首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
气候变化情景下青藏高原多年冻土活动层厚度变化预测   总被引:8,自引:11,他引:8  
张中琼  吴青柏 《冰川冻土》2012,34(3):505-511
在人类活动和气候变暖的共同影响下, 浅层多年冻土近地表和活动层的热状况会发生显著的变化, 从而对生态环境、 水文、 工程等产生较大的影响. 以A1B, A2, B1气候变化情景模式为基础, 运用Stefan公式计算和预测了青藏高原多年冻土区活动层厚度的变化特征. 结果表明: 以羌塘盆地为中心, 青藏高原多年冻土活动层厚度向其四周不断增加, 多年冻土活动层厚度随着气温升高而增加. A1B 、 A2模式下活动层厚度变化大, 相对人类活动强度较小的B1模式活动层厚度变化较小. 到2050年时, A1B情景活动层厚度平均约为3.07 m, 相对于2010年活动层厚度约增加0.3~0.8 m; B1情景活动层厚度增加0.2~0.5 m; A2情景增加0.2~0.55 m. 到2099年, A1B情景活动层的平均厚度将约为3.42 m; A2情景将可达3.53 m; B1情景将可达2.93 m. 气候变暖将可能加深活动层, 百年后将大范围改变多年冻土的空间分布.  相似文献   

3.
青藏高原多年冻土活动层厚度对气候变化的响应   总被引:4,自引:8,他引:4  
活动层厚度变化将会对多年冻土区生态系统、地气间能水平衡和碳循环等产生重要影响。利用Stefan公式模拟了1981-2010年青藏高原多年冻土区活动层厚度的分布和空间变化特征。结果表明:多年冻土区活动层厚度平均为2.39 m,活动层厚度在羌塘盆地最小,在多年冻土区边缘、祁连山、西昆仑山、念青唐古拉山活动层厚度较大。在气候变化条件下,青藏高原多年冻土区活动层厚度呈整体增大趋势,在1981-2010年,活动层厚度的变化量为-1.54~2.24 m,变化率为-5.90~10.13 cm·a-1,平均每年变化1.29 cm。活动层增厚趋势与年平均气温增大的趋势基本一致,这说明气候变化对活动层厚度变化有很大的影响。  相似文献   

4.
全球多年冻土与气候变化研究进展   总被引:4,自引:0,他引:4  
多年冻土热状态和土壤季节冻融过程的变化对陆地生态系统、地-气间温室气体交换、水文和地貌过程以及工程基础设施的建设和运行都具有很大的影响。活动层和多年冻土及其变化数据信息对于验证在不同尺度的陆面过程、水文、生态和气候模型至关重要。本文就目前全球多年冻土与气候变化研究现状进行概括性总结。在全球变暖的影响下,全球范围内多年冻土发生了不同程度的退化。自20世纪70年代末以来,北极高纬度低温多年冻土温度升高可达3℃。由于受相变潜热的影响,在不连续多年冻土区相对较高温度的多年冻土温度增加幅度较小。受局地条件的影响,个别站点多年冻土温度几乎没有发生变化,甚至有降温的趋势。高纬度多年冻土南界向北移动,而中纬度高山地区多年冻土下界向高海拔移动,导致全球多年冻土面积减少。活动层厚度变化具有较强的区域差异,其深度增加范围从几厘米到1m多不等。新的融区在形成,融区厚度在增加且其范围在扩大。导致全球范围内多年冻土温度升高、活动层厚度增加以及融区的形成主要是受气温升高和积雪条件变化所致。未来多年冻土研究应包括不同时-空尺度上的长期监测和数值模拟、多年冻土变化与大气、水文、生态系统、碳循环以及地貌过程的相互作用等方面。  相似文献   

5.
青藏高原多年冻土区活动层水热特性研究进展   总被引:1,自引:3,他引:1  
青藏高原多年冻土作为我国冰冻圈的重要组成部分, 其水热状况是影响寒区生态环境、 陆气间水热交换、 气候变化以及地面路基建设等的重要因素。为增进对青藏高原多年冻土区活动层水热特性的认识, 对影响活动层水热特性的主要因素以及主要研究方法做进一步梳理, 并指出了当前研究中的不足。研究认为, 气象条件、 植被覆盖度、 土壤性质、 积雪等是影响多年冻土区活动层水热过程的主要因素, 目前针对活动层水热特性的研究主要通过对站点实测资料分析和模型模拟等方式展开。未来工作的重点应放在改进适合于高寒山区的陆面模式以及增强水热动态过程与气候系统的相互作用上。  相似文献   

6.
植被与多年冻土共同维系着大兴安岭地区的冷湿环境。随着全球气候变暖,大兴安岭多年冻土已发生严重退化,植被的生长也受到影响。在大兴安岭北部多年冻土区设置55个采样点,每个采样点采集多年冻土活动层厚度、林下灌木生物量和落叶松胸径树龄等指标,同时借助增强型植被指数(EVI)在区域尺度比较大片多年冻土区和岛状融区多年冻土区的植被生长状况。结果表明:黑龙江呼中国家级自然保护区(简称呼中保护区)活动层厚度的平均值为(0.47±0.14) m,保护区周边为(0.83±0.38) m,呼中保护区周边的活动层厚度大于保护区内。大片多年冻土区的活动层厚度平均值为(1.04±0.47) m,小于岛状融区多年冻土区的(1.40±0.41) m。呼中保护区和周边灌木生物量的平均值分别为(201.75±71.70) g·m-2和(259.10±111.14) g·m-2,胸径与树龄比值的平均值分别为(0.20±0.08)和(0.26±0.14)。大片多年冻土区和岛状融区多年冻土区林下灌木生物量的平均值分别为(128.31±63.33) g·m-2和(199.04±66.13) g·m-2,胸径树龄比的平均值分别为(0.30±0.13)和(0.59±0.21)。活动层厚度大的区域,灌木的生物量以及落叶松胸径树龄比都大于活动层厚度小的区域,表明活动层厚度增加对灌木和乔木的生长有一定的促进作用。EVI的结果显示岛状融区多年冻土区植被的生长状况以及植被覆盖情况好于大片多年冻土区,从区域尺度证明了多年冻土对植被生长存在限制作用。研究结果对于深入理解多年冻土变化及其环境效应具有重要意义。  相似文献   

7.
冯晓琳  张艳林  常晓丽 《冰川冻土》2021,43(5):1468-1479
大兴安岭北部是我国唯一的中高纬度多年冻土区,其水热特征分析对陆气能量交换、生态系统和气候变化等研究有重要意义。基于2011—2020年期间对大兴安岭森林生态站附近的湿地多年冻土开展的气温和0~2 m地温和土壤含水量数据,对大兴安岭湿地多年冻土活动层的水热特征进行了分析。结果表明:湿地多年冻土活动层内地温的变幅随深度减小,且具有滞后性。融化期地表温度高于深层地温,冻结期相反。2012年、2013年、2019年和2020年的平均融化速率分别为0.49、0.61、0.47和0.56 cm·d-1,向上平均冻结速率分别为1.34、2.12、2.58和1.65 cm·d-1。向下平均冻结速率分别为1.69、1.02、3.32和1.00 cm·d-1,最大融化深度分别为78.73、85.65、66.22和74.94 cm。2012年5月—2013年5月期间,土壤未冻水含量随地温变化的拟合关系较好,相关系数大于0.90,且深层拟合效果优于表层。融化期土壤水分变化幅度大,与地温的相关性差,随深度增加相关性减弱。湿地充足的水分为多年冻土的双向冻结提供了条件。研究成果可为大兴安岭湿地多年冻土区的冻融循环、水热耦合机理和模拟研究提供数据基础和理论依据。  相似文献   

8.
杨成松  程国栋 《冰川冻土》2011,33(3):461-468
对1961-2100年IPCC气候模拟与预测结果进行降尺度处理,得到铁路沿线空间分辨率为1km、时间分辨率为1h的大气边界条件.对铁路和公路沿线钻孔资料在垂直和水平两个方向进行空间差值处理,得到水平1 km、垂直0.1m分辨率的沿线地下含水(冰)量的二维分布,作为初始条件.考虑气候模型预测误差和空间格网内地形的变化,以...  相似文献   

9.
多年冻土区活动层冻融状况及土壤水分运移特征   总被引:6,自引:8,他引:6  
利用位于典型多年冻土区的唐古拉综合观测场2007年9月1日—2008年9月1日实测活动层剖面土壤温度和水分数据,对多年冻土区活动层的冻结融化规律进行研究;同时,对冻融过程中的活动层土壤液态水含量的变化特征进行分析,探讨了活动层内部土壤水分分布特征及其运移特点对活动层冻结融化过程的影响. 结果表明:活动层融化过程从表层开始向下层土壤发展,冻结过程则会出现双向冻结现象. 一个完整的年冻融循环中活动层冻结过程耗时要远远小于融化过程. 活动层土壤经过一个冻融循环,土壤水分整体呈现下移的趋势,土壤水分逐步运移至多年冻土上限附近积累. 同时,土壤水分含量和运移特征会对活动层冻融过程产生显著的影响.  相似文献   

10.
青藏高原冻土区活动层厚度分布模拟   总被引:6,自引:10,他引:6  
活动层夏季融化、冬季冻结的近地表土(岩)层,是冻土地区热力动态最活跃的岩层,在冻土研究中有着重要意义.根据青藏高原地区80个气象观测台站1991-2000年的地面温度观测资料结合数字高程模型,计算出青藏高原冻土区的地面冻结指数和地面融化指数,然后应用斯蒂芬公式分别得到多年冻土区的季节融化深度和季节冻土区的季节冻结深度.  相似文献   

11.
杨成松  程国栋 《冰川冻土》2011,33(3):469-478
利用土壤表层温度计算Stefan公式中融化指数,并结合铁路沿线地下冰和土体干密度分布特征,由Stefan公式集合预报未来100 a逐年最大季节融化深度;利用铁路沿线地下冰和干密度分布特征计算冻土融化时最大沉降量空间分布,与Stefan公式计算得到的活动层厚度变化数据叠加分析,得到未来100 a逐年的沉降量空间分布及其置...  相似文献   

12.
兰州马衔山多年冻土活动层厚度估算及影响因素分析   总被引:2,自引:2,他引:0  
马衔山残存的多年冻土被誉为黄土高原地区多年冻土的"活化石". 自1986年发现多年冻土存在至今, 多年冻土发生了严重的退化, 活动层厚度增大, 面积由原来的0.16 km2减少到现在的 0.134 km2. 本文基于马衔山多年冻土区的实际监测资料分析了气温、地表温度和N系数随时间变化特征以及活动层温度、土壤含水量的时空特征. 根据2010-2013年马衔山多年冻土区的日平均地表温度和土壤参数实测及实验室分析资料, 利用X-G算法模拟了马衔山多年冻土的冻融过程, 并模拟得到4年的活动层厚度均比实测值小, 这可能与活动层底部较高的未冻水含量有关. 然后进一步探讨了泥炭层和含水量对活动层厚度的影响, 泥炭层越厚, 其隔热作用越强, 活动层厚度越小; 反之, 活动层厚度越大; 含水量越高, 土壤的容积热容量越大, 活动层厚度越小; 反之, 活动层厚度越大.  相似文献   

13.
基于青藏高原北麓河地区高寒草原、高寒沼泽草甸和高寒草甸生态系统下多年冻土活动层水热过程的监测数据,对活动层水热过程特征开展了相关研究。研究结果显示,在活动层厚度、冻融时间、持续时间以及活动层土壤水分含水量分布方面,不同的高寒生态系统下活动层的上述属性特征差异明显。高寒草原下多年冻土活动层厚度最大,土体开始融化的时间最早,每年持续融化的日数也最长;高寒草甸最小,高寒沼泽草甸居中。高寒草原下活动层土壤含水率从上到下逐渐增加,水分基本集中在活动层的中下部分;高寒沼泽草甸下活动层土壤水分的分布情况相对比较均衡;高寒草甸下活动层土壤含水率分布呈现从上到下逐步减少的模式,越靠近地表土壤含水率越大。对监测数据的进一步分析发现,不同的高寒生态系统下,近地表地温与气温温差累计值、近地表土壤有机质含量、n因子特征以及近地表地温标准差统计特征都具有明显的区别。研究分析表明,多年冻土活动层水热过程特征与高寒生态系统类型具有明显的关联性,高寒生态系统会影响近地表能量通量,从而使地-气热量交换产生差异,这一差异又将改变活动层土壤温度、水分分布特征及其动力学过程。  相似文献   

14.
近50 a青藏高原暖湿化趋势显著,水热边界条件的改变必然影响多年冻土的稳定性和高原生态环境的演变。已有研究主要关注气候升温对冻土温度场的影响,而对升温过程伴随的活动层水分变化研究较少。基于土壤-地表-大气水分和能量平衡的冻土水-汽-热耦合模型,以青藏高原北麓河地区2013年实测气象资料为模型驱动数据,研究在降雨不变,气温不变、气温升高1℃和升高2℃情况下活动层水热响应机制与过程。结果表明:气候升温通过改变地表能量与水分平衡过程和土壤内部水热运移分量影响多年冻土水热过程。气温升高引起地表净辐射、蒸发潜热和土壤热通量增大,而地表降雨入渗和感热通量减少;气温升高会降低土壤含水率和土壤导水系数,但温度梯度及与温度梯度相关的水分和能量分量相应增大,而与水势梯度相关的水分和能量分量相对减少;升温对土壤温度场的影响比水分场明显,影响范围也更深;随着气温升高,地表蒸发量和活动层厚度增大,气温升高加速了冻土的退化过程,与降雨增加对冻土的热稳定性影响相反。  相似文献   

15.
多年冻土区植物根系的地下分布格局是其适应高寒、反复冻融作用等特殊环境条件的重要体现.针对目前青藏高原高寒植物根系研究不足的现状,对青藏铁路沿线高寒草甸植物群落根系的分布特征及多年冻土活动层地温变化等进行调查观测.研究高寒植物群落根系在活动层土壤中的垂直分布特征,重点探讨多年冻土活动层温度变化对于高寒植物根系分布和格局的影响,揭示植物根系对冻土环境变化的响应特征及其对逆境条件的适应策略.研究结果表明:活动层季节性冻融对于高寒植物和地下根系分布格局具有深刻的影响,多年冻土表层最先具备适宜根系生长的温度和水分条件,导致高寒草甸根系分布浅层化,生物量大量累积在土壤表层,并随深度增加而减少.高寒草甸地下平均总根量为3.38 kg·m-2,0~10 cm土层根量密度平均为21.41 kg·m-3,约占地下根系总量的63.4%.高寒草甸植物群落具极高的根茎比,活动层长期的低温环境增加了根系的干物质总量和高寒植物总的生物产量.活动层0℃以上积温是根系分布的主要影响因子.  相似文献   

16.
冻土的低渗透性改变了地表水下渗,导致寒区流域产汇流过程发生改变;其季节冻融及引起的活动层深度变化,改变了土壤含水量从而调蓄流域储水量。过去数十年,气候变暖引起冻土退化重塑了寒区水文地质环境、改变了地下水热状况;而多年冻土退化的后果是其所含有的固态冰向液态地下水转化,进而改变多年冻土地下水的时空模态、生态环境和工程设施基础,影响多年冻土的碳汇功能,以及释放封存于其内的温室气体并进一步加速气候变化。尽管水化学和数值模拟技术的发展提升了人们对于冻土地下水补径排和循环机理的理解,但冻土区恶劣的环境和直接监测地下水的困难,仍然使冻土地下水研究存在巨大挑战。本文通过梳理多年冻土地下水相关文献,刻画了多年冻土地下水的时空模态,探讨了冻土与地下水的相互作用,认为在未来的研究中,水化学方法应更加侧重于冻土地下水动态,数值模拟应更加侧重于地下水热过程。另外,还整合了气候变化背景下多年冻土地下水变化的相关研究成果,描述了从补给区-排泄区、冻土融化起始-长期退化至消失过程中地下水的赋存、补径排变化以及这些变化所带来的影响。最后,尝试性探讨了冻土地下水研究未来可能的发展,以期为多年冻土地下水水文、水资源和生态环...  相似文献   

17.
为从整体上认识多年冻土活动层土壤水文过程季节变异特性,以黄河源区巴颜喀拉山北坡冻土剖面为例,结合大气降水、冻土土壤水分、冻土层上水的野外观测,采用HYDRUS-1D软件冻融模块进行模拟分析,分析冻融作用对活动层土壤水文过程的影响,研究结果表明:(1)冻土层上水位与土壤水热之间存在着相互影响、相互作用的关系,依据活动层土壤温度变化,基于冻融过程,多年冻土活动层土壤水分与冻土层上水位可划分为冻结稳定、快速融化、融化稳定和快速冻结4个阶段。(2)降雨入渗是坡面尺度下活动层土壤水文过程的主要驱动力,活动层冻融锋面是主要限制性因素,受冻融过程影响,冻结期降雨减少,土壤冻结,土壤储水能力下降,土壤水分下渗停止,坡面侧向流动减弱,土壤水分和冻土层上水位处于下降趋势;融化期降雨增多,土壤融化,土壤储水能力上升,土壤水分下渗强烈,坡面侧向流动增强,土壤水分和冻土层上水位处于上升趋势。(3)受坡面地形影响,上坡活动层厚度大于下坡,上坡冻融锋面变化较下坡平缓,上坡土壤水分和冻土层上水位的变化幅度相对下坡较为平缓,而上坡土壤水分相对下坡含量较低,下坡冻土层上水位相对稳定。  相似文献   

18.
不同植被盖度变化下活动层水热过程是多年冻土区水能循环中一个重要的不确定因素.为了研究植被盖度变化对活动层水热过程的影响,在青藏高原多年冻土区,选择坡向、坡型和坡度趋于一致植被覆盖度分别为92%、65%、30%的坡面建立天然径流观测场,觎测多年冻土活动层中的地温和水分状况.结果表明:活动层开始冻结和消融时间随着植被盖度的减少不断提前,且冻结持续时间缩短;随着植被盖度减小,活动层地温水分变化速率增大,植被起到抑制土壤地温水分变化速率的作用;植被盖度对夏季融化过程和秋季冻结过程活动层地温和水分的影响明显大于冬季降温和春季升温过程,对融化过程的影响较冻结过程更明显.  相似文献   

19.
刘广岳  谢昌卫  杨淑华 《冰川冻土》2018,40(6):1067-1078
多年冻土区活动层冻融格局对气候系统、能量平衡、水文过程和生态系统有重要的影响,地表冻融时间是反映冻融格局时空变化的重要指标。为了探明多年冻土区活动层起始冻融时间的影响因素和机制,通过对青藏公路沿线8个典型活动层观测场地表起始融化时间(OOT)和起始冻结时间(OOF)进行研究,分析了不同观测场起始冻融时间的时空差异及其影响因素。结果表明:(1)青藏高原多年冻土区活动层起始融化主要发生在4月中下旬,起始冻结主要发生在10月中下旬。OOT的年际变化幅度远大于OOF,每年起始冻结的发生较起始融化更为准时。(2)起始融化发生时的气温普遍比起始冻结发生时高1~4℃。气温对OOT的影响要比对OOF大,其中OOT的变化主要与春季气温有关,冬季气温对其影响不大。(3)植被和土壤水分对OOT和OOF有重要调节作用,土壤含水率越高,植被状况越好,起始融化和冻结的发生时间往往越迟。(4)在起始融化和冻结阶段,厚度较大和持续时间较长的积雪对地温变化有明显的抑制作用,对OOT和OOF有延迟作用。  相似文献   

20.
地表能量变化对多年冻土活动层融化过程的影响   总被引:11,自引:10,他引:1  
利用青藏高原北部唐古拉综合观测场2006-2008年辐射平衡及活动层温度观测资料,分析了高原北部地表能量变化对活动层融化过程的影响.结果显示:该地地表能量具有明显的季节变化特征,总辐射、净辐射、土壤热通量及地面热源强度6-7月最大,11-12月最小;研究时段土壤热通量年平均值0.12MJ.m-2.d-1,活动层土壤以吸...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号