共查询到20条相似文献,搜索用时 15 毫秒
1.
Thomas Kenkmann Abdulkader M. Afifi Simon A. Stewart Michael H. Poelchau Douglas J. Cook Allen S. Neville 《Meteoritics & planetary science》2015,50(11):1925-1940
Here we present the first proof of an impact origin for the Saqqar circular structure in northwestern Saudi Arabia (Neville et al. 2014 ), with an apparent diameter of 34 km, centered at 29°35′N, 38°42′E. The structure is formed in Cambrian–Devonian siliciclastics and is unconformably overlain by undeformed Cretaceous and Paleogene sediments. The age of impact is not well constrained and lies somewhere between 410 and 70 Ma. The subsurface structure is constrained by 2‐D reflection seismic profiles and six drilled wells. First‐order structural features are a central uplift that rises approximately 2 km above regional datums, surrounded by a ring syncline. The crater rim is defined by circumferential normal faults. The central uplift and ring syncline correspond to a Bouguer gravity high and an annular ring‐like low, respectively. The wells were drilled within the central uplift, the deepest among them exceed 2 km depth. Sandstone core samples from these wells show abundant indicators of a shock metamorphic overprint. Planar deformation features (PDFs) were measured with orientations along (0001), {103}, and less frequently along {101} and {104}. Planar fractures (PFs) predominantly occur along (0001) and {101}, and are locally associated with feather features (FFs). In addition, some shocked feldspar grains and strongly deformed mica flakes were found. The recorded shock pressure ranges between 5 and 15 GPa. The preserved level of shock and the absence of an allochthonous crater fill suggest that Saqqar was eroded by 1–2 km between the Devonian and Maastrichtian. The documentation of unequivocal shock features proves the formation of the Saqqar structure by a hypervelocity impact event. 相似文献
2.
P. Rochette R. Ala P. Beck G. Brocard A. J. Cavosie V. Debaille B. Devouard F. Jourdan B. Mougel F. Moustard F. Moynier S. Nomade G. R. Osinski B. Reynard J. Cornec 《Meteoritics & planetary science》2019,54(4):880-901
The circa 14 km diameter Pantasma circular structure in Oligocene volcanic rocks in Nicaragua is here studied for the first time to understand its origin. Geomorphology, field mapping, and petrographic and geochemical investigations all are consistent with an impact origin for the Pantasma structure. Observations supporting an impact origin include outward‐dipping volcanic flows, the presence of former melt‐bearing polymict breccia, impact glass (with lechatelierite and low H2O, <300 ppm), and also a possible ejecta layer containing Paleozoic rocks which originated from hundreds of meters below the surface. Diagnostic evidence for impact is provided by detection in impact glass of the former presence of reidite in granular zircon as well as coesite, and extraterrestrial ε54Cr value in polymict breccia. Two 40Ar/39Ar plateau ages with a combined weighted mean age of 815 ± 11 ka (2 σ; P = 0.17) were obtained on impact glass. This age is consistent with geomorphological data and erosion modeling, which all suggest a rather young crater. Pantasma is only the fourth exposed crater >10 km found in the Americas south of N30 latitude, and provides further evidence that a significant number of impact craters may remain to be discovered in Central and South America. 相似文献
3.
C. LANA C. R. SOUZA FILHO Y. R. MARANGONI E. YOKOYAMA R. I. F. TRINDADE E. TOHVER W. U. REIMOLD 《Meteoritics & planetary science》2008,43(4):701-716
Abstract— The 40 km wide Araguainha structure in central Brazil is a shallowly eroded impact crater that presents unique insights into the final stages of complex crater formation. The dominant structural features preserved at Araguainha relate directly to the centripetal movement of the target rocks during the collapse of the transient cavity. Slumping of the transient cavity walls resulted in inward‐verging inclined folds and a km‐scale anticline in the outer ring of the structure. The folding stage was followed by radial and concentric faulting, with downward displacement of kilometer‐scale blocks around the crater rim. The central uplift records evidence for km‐scale upward movement of crystalline basement rocks from the transient cavity floor, and lateral moment of sedimentary target rocks detached from the cavity walls. Much of the structural grain in the central uplift relates to structural stacking of km‐scale thrust sheets of sedimentary strata onto the core of crystalline basement rocks. Outward‐plunging radial folds indicate tangential oblate shortening of the strata during the imbrication of the thrust sheets. Each individual sheet records an early stage of folding and thickening due to non‐coaxial strains, shortly before sheet imbrication. We attribute this folding and thickening phase to the kilometer‐scale inward movement of the target strata from the transient cavity walls to the central uplift. The outer parts of the central uplift record additional outward movement of the target rocks, possibly related to the collapse of the central uplift. An inner ring structure at 10–12 km from the crater center marks the extent of the deformation related to the outward movement of the target rocks. 相似文献
4.
Abstract— The 50,000 year old, 1.8 km diameter Lonar crater is one of only two known terrestrial craters to be emplaced in basaltic target rock (the 65 million year old Deccan Traps). The composition of the Lonar basalts is similar to martian basaltic meteorites, which establishes Lonar as an excellent analogue for similarly sized craters on the surface of Mars. Samples from cores drilled into the Lonar crater floor show that there are basaltic impact breccias that have been altered by post‐impact hydrothermal processes to produce an assemblage of secondary alteration minerals. Microprobe data and X‐ray diffraction analyses show that the alteration mineral assemblage consists primarily of saponite, with minor celadonite, and carbonate. Thermodynamic modeling and terrestrial volcanic analogues were used to demonstrate that these clay minerals formed at temperatures between 130°C and 200°C. By comparing the Lonar alteration assemblage with alteration at other terrestrial craters, we conclude that the Lonar crater represents a lower size limit for impact‐induced hydrothermal activity. Based on these results, we suggest that similarly sized craters on Mars have the potential to form hydrothermal systems, as long as liquid water was present on or near the martian surface. Furthermore, the Fe‐rich alteration minerals produced by post‐impact hydrothermal processes could contribute to the minor iron enrichment associated with the formation of the martian soil. 相似文献
5.
Thomas KENKMANN Marcos A. R. VASCONCELOS Alvaro P. CRÓSTA Wolf U. REIMOLD 《Meteoritics & planetary science》2011,46(6):875-889
Abstract– Serra da Cangalha is a complex impact structure with a crater diameter of 13,700 m and a central uplift diameter of 5800 m. New findings of shatter cones, planar fractures, feather features, and possible planar deformation features are presented. Several ring‐like features that are visible on remote sensing imagery are caused by selective erosion of tilted strata. The target at Serra da Cangalha is composed of Devonian to Permian sedimentary rocks, mainly sandstones that are interlayered with siltstone and claystones. NNE–SSW and WNW–ESE‐striking joint sets were present prior to the impact and also overprinted the structure after its formation. As preferred zones of weakness, these joint sets partly controlled the shape of the outer perimeter of the structure and, in particular, affected the deformation within the central uplift. Joints in radial orientation to the impact center did not undergo a change in orientation during tilting of strata when the central uplift was formed. These planes were used as major displacement zones. The asymmetry of the central uplift, with preferred overturning of strata in the northern to western sector, may suggest a moderately oblique impact from a southerly direction. Buckle folding of tilted strata, as well as strata overturning, indicates that the central uplift became gravitationally unstable at the end of crater formation. 相似文献
6.
7.
《Planetary and Space Science》2006,54(13-14):1389-1397
We review the progress in our understanding of the composition of the Venus atmosphere since the publication of the COSPAR Venus International Reference Atmosphere volume in 1985. Results presented there were derived from data compiled in 1982–1983. More recent progress has resulted in large part from Earth-based studies of the near-infrared radiation from the nightside of the planet. These observations allow us to probe the atmosphere between the cloud tops and the surface. Additional insight has been gained through: (i) the analysis of ultraviolet radiation by satellites and rockets; (ii) data collected by the Vega 1 and 2 landers; (iii) complementary analyses of Venera 15 and 16 data; (iv) ground-based and Magellan radio occultation measurements, and (v) re-analyses of some spacecraft measurements made before 1983, in particular the Pioneer Venus and Venera 11, 13 and 14 data. These new data, and re-interpretations of older data, provide a much better knowledge of the vertical profile of water vapor, and more information on sulfur species above and below the clouds, including firm detections of OCS and SO. In addition, some spatial and/or temporal variations have been observed for CO, H2O, H2SO4, SO2, and OCS. New values of the D/H ratio have also been obtained. 相似文献
8.
Jayanta Kumar Pati Michael H. Poelchau Wolf Uwe Reimold Norihiro Nakamura Yutaro Kuriyama Anuj Kumar Singh 《Meteoritics & planetary science》2019,54(10):2312-2333
The fundamental approach for the confirmation of any terrestrial meteorite impact structure is the identification of diagnostic shock metamorphic features, together with the physical and chemical characterization of impactites and target lithologies. However, for many of the approximately 200 confirmed impact structures known on Earth to date, multiple scale‐independent tell‐tale impact signatures have not been recorded. Especially some of the pre‐Paleozoic impact structures reported so far have yielded limited shock diagnostic evidence. The rocks of the Dhala structure in India, a deeply eroded Paleoproterozoic impact structure, exhibit a range of diagnostic shock features, and there is even evidence for traces of the impactor. This study provides a detailed look at shocked samples from the Dhala structure, and the shock metamorphic evidence recorded within them. It also includes a first report of shatter cones that form in the shock pressure range from ~2 to 30 GPa, data on feather features (FFs), crystallographic indexing of planar deformation features, first‐ever electron backscatter diffraction data for ballen quartz, and further analysis of shocked zircon. The discovery of FFs in quartz from a sample of the MCB‐10 drill core (497.50 m depth) provides a comparatively lower estimate of shock pressure (~7–10 GPa), whereas melting of a basement granitoid infers at least 50–60 GPa shock pressure. Thus, the Dhala impactites register a strongly heterogeneous shock pressure distribution between <2 and >60 GPa. The present comprehensive review of impact effects should lay to rest the nonimpact genesis of the Dhala structure proposed by some earlier workers from India. 相似文献
9.
Geochemical evidence of an extraterrestrial component in impact melt breccia from the Paleoproterozoic Dhala impact structure,India 下载免费PDF全文
Jayanta Kumar Pati Wen Jun Qu Christian Koeberl Wolf Uwe Reimold Munmun Chakarvorty Ralf Thomas Schmitt 《Meteoritics & planetary science》2017,52(4):722-736
The Paleoproterozoic Dhala structure with an estimated diameter of ~11 km is a confirmed complex impact structure located in the central Indian state of Madhya Pradesh in predominantly granitic basement (2.65 Ga), in the northwestern part of the Archean Bundelkhand craton. The target lithology is granitic in composition but includes a variety of meta‐supracrustal rock types. The impactites and target rocks are overlain by ~1.7 Ga sediments of the Dhala Group and the Vindhyan Supergroup. The area was cored in more than 70 locations and the subsurface lithology shows pseudotachylitic breccia, impact melt breccia, suevite, lithic breccias, and postimpact sediments. Despite extensive erosion, the Dhala structure is well preserved and displays nearly all the diagnostic microscopic shock metamorphic features. This study is aimed at identifying the presence of an impactor component in impact melt rock by analyzing the siderophile element concentrations and rhenium‐osmium isotopic compositions of four samples of impactites (three melt breccias and one lithic breccia) and two samples of target rock (a biotite granite and a mafic intrusive rock). The impact melt breccias are of granitic composition. In some samples, the siderophile elements and HREE enrichment observed are comparable to the target rock abundances. The Cr versus Ir concentrations indicate the probable admixture of approximately 0.3 wt.% of an extraterrestrial component to the impact melt breccia. The Re and Os abundances and the 187Os/188Os ratio of 0.133 of one melt breccia specimen confirm the presence of an extraterrestrial component, although the impactor type characterization still remains inconclusive. 相似文献
10.
Aryavart Anand Anuj Kumar Singh Klaus Mezger Jayanta Kumar Pati 《Meteoritics & planetary science》2023,58(5):722-736
The Dhala structure in north-central India is a confirmed complex impact structure of Paleoproterozoic age. The presence of an extraterrestrial component in impactites from the Dhala structure was recognized by geochemical analyses of highly siderophile elements and Os isotopic compositions; however, the impactor type has remained unidentified. This study uses Cr isotope systematics to identify the type of projectile involved in the formation of the Dhala structure. Unlike the composition of siderophile elements (e.g., Ni, Cr, Co, and platinum group elements) and their inter-element ratios that may get compromised due to the extreme energy generated during an impact, Cr isotopes retain the distinct composition of the impactor. The distinct ε54Cr value of −0.31 ± 0.09 for a Dhala impact melt breccia sample (D6-57) indicates inheritance from an impactor originating within the non-carbonaceous reservoir, that is, the inner Solar System. Based on the Ni/Cr ratio, Os abundance, and Cr isotopic composition of the samples, the impactor is constrained to be of ureilite type. Binary mixing calculations also indicate contamination of the target rock by 0.1–0.3 wt% of material from a ureilite-like impactor. Together with the previously identified impactors that formed El'gygytgyn, Zhamanshin, and Lonar impact structures, the Cr isotopic compositions of the Dhala impactites argue for a much more diverse source of the objects that collided with the Earth over its geological history than has been supposed previously. 相似文献
11.
Abstract— The Peerless structure is an ?6 km‐diameter sub‐surface anomaly located in Daniels County, northeastern Montana. The disruption of sedimentary rock in the structure lies between 2624 to 2818 m below the topographic surface. Seismic mapping shows a typical complex crater composed of a central uplift ?2 km across, which shows structural uplift of up to 90 m, an annular ring ?4 km across, and an outer rim ?6 km in diameter. The youngest disrupted rock unit is the upper Ordovician Red River formation, which indicates that the structure was formed about 430–450 Ma ago. 相似文献
12.
Abstract— A magnetic model is proposed for the Bosumtwi meteorite impact structure in Ghana, Africa. This relatively young (~1.07 Ma) structure with a diameter of ~10.5 km is exposed within early Proterozoic Birimian—Tarkwaian rocks. The central part of the structure is buried under postimpact lake sediments, and because of lack of drill cores, geophysics is the only way to reveal its internal structure. To study the structure below and beyond the lake, a high‐resolution, low altitude (~70 m) airborne geophysical survey across the structure was conducted, which included measurements of the total magnetic field, electromagnetic data, and gamma radiation. The magnetic data show a circumferential magnetic halo outside the lakeshore, ~12 km in diameter. The central‐north part of the lake reveals a central negative magnetic anomaly with smaller positive side‐anomalies north and south of it, which is typical for magnetized bodies at shallow latitudes. A few weaker negative magnetic anomalies exist in the eastern and western part of the lake. Together with the northern one, they seem to encircle a central uplift. Our model shows that the magnetic anomaly of the structure is presumably produced by one or several relatively strongly remanently magnetized impact‐melt rock or melt‐rich suevite bodies. Petrophysical measurements show a clear difference between the physical properties of preimpact target rocks and impactites. Suevites have a higher magnetization and have low densities and high porosities compared to the target rocks. In suevites, the remanent magnetization dominates over induced magnetization (Koenigsberger ratio > 3). Preliminary palaeomagnetic results reveal that the normally magnetized remanence component in suevites was acquired during the Jaramillo normal polarity epoch. This interpretation is consistent with the modelling results that also require a normal polarity magnetization for the magnetic body beneath the lake. The reverse polarity remanence component, superimposed on the normal component, is probably acquired during subsequent reverse polarity events. 相似文献
13.
Berengere Mougel Frederic Moynier Christian Koeberl Daniel Wielandt Martin Bizzarro 《Meteoritics & planetary science》2019,54(10):2592-2599
The existence of mass‐independent chromium isotope variability of nucleosynthetic origin in meteorites and their components provides a means to investigate potential genetic relationship between meteorites and planetary bodies. Moreover, chromium abundances are depleted in most surficial terrestrial rocks relative to chondrites such that Cr isotopes are a powerful tool to detect the contribution of various types of extra‐terrestrial material in terrestrial impactites. This approach can thus be used to constrain the nature of the bolide resulting in breccia and melt rocks in terrestrial impact structures. Here, we report the Cr isotope composition of impact rocks from the ~0.57 Ma Lonar crater (India), which is the best‐preserved impact structure excavated in basaltic target rocks. Results confirm the presence of a chondritic component in several bulk rock samples of up to 3%. The impactor that created the Lonar crater had a composition that was most likely similar to that of carbonaceous chondrites, possibly a CM‐type chondrite. 相似文献
14.
15.
Abstract— Environmental conditions on Mars are conducive to the modification and erosion of impact craters, potentially revealing the nature of their substructure. On Earth, postimpact erosion of complex craters in a wide range of target rocks has revealed the nature and distribution of craterrelated fault structures and a complex array of breccia and pseudotachylyte dikes, which range up to tens of meters in width and tens of kilometers in length. We review the characteristics of fault structures, breccia dikes, and pseudotachylyte dikes on Earth, showing that they occur in complex network‐like patterns and are often offset along late‐stage crater‐related faults. Individual faults and dikes can undulate in width and can branch and bifurcate along strike. Detailed geological analyses of terrestrial craters show that faults and breccia dikes form during each of the major stages of the impact‐cratering process (compression, excavation, and modification). We report here on the discovery of prominent, lattice‐like ridge networks occurring on the floor of a highly modified impact crater 75 km in diameter near the dichotomy boundary of the northern lowland and southern upland. Interior fill and crater‐floor units have been exhumed by fluvial and eolian processes to reveal a unit below the crater floor containing a distinctive set of linear ridges of broadly similar width and forming a lattice‐like pattern. Ridge exposures range from ?1–4 km in length and ?65–120 m in width, are broadly parallel, straight to slightly curving, and are cross‐cut by near‐orthogonal ridges, forming a box or lattice‐like pattern. Ridges are exposed on the exhumed crater floor, extending from the base of the wall toward the center. On the basis of the strong similarities of these features to terrestrial crater‐related fault structures and breccia dikes, we interpret these ridges to be faults and breccia dikes formed below the floor of the crater during the excavation and modification stages of the impact event, and subsequently exhumed by erosion. The recognition of such features on Mars will help in documenting the nature of impact‐cratering processes and aid in assessment of crustal structure. Faults and breccia dikes can also be used as data for the assessment of post‐cratering depths and degrees of landform exhumation. 相似文献
16.
Abstract– We present the geology and interpreted shock features of the Suavjärvi circular structure. Suavjärvi is a circular feature (illustrated by satellite imagery, topography, and magnetic data) located in the central part of the Karelian Craton (lat. 63°07′N, long. 33°23′E). To date, little information on the geologic and impact features of the Suavjärvi structure is available in the literature. The structure is characterized by gravity and magnetic lows and disruption of the regional magnetic fabric. In the northeastern and southwestern parts of the structure, several erosional remnants of highly disturbed rocks occur referred to as monomict and polymict megabreccia. These comprise blocks of both basement granitoids and supracrustal greenstone rocks. The impact origin of polymict megabreccia and therefore of the Suavjärvi structure is confirmed by observations of closely spaced planar microstructures at angles consistent with planes that have Miller indices indicative of impact shock effects, mostly of ω{10¯13}. The Suavjärvi is considered to be a remnant of a deeply eroded and metamorphosed impact structure, which has a diameter of 16 km and was formed during the Paleoproterozoic (older than 2.2 Ga); this is inferred from the age of the overlying volcanic‐sedimentary Jatulian sequence. Suavjärvi underwent regional metamorphism that resulted in obliteration or transformation of shock metamorphic effects. Massive sulfides occur within megabreccia; originating probably from postimpact redeposition of pre‐existing mineralization. 相似文献
17.
18.
Ulrich Riller 《Meteoritics & planetary science》2005,40(11):1723-1740
Abstract— Orogenic deformation, both preceding and following the impact event at Sudbury, strongly hinders a straightforward assessment of impact‐induced geological processes that generated the Sudbury impact structure. Central to understanding these processes is the state of strain of the Sudbury Igneous Complex, the solidified impact melt sheet, its underlying target rocks, overlying impact breccias and post‐impact sedimentary rocks. This review addresses (1) major structural, metamorphic and magmatic characteristics of the impact melt sheet and associated dikes, (2) attempts that have been made to constrain the primary geometry of the igneous complex, (3) modes of impact‐induced deformation as well as (4) mechanisms of pre‐ and post‐impact orogenic deformation. The latter have important consequences for estimating parameters such as magnitude of structural uplift, tilting of pre‐impact (Huronian) strata and displacement on major discontinuities which, collectively, have not yet been considered in impact models. In this regard, a mechanism for the emplacement of Offset Dikes is suggested, that accounts for the geometry of the dikes and magmatic characteristics, as well as the occurrence of sulfides in the dikes. Moreover, re‐interpretation of published paleomagnetic data suggests that orogenic folding of the solidified melt sheet commenced shortly after the impact. Uncertainties still exist as to whether the Sudbury impact structure was a peak‐ring or a multi‐ring basin and the deformation mechanisms of rock flow during transient cavity formation and crater modification. 相似文献
19.
A new high‐precision 40Ar/39Ar age for the Rochechouart impact structure: At least 5 Ma older than the Triassic–Jurassic boundary 下载免费PDF全文
Benjamin E. Cohen Darren F. Mark Martin R. Lee Sarah L. Simpson 《Meteoritics & planetary science》2017,52(8):1600-1611
The Rochechourt impact structure in south‐central France, with maximum diameter of 40–50 km, has previously been dated to within 1% uncertainty of the Triassic–Jurassic boundary, at which time ~30% of global genera became extinct. To evaluate the temporal relationship between the impact and the Triassic–Jurassic boundary at high precision, we have re‐examined the structure's age using multicollector ARGUS‐V 40Ar/39Ar mass spectrometry. Results from four aliquots of impact melt are highly reproducible, and yield an age of 206.92 ± 0.20/0.32 Ma (2σ, full analytical/external uncertainties). Thus, the Rochechouart impact structure predates the Triassic–Jurassic boundary by 5.6 ± 0.4 Ma and so is not temporally linked to the mass extinction. Rochechouart has formerly been proposed to be part of a multiple impact event, but when compared with new ages from the other purported “paired” structures, the results provide no evidence for synchronous impacts in the Late Triassic. The widespread Central Atlantic Magmatic Province flood basalts remain the most likely cause of the Triassic–Jurassic mass extinction. 相似文献
20.
Paula Lindgren John Parnell Craig Norman Darren F. Mark Martin Baron Jens Orm Erik Sturkell James Conliffe Wesley Fraser 《Meteoritics & planetary science》2007,42(11):1961-1969
Abstract— The Ordovician Lockne impact structure is located in central Sweden. The target lithology consisted of limestone and black unconsolidated shale overlaying a Precambrian crystalline basement. The Precambrian basement is uranium‐rich, and the black shale is both uranium‐ and organic‐rich. This circumstance makes Lockne a good candidate for testing the occurrence of U‐Th‐rich bitumen nodules in an impact structure setting. U‐Th‐rich bitumen nodules are formed through irradiation; hence the increase in the complexity of organic matter by a radioactive (uranium‐ and thorium‐rich) mineral phase. U‐Th‐rich bitumen nodules were detected in crystalline impact breccia and resurge deposits from the impact structure, but samples of non‐impact‐affected rocks from outside the impact structure do not contain any U‐Th‐rich bitumen nodules. This implies that in the Lockne impact structure, the nodules are associated with impact‐related processes. U‐Th‐rich bitumen nodules occur throughout the geological record and are not restricted to an impact structure setting, but our studies at Lockne show that this process of irradiation can readily occur in impact structures where fracturing of rocks and a post‐impact hydrothermal system enhances fluid circulation. The irradiation of organic matter by radioactive minerals has previously been proposed as a process for concentration of carbon on the early Earth. Impact structures are suggested as sites for prebiotic chemistry and primitive evolution, and irradiation by radioactive minerals could be an important mechanism for carbon concentration at impact sites. 相似文献