves into the stratosphere are much less during the decadal sub-period 1976–1992 in the positive phase of the Pacific Decadal Oscillation (PDO) and the decadal cold SST anomalies in the North Pacific. Interannual variations of the polar jet in the lower stratosphere in January are strongly associated with SST anomalies in the Aleutian Low region in December for the years with positive PDO index. This sub-period corresponds well with that of the violation of the Holton–Tan relationship between the equatorial Quasi-Beinnial Oscillation (QBO) and the stratospheric circulation in the extra-tropics. It is shown that interannual and interdecadal variations of stratospheric dynamics, including stratospheric warming occurrences in January, depend strongly on changes of the upward propagation of planetary waves from the troposphere to the stratosphere over North Eurasia in preceding December. These findings give evidences of a large impact of the decadal SST variations in the North Pacific on wave activity in early winter due to changes of thermal excitation of planetary waves during distinct decadal periods. Possible causes of the decadal violation of the Holton–Tan relationship, its relation to the PDO and an influence of the 11-year solar cycle on the stratosphere are discussed.  相似文献   

15.
Radar measurements at Aberystwyth (52.4°N, 4.1°W) of winds at tropospheric and lower stratospheric heights are shown for 12–13 March 1994 in a region of highly curved flow, downstream of the jet maximum. The perturbations of horizontal velocity have comparable amplitudes in the troposphere and lower stratosphere with downward and upward phase propagation, respectively, in these two height regions. The sense of rotation with increasing height in hodographs of horizontal perturbation velocity derived for hourly intervals show downwards propagation of energy in the troposphere and upward propagation in the lower stratosphere with vertical wavelengths of 1.7 to 2.3 km. The results indicate inertia-gravity waves propagating in a direction similar to that of the jet stream but at smaller velocities. Some of the features observed contrast with those of previous observations of inertia-gravity waves propagating transverse to the jet stream. The interpretation of the hodographs to derive wave parameters has taken account of the vertical shear of the background wind transverse to the direction of wave propagation.  相似文献   

16.
Zonal mean data and amplitudes and phases of planetary zonal waves were derived from daily hemispheric maps for tropospheric and stratospheric levels, for the four winters 1975–76 to 1978–79. Important year-to-year fluctuation in zonal means and wave activity are described, most notable of which are the changes from 1975–76 to 1976–77. Comparison of the relative strengths of the stratospheric and tropospheric jet streams shows a strong negative correlation (–0.8) between monthly mean zonal stratospheric winds (at 10 mb, 65°N) and zonal tropospheric winds (at 200 mb, 32.5°N, in the jet core) and a positive correlation (+0.7) between the stratospheric 10 mb winds and the tropospheric 200 mb winds at 65°N. Parameters correlated were the departures from the climatological mean zonal winds. The structure of correlation between wave amplitudes in the same wave number (1, 2) at different altitudes and between wave numbers 1 and 2 is investigated. We find a high correlation (+0.93) between wave 1 in the stratosphere (10 mb height) and wave 2 (height) in the troposphere at 65°N; but only a weak correlation (+0.2) between wave 1 amplitudes in the stratosphere and troposphere. These results suggest the possible importance of wave-wave interactions in processes linking the stratosphere and troposphere. The wave correlations presented here are based on comparisons of monthly means of daily amplitudes; the correlation structure in individual wave developments may differ, in view of the likelihood of altitudinal lags in wave amplification.  相似文献   

17.
Several papers have recently invoked Joule heating in the stratosphere, generated from electric currents induced by solar wind interactions with Earth, as possibly playing a significant role in warming the polar stratosphere. This commentary assesses the accuracy of that contention and demonstrates that in situ Joule heating can take no significant part in warming the stratosphere, and thus cannot be used to suggest a link between stratospheric temperatures and solar activity.  相似文献   

18.
Nicolet  M.  Peetermans  W. 《Pure and Applied Geophysics》1973,106(1):1400-1416
The vertical distribution of the methane concentration in the stratosphere is related to its dissociation by two simultaneous daytime reactions with excited oxygen atoms O(1D) and with OH radicals and depends on the stratospheric eddy diffusion coefficient.Dissociation of CH4 in the lower stratosphere leads to the production of CO molecules while in the upper stratosphere thepphotodissociation of CO2 molecules is an additional process to the CO production.In the upper stratosphere (40±10 km) there is an equilibrium between the formation and destruction processes of carbon monoxide which leads to a minimum of its mixing ratio. There is an increase of the CO mixing ratio in the troposphere and mesosphere compared with that of the stratosphere.The vertical distribution of the CO mixing ratio is closely related to the eddy diffusion coefficient in the whole stratosphere but the absolute values of the hydroxyl radical concentration also determine the values of the CO mixing ratio.  相似文献   

19.
van Loon et al. [2007. Coupled air–sea response to solar forcing in the Pacific region during northern winter. Journal of Geophysical Research 112, D02108, doi:10.1029/2006JD007378] showed that the Pacific Ocean in northern winter is sensitive to the influence of the sun in its decadal peaks. We extend this study by three solar peaks to a total of 14, examine the response in the stratosphere, and contrast the response to solar forcing to that of cold events (CEs) in the Southern Oscillation. The addition of three solar peak years confirms the earlier results. That is, in solar peak years the sea level pressure (SLP) is, on average, above normal in the Gulf of Alaska and south of the equator, stronger southeast trades blow across the Pacific equator and cause increased upwelling and thus anomalously lower sea surface temperatures (SSTs). Since the effect on the Pacific climate system of solar forcing resembles CEs in the Southern Oscillation, we compare the two and note that, even though their patterns appear similar in some ways, they are particularly different in the stratosphere and are thus due to separate processes. That is, in July–August (JA) of the year leading into January–February (JF) of the solar peak years, the Walker cell expands in the Pacific troposphere, and the stratospheric wind anomalies are westerly below 25 hPa and easterly above, whereas this signal in the stratosphere is absent in CEs. Thus the large-scale east–west tropical atmospheric (Walker) circulation is enhanced, though not to the extent that it is in CEs in the Southern Oscillation, and the solar influence thus appears as a strengthening of the climatological mean regional precipitation maxima in the tropical Pacific. Additionally, CEs have a 1-year evolution, while the response to solar peaks extends across 3 years such that the signal in the Pacific SLP of the solar peaks is similar but weaker in the year leading into the peak and in the year after the peak. The concurrent negative SST anomalies develop during the year before the solar peak, and after the peak the anomalies are still present but are waning. In the stratosphere in solar peaks, the equatorial quasi-biennial oscillation (QBO) is amplified when it is in its westerly phase in the lower stratosphere and easterly phase above; and the QBO is suppressed when in its easterly phase below–westerly phase above. Such an association is not evident in CEs.  相似文献   

20.
主要分析了1951~2004年夏季亚洲极涡强度和面积的长期变化趋势及其对东亚夏季环流,水汽输送和降水量的影响,发现1951~2004年,夏季亚洲极涡表现出了明显的强度减弱,面积缩小的变化趋势,并以面积缩小更为显著,这正对应于北极涛动(AO)指数在该时段的显著升高.在这种北半球中高纬大尺度环流变化的影响下,东亚夏季高空西风急流在近54年显著南移,冷空气活动的南侵程度明显增强,从而造成低空偏北风显著增强而偏南风减弱.与此相应,近54年整个中国区域内低空纬向风速呈明显的减小趋势.总的来看,东亚夏季风环流发生了明显减弱.同时,流经中国的中纬度西风水汽输送在近54年也表现出一致减弱的趋势,而南风水汽输送大致以110°E为界,以东的夏季风区呈显著的减弱趋势而以西则有明显的增加趋势.这种水汽输送的变化影响了中国不同区域内水汽输送通量散度的改变,进而使得夏季降水量发生变化.分析表明,夏季亚洲极涡的面积和强度与东北、华北和西北东部的水汽输送通量散度和夏季降水呈正相关,而与长江中下游、华南、西南、青藏高原和西北西部呈显著负相关,夏季亚洲极涡在近几十年的面积缩小和强度减弱是中国夏季降水长期变化的一个可能原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号