首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Based on the most complete list of the results of an individual comparison of the proper motions for stars of various programs common to the Hipparcos catalog, each of which is an independent realization of the inertial reference frame with regard to stellar proper motions, we redetermined the vector ω of residual rotation of the ICRS system relative to the extragalactic reference frame. The equatorial components of this vector were found to be the following: ωx=+0.04±0.15 mas yr?1, ωy=+0.18±0.12 mas yr?1, and ωz=?0.35±0.09 mas yr?1.  相似文献   

2.
Astrometric CCD observations of 1123 stars with large proper motions (μ > 300 mas yr−1) from the LSPM (I/298) catalog in the declination zone +30°–+70° have been carried out with the Pulkovo normal astrograph since 2006. The observational program includes mostly stars that previously have not entered into high-accuracy projects to determine the proper motions. Our studies are aimed at determining new proper motions of fast stars in the HCRF/UCAC3 system and searching for stars with invisible companions in the immediate Galactic neighborhoods of the Sun. Having analyzed about 10 000 CCD frames, we have obtained the equatorial coordinates of 414 program stars in the HCRF/UCAC3 system at an accuracy level of 10–50 mas and determined their new proper motions. To derive the proper motions, we have used the data from several star catalogs and surveys (M2000, CMC14, 2MASS, SDSS) as early epochs. The epoch differences range from 5 to 13 years (on average, about 10 years); the mean accuracy of the derived proper motions is 4–5 mas yr−1. For 70 stars, we have revealed significant differences between the derived proper motions and those from the LSPM and I/306A catalogs (these proper motions characterize the mean motion of the photocenter in 50 years or more). Apart from systematic errors, these differences can result from the existence of invisible components of the program stars.  相似文献   

3.
We perform a kinematic analysis of the Hipparcos and TRC proper motions of stars by using a linear Ogorodnikov-Milne model. All of the distant (r>0.2 kpc) stars of the Hipparcos catalog have been found to rotate around the Galactic y axis with an angular velocity of M 13 ? =?0.36±0.09 mas yr?1. One of the causes of this rotation may be an uncertainty in the lunisolar precession constant adopted when constructing the ICRS. In this case, the correction to the IAU (1976) lunisolar precession constant in longitude is shown to be Δp1=?3.26±0.10 mas yr?1. Based on the TRC catalog, we have determined the mean Oort constants: A=14.9±1.0 and B=?10.8±0.3 km s?1 kpc?1. The component of the model that describes the rotation of all TRC stars around the Galactic y axis is nonzero for all magnitudes, M 13 ? =?0.86±0.11 mas yr?1.  相似文献   

4.
Based on the Ogorodnikov-Milne model, we analyze the proper motions of Tycho-2 and UCAC2 stars. We have established that the model component that describes the rotation of all stars under consideration around the Galactic y axis differs significantly from zero at various magnitudes. We interpret this rotation found using the most distant stars as a residual rotation of the ICRS/Tycho-2 system relative to the inertial reference frame. For the most distant (d≈900 pc) Tycho-2 and UCAC2 stars, the mean rotation around the Galactic y axis has been found to be M 13 ? =?0.37±0.04 mas yr?1. The proper motions of UCAC2 stars with magnitudes in the range 12–15m are shown to be distorted appreciably by the magnitude equation in μα cos δ, which has the strongest effect for northern-sky stars with a coefficient of ?0.60±0.05 mas yr?1 mag?1. We have detected no significant effect of the magnitude equation in the proper motions of UCAC2 stars brighter than ≈11m.  相似文献   

5.
The absolute proper motions of about 275 million stars from the Kharkov XPM catalog have been obtained by comparing their positions in the 2MASS and USNO-A2.0 catalogs with an epoch difference of about 45 yr for northern-hemisphere stars and about 17 yr for southern-hemisphere stars. The zero point of the system of absolute proper motions has been determined using 1.45 million galaxies. The equatorial components of the residual rotation vector of the ICRS/UCAC2 coordinate system relative to the system of extragalactic sources have been determined by comparing the XPM and UCAC2 stellar proper motions: ω x,y,z = (−0.06, 0.17, −0.84) ± (0.15, 0.14, 0.14) mas yr−1. These parameters have been calculated using about 1 million faintest UCAC2 stars with magnitudes R UCAC2 > 16 m and J > 14 m . 7, for which the color and magnitude equation effects are negligible.  相似文献   

6.
A cross index list of over 2000000 stars with high proper motions (no less than 0.04″/year) is compiled on the basis of original determinations from the catalog FONAK1.1 and of data from the catalogs HIPPARCOS, Tycho-2, UCAC2, UCAC3, PPMX, CMC (STAR 11), PPM, GCVS, NPM1, NPM2, XZ80Q, PUL2, PUL3, NLTT, LHS, PM2000 (Bordeaux), and XC1 as well as of data from other published sources ().  相似文献   

7.
We cross-match objects from several different astronomical catalogs to determine the absolute proper motions of stars within the 30-arcmin radius fields of 115 Milky-Way globular clusters with the accuracy of 1–2 mas yr?1. The proper motions are based on positional data recovered from the USNO-B1, 2MASS, URAT1, ALLWISE, UCAC5, and Gaia DR1 surveys with up to ten positions spanning an epoch difference of up to about 65 years, and reduced to Gaia DR1 TGAS frame using UCAC5 as the reference catalog. Cluster members are photometrically identified by selecting horizontal- and red-giant branch stars on color–magnitude diagrams, and the mean absolute proper motions of the clusters with a typical formal error of about 0.4 mas yr?1 are computed by averaging the proper motions of selected members. The inferred absolute proper motions of clusters are combined with available radial-velocity data and heliocentric distance estimates to compute the cluster orbits in terms of the Galactic potential models based on Miyamoto and Nagai disk, Hernquist spheroid, and modified isothermal dark-matter halo (axisymmetric model without a bar) and the same model + rotating Ferre’s bar (non-axisymmetric). Five distant clusters have higher-than-escape velocities, most likely due to large errors of computed transversal velocities, whereas the computed orbits of all other clusters remain bound to the Galaxy. Unlike previously published results, we find the bar to affect substantially the orbits of most of the clusters, even those at large Galactocentric distances, bringing appreciable chaotization, especially in the portions of the orbits close to the Galactic center, and stretching out the orbits of some of the thick-disk clusters.  相似文献   

8.
We describe the procedure we used to compile a catalog of the proper motions of 23 633 stars in the sky area covering about 700 square degrees at the north Galactic pole. The compiled catalog combines the data from the UCAC2, Tycho-2, and FONAC catalogs for stars down to V ~ 14 m in this sky area. In addition to proper motions, the catalog also contains the near-infrared magnitudes J, H, and K s in the 2MASS system. The mean accuracy is 2.5 mas/yr for proper motions and 0.03 m for magnitudes.  相似文献   

9.
We compiled a catalog (containing astrometric and astrophysical characteristics) of 4 302 200 stars with high proper motions (no less than 40 mas/year) using original measurements of proper motions of stars from the catalogs FONAK 1.1, HIPPARCOS, ??Tycho-2,?? UCAC2,3, CMC (STAR 11), PPM, PPMX, NPM1, NPM2, XZ80Q, Pul-3, Pul2, NLTT, GCVS, LHS, ??Lowell Proper Motion,?? and ??Bruce Proper Motion,?? as well as some data from approximately 800 other published sources. The location of our catalog is ftp://ftp.mao.kiev.ua/pub/astro/h-pms3.dat.  相似文献   

10.
The catalog of equatorial coordinates α and δ and B-magnitudes of stars of the northern sky (from–4° to +90°) was created as a part of the FON project at the Main Astronomical Observatory of the National Academy of Sciences of Ukraine. The data accumulated in the Joint Digital Archive of the Ukrainian Virtual Observatory were used. The total number of processed plates is 2260. Astronegatives were digitized with Microtek ScanMaker 9800XL TMA and Epson Expression 10000XL scanners in the 1200 dpi scanning mode. The majority of plates have a size of 30 × 30 cm (13000 × 13000 pixels). The catalog contains the data on 19451751 stars and galaxies with B ≤ 16.5m at the epoch of 1988.1. The coordinates of stars and galaxies were obtained in the Tycho-2 reference system, and B-magnitudes were determined in the system of photoelectric standards. The mean internal errors of the catalog are σαδ = 0.23″ and σB = 0.14m for all objects or σαδ = 0.10″ and σB = 0.07m for stars in the B = 7m–14m range. The convergence between the catalog and Tycho-2 is characterized by the following values: 0.06′′ and 0.15m. The mean-square difference in coordinates from the catalog and from UCAC-4 is σαδ = 0.30′′ (18 742 932 objects, or 96.36% of stars and galaxies, were cross-identified).  相似文献   

11.
The positions and proper motions of the stars from the XC1 catalog are compared with the data of other modern catalogs of stars and extragalactic objects. We demonstrate that the XC1 system is free from significant systematic errors. The external error in the proper motions of the stars fainter than 15 m is estimated at 3–5 mas/yr, depending on magnitude.  相似文献   

12.
Summary In this paper the results of the research of the stars proper motions Trapezium components are reported. They are: the galactic coordinates of the solar aprx and the Sun velocity (L =43±18°,B =+28±13°,V =13±4 km s−1), the dispersion of peculiar velocities in the direction of the galactic coordinates for the above mentioned stars (σ l =±11 km s−1, σ b =±7 km s−1).The attained accuracy of the proper motions (±0.005″ yr−1) is shown to be insufficient to the study of internal space motions in these systems. At present the work to increase the relative proper motions accuracy for multiple system components and to improve reductions from the relative to absolute proper motions, is being carried out in the Main Astronomical Observatory (Academy of Sciences of the Ukrainian SSR). The new catalogue of the AGK3 stars is composed now in the vicinity of the galactic equator in order to improve reductions from the relative to absolute proper motions. The r.m.s. errors of the proper motions, obtained in the AGK3 system, are ±0.005″ yr−1.  相似文献   

13.
Astrometric CCD observations of stars with large proper motions were carried out during 2008–2014 using telescopes of the Nikolaev Astronomical Observatory. A catalog of positions and proper motion of 1596 fast stars with proper motions exceeding 150 mas/yr has been compiled based on observation results. The catalog covers the declination zone from 0° to 65°. The standard error of derived proper motion is 1…10 mas/yr for both coordinates depending on the observational history of the star. Data from eight different star catalogs and surveys have been used to derive proper motion. The comparison results of proper motion with data from modern catalogs and results of the statistical test for the detection of possible invisible components are given.  相似文献   

14.
A proper motion study from Tautenburg Schmidt plates is presented for the globular cluster M3 and its vicinity. The plates were scanned with the Automated Photographic Measuring (APM) system in Cambridge (UK). A photographic B,V photometry and star counts on the deepest plates were carried out. With a limiting magnitude of about B = 21.4 proper motions with an accuracy from 2 to 3 mas/yr have been obtained for stars with B 19. The proper motions were determined using a stepwise regression method with 3rd order polynomials in the plate-to-plate solutions with about 2000 reference galaxies. The results which were corrected for systematic errors dependent on position and magnitude of the stars were used for the determination of membership probabilities. We also looked for possible internal motions of M3.  相似文献   

15.
The catalog of equatorial coordinates α and δ and B-magnitudes of stars has been created at the Main Astronomical Observatory, National Academy of Sciences of Ukraine (MAO NASU), for the circumpolar region (from 58° to 90°) of the Northern Sky Survey (FON) project within the work on the rational use of resources accumulated in the JDA (Joint Digital Archive) of the Ukrainian Virtual Observatory (UkrVO). The total number of processed plates is 477. The plates were digitized with the using Microtek ScanMaker 9800XL TMA and Epson Expression 10000XL scanners (scanning mode was 1200 dpi, the linear size of plates was 30 × 30 cm or 13000 × 13000 px). The catalog includes 1 975 967 stars and galaxies with B of up to 16.5 m as of the epoch of 1985.28. The coordinates of stars and galaxies were obtained in the Tycho-2 reference system and B-magnitudes were obtained in the system of photoelectric standards. The internal errors of the catalog for all the objects are σαδ = 0.23′′ and σ B = 0.12 m , and those for stars of the B range from 8 m –14 m , 0.11′′ and 0.06 m , respectively. The convergence between the calculated and reference positions is σαδ = 0.06′′ (for 171124 stars from Tycho-2), and that between the photoelectric stellar B-magnitudes is σ B = 0.15m (for 5130 stars). The external error from the comparison with UCAC-4 are σαδ = 0.33′′ (1928367 stars and galaxies have been cross identified).  相似文献   

16.
The processing of the plates of the Kitab part of the FON project has been completed. In total, 1963 plates were processed. The catalog of equatorial coordinates α, δ, and B-magnitudes for 13 413268 stars and galaxies up to B ≤ 17.5 m for the epoch 1984.97 is compiled. The Epson Expression 10000XL scanner with a 1200 dpi scanning mode and a plate size of 30 × 30 cm or 13000 × 13000 pel was used to digitize astronegatives. Coordinates of stars and galaxies are obtained in the Tycho-2 catalog system and B-magnitudes are obtained in the photovoltaic system. The catalog internal accuracy for all objects is σα,δ = 0.23" and σ B = 0.15 m (for stars in the range B = 5 m …14 m , errors are σα,δ = 0.085" and σ B = 0.054 m ) for equatorial coordinates and stellar B-magnitudes, respectively. Convergence between the calculated and reference positions is σα,δ = 0.042", and convergence between photoelectric B-magnitudes is σ B = 0.16 m . Coordinate errors with respect to the UCAC-4 catalog are σα,δ = 0.26" (9892697 or 73.75% of stars and galaxies were identified).  相似文献   

17.
After a short summary of the results expected from the HIPPARCOS mission, the author gives several examples illustrating the needs that will arise afterwards in order to maintain the level of precision achieved and to extend it to many more objects. Three domains are particularly dealt with in this paper:
  1. The maintenance of the HIPPARCOS reference system that will degrade at the rate of 2 mas per year. The instruments intended to contribute to this task should concentrate on observing a few stars as accurately as possible. The best candidates are astrolabes and optical interferometers.
  2. The extension of the HIPPARCOS catalogue to more stars using astrographs, Schmidt telescopes, and photoelectric meridian circles. A particularly important objective would be to reduce the GSE catalogue to this system and determine its proper motions with second epoch plates.
  3. The determination of new parallaxes and double star parameters in particular with CCD astrometry, astrometric photometry and various interferometric techniques.
  相似文献   

18.
《New Astronomy Reviews》1999,43(8-10):599-602
The position of PSR0329+54 on the International Celestial Reference Frame was measured at epochs March 1995, May 1996, and May 1998. Our observations detected the proper motion of PSR0329+54. The position and proper motion agreed well with the position determined by Bartel et al. (1985). From combined analysis with our data and that of Bartel, the proper motion of PSR0329+54 was determined: μα=+17.4±0.3 mas yr−1, μδ=−11.0±0.3 mas yr−1. These results are consistent with the value by Harrison et al. (1993)measured with the MERLIN interferometer. We also determined the coordinates of PSR0329+54 very accurately within the ICRF: α=03h32m59s.3761±0s.0002, δ=54°34′43′′.5119±0′′.0015 at 1995.  相似文献   

19.
We present the results of our comprehensive study of the Galactic open star cluster NGC 6866. The positions of stars in the investigated region have been obtained with the “Fantasy” automatic measuring machine from 10 plates of the normal astrograph at the Pulkovo Astronomical Observatory. The size of the investigated field is 40′ × 40′, the limiting magnitude is B ∼ 16· m 6, and the maximum epoch difference is 79 yr. For 1202 field stars, we have determined the relative proper motions with an rms error of 2.5 mas yr−1. Out of them, 423 stars may be considered cluster members with a probability P > 70% according to the astrometric criterion. Photometric diagrams have been used as an additional criterion. We have performed two-color BV CCD photometry of stars with the Pulkovo ZA-320M mirror astrograph. The U magnitudes from the literature have also been used to construct the two-color diagrams. A total of 267 stars have turned out to be members of NGC 6866 according to the two criteria. We present refined physical parameters of the cluster and its age estimate (5.6 × 108 yr). The cluster membership of red and blue giants, variable, double, and multiple stars is considered. We have found an almost complete coincidence of the positions of one of the stars in the region (a cluster nonmember) and a soft X-ray source in the ROSAT catalog. The “Fantasy” automatic measuring machine is described in the Appendix.  相似文献   

20.
Radial velocities for 15 stars with high proper motions were measured as a result of spectral observations, conducted with the NES echelle spectrograph of the 6-m BTA telescope in the wavelength range of 3550–5100 Å with a spectral resolution of R=60000. The standard deviation of the measured velocity does not exceed σ ≤ 0.9 km/s for the stars with metallicity [Fe/H]? ?1, and σ ≤ 1.1 km/s for [Fe/H]? ?1. The heliocentric velocities measured with high accuracy in combination with trigonometrical parallaxes and proper motions from the HIPPARCOS catalog allowed us to determine the distances and parameters of the galactic orbits of the stars under study. In general they are located within 100 pc; the binarity of several program stars is confirmed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号