首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The natural and anthropogenic sources of iron, copper, and zinc in water streams in the Republic of Bashkortostan are considered. Statistical analysis of long-term hydrochemical monitoring data was used to establish the spatial year-to-year and annual regularities in metal concentrations in water streams. The acceptability of river water quality for different types of water use was estimated. The exceedance probabilities of metal MAC values in streams were evaluated.  相似文献   

2.
崔旭  张兵  何明霞  夏文雪  王义东  赵勇 《湖泊科学》2021,33(6):1675-1686
生态补水是维持和改善白洋淀生态环境的重要途径.为研究生态补水对白洋淀水环境的影响,分别在补水前与补水后采集淀水、河水及地下水样品,分析区域地表水和地下水水化学特征.结果表明:(1)白洋淀补水前、后地表水与地下水的水化学组成中Na+为主要阳离子,补水后阴离子以HCO3-为主,淀区南部地表水电导率高;补水后地表水与地下水Ca2+、Mg2+和HCO3-浓度显著增加,水体电导率降低.(2)补水前地下水为Na-HCO3型水,地表水主要为Na-Cl·SO4及Na-Cl·HCO3类型;补水后地表水与浅层地下水向Ca·Mg-HCO3型演化,深层地下水水化学类型基本保持不变.(3)生态补水使白洋淀水位升高,淀区水面积增大,缓解了水资源短缺的问题;同时也使浅层地下水水化学组成发生改变,而深层地下水暂未受到影响.生态补水后,受稀释和混合作用的影响,水体Na+、Cl-和SO42-浓度显著下降,Ca2+、Mg2+及HCO3-浓度增加.在白洋淀生态补水中应"先治污,后补水",以减少补水过程中污染物向淀区的运移,还应注意区域地下水位上升过程中的阳离子交换及水岩相互作用,为合理调配生态补水及改善白洋淀生态环境提供科学依据.  相似文献   

3.
The hydrochemical analyses of twenty-three springs were used to determine the properties and types of groundwater of the Tertiary-Quaternary Aquifer of northern Jordan. The result shows that the geological formation influences the quality of the investigated groundwater more than the anthropogenic factors. The water of the Quaternary-Tertiary aquifer is enriched in Ca++ due to the dissolution of the nearby carbonate rocks. The investigated water has a low EC values with Ca(Na)-HCO3 water type. Most springs belong to this hydrochemical facies except Malka. Groundwater in the Malka wells has high salinity with NaCl waters and a strong Ca(Mg)-HCO3 facies (900 to 1000 mg/l TDS). The area long-term hydrochemical data have been also evaluated; general trend of increase of the analyzed ion was observed. Bicarbonate represents the most abundant anion in the studied water, which exceeds the permissible limits. Nitrates (NO 3 ? ) also exceed the permissible limit and are the most common contaminant in the investigated water. Data on dissolved major and trace elements (K+, Na+, Mg2+, Ca2+, Cl?, SO 4 2? , Fe, Zn, Cu and Pb) in the investigated water revealed that the concentrations lie within the natural background range. The positive correlation values between various ions indicate that most of ions come from same lithological sources. According to the residual sodium carbonate, and EC values, the studied springs are suitable for agricultural purposes.  相似文献   

4.
The results of studies performed in the area of a uranium-vanadium deposit are used to characterize the concentration and distribution of microelements and radionuclides in water, soil, and fish. The exposure rate on the surface of the examined samples is found to be equal to 15–20 μr/h, i.e., to lie at the background level, which means that these samples are not an external radiation hazard for population. Concentrations of U and V in water somewhat greater than background values were recorded, though they are lower than MAC for fishery water bodies. The collected data show that a delicate equilibrium has formed in this territory, although the hydrochemical characteristics have not changed within the recent 40 years, and radionuclide content of water, soil, bottom sediments, and fish are at an extremely low level.  相似文献   

5.
李静  李营  陆丽娜  孙凤霞  谢超  崔月菊 《地震》2017,37(1):61-72
根据六盘山地区泉水的化学组成和氢、 氧同位素数据, 讨论了该区地下水的化学类型、 成因及其动态变化特征。 2012年11月和2014年7月在六盘山地区采集10处泉水样品, 氢氧同位素由液态水同位素分析仪测定, 离子组分浓度由离子色谱和化学滴定法测定。 水样的TDS范围为218~27508 mg/L, δ18O和δD值分别为-12.0‰~ -8.5‰, -88.5‰ ~-61.3‰。 δ18O和δD指示该区泉水来源于大气降水, 并受水循环条件及水岩反应程度的影响。 根据舒卡列夫分类法, 所采水样可划分为10种水化学类型, 受含水层岩性控制, 宁南地区的水化类型主要为SO4-Na型, 渭北西部地区的水化类型主要为HCO3-Ca·Mg型。 两次所采水样的离子浓度显示多数水样点的HCO-3具有夏高冬低的季节性变化特征, 千川村(QC)、 双井村(SJ)等因含水层赋存环境较封闭, 受降水干扰小; 硝口村(XKH)泉水的离子毫克当量比值变幅最大, 说明该泉点水岩反应程度变化较大, 易受断层带活动的影响。 研究结果确定了六盘山地区水文地球化学背景和水的来源, 为该区流体地球化学地震监测、 预测提供了背景资料。  相似文献   

6.
Riverbank filtration (RBF) has been widely used throughout the world as an effective means to regulate surface water and groundwater resources and pretreat raw water for municipal water supply. The quality of the water from a riverside well field and the mixing ratios of surface water and groundwater is primarily impacted by the hydrodynamic processes in the RBF system. The RBF system is largely controlled by the water exploiting system in addition to the natural hydrologic condition of the river–aquifer system. As one of the most important design parameters of the riverside well field, the drawdown of groundwater level greatly determines the water head differences between the river water and groundwater as well as the field flow net, which subsequently impacts the mixing of river water and groundwater and water quality significantly. This study aimed to improve the understanding of the mixing process between the surface water and groundwater and estimate the impact of the RBF on the mixing ratio of surface water–groundwater and water quality quantitatively. A set of field pumping tests with various groundwater level drawdowns were carried out independently and successively at a riverside field with a single pumping well near the Songhua River in Northeast China in August 2017. During these tests, the water levels and hydrochemical parameters of the Songhua River, the adjacent aquifer, and the pumping well were monitored. The dynamic mixing process of the river water and groundwater and water quality under various drawdown conditions were analysed systematically using analytical methods. The results obtained from Dupuit method and the Mirror Image method in conjunction with the Hydrochemical Tracing method showed that the pumping water directly from the river water reached 60% ± 10% after a steady flow net was established. The larger the proportion of the pumping water captured from the river, the better quality of the pumping water was, because the quality of the river water (only limited to some water quality parameters monitored which were minority) was better than that of the groundwater. The results also showed that total Fe, TDS, total hardness, CODMn, and K+ were relatively sensitive to the changes of groundwater drawdown, and their concentrations decreased with an increase in the groundwater drawdown. It can be concluded that both the mixing ratio of the surface water and the groundwater and the water quality of the riverside well field can be regulated through adjusting the designed drawdown of the groundwater level, which is helpful for the design and the optimization of the riverside well water intake engineering.  相似文献   

7.
Understanding the interplay between hydrological flushing and biogeochemical cycling in streams is now possible owing to advances in high-frequency water quality measurements with in situ sensors. It is often assumed that storm events are periods when biogeochemical processes become suppressed and longitudinal transport of solutes and particulates dominates. However, high-frequency data show that diel cycles are a common feature of water quality time series and can be preserved during storm events, especially those of low-magnitude. In this study, we mine a high-frequency dataset and use two key hydrochemical indices, hysteresis and flushing index to evaluate the diversity of concentration-discharge relationships in third order agricultural stream. We show that mobilization patterns, inferred from the hysteresis index, change on a seasonal basis, with a predominance of rapid mobilization from surface and near stream sources during winter high-magnitude storm events and of delayed mobilization from subsurface sources during summer low-magnitude storm events. Using dynamic harmonic regression, we were able to separate concentration signals during storm events into hydrological flushing (using trend as a proxy) and biogeochemical cycling (using amplitude of a diel cycle as a proxy). We identified three groups of water quality parameters depending on their typical c-q response: flushing dominated parameters (phosphorus and sediments), mixed flushing and cycling parameters (nitrate nitrogen, specific conductivity and pH) and cycling dominated parameters (dissolved oxygen, redox potential and water temperature). Our results show that despite large storm to storm diversity in hydrochemical responses, storm event magnitude and timing have a critical role in controlling the type of mobilization, flushing and cycling behaviour of each water quality constituent. Hydrochemical indices can be used to fingerprint the effect of hydrological disturbance on freshwater quality and can be useful in determining the impacts of global change on stream ecology.  相似文献   

8.
The dynamics of anthropogenic activity and anthropogenic sources of nutrients in the Republic of Bashkortostan have been analyzed. Statistical analysis of many-year data of hydrochemical monitoring have been used to establish the year-to-year and annual regularities in the variations of N compound concentrations in watercourses. Maps of the mean annual N concentration in its forms (ammonium, nitrites, and nitrates) have been constructed. The fitness of river water to different types of water use have been assessed. Probability distributions of the concentrations of hydrochemical components have been constructed for different phases of stream water regimes. The exceedance probabilities have been evaluated for MAC values of N compounds in watercourses.  相似文献   

9.
A field study was conducted to assess purging requirements for dedicated sampling systems in conventional monitoring wells and for pumps encased in short screens and buried within a shallow sandy aquifer. Low-flow purging methods were used, and wells were purged until water quality indicator parameters (dissolved oxygen, specific conductance, turbidity) and contaminant concentrations (chromate, trichloroethylene, dichloroethylene) reached equilibrium. Eight wells, varying in depth from 4.6 to 15.2 m below ground surface, were studied. The data show that purge volumes were independent of well depth or casing volumes. Contaminant concentrations equilibrated with less than 7.5 I. of purge volume in all wells. Initial contaminant concentration values were generally within 20 percent of final values. Water quality parameters equilibrated in less than 10 L in all wells and were conservative measures for indicating the presence of adjacent formation water. Water quality parameters equilibrated faster in dedicated sampling systems than in portable systems and initial turbidity levels were lower.  相似文献   

10.
The probability distributions of different values of water quality indices have been shown theoretically to follow a two-parameter lognormal law with season-dependent parameters. The obtained distribution law was checked against data of many-year water quality monitoring in the Moskva R. (at Rublevo Settl.). The distributions of several hydrochemical and microbiological indices have been studied. The seasonal dependence of parameters have been shown to cause the splitting of water quality index distributions predominantly into two lognormal branches, one corresponding to low-water seasons and the other corresponding to floods. Exceptions are water turbidity and color index: the former splits into three lognormal branches (corresponding to periods of winter low-water period, summer period with moderate rains, floods, and high rain floods), while the color index has only one branch, embracing all seasons.  相似文献   

11.
This research explains the background processes responsible for the spatial distribution of hydrochemical properties of the picturesque eutrophic Himalayan Lake, Dal, located in Kashmir valley, India. Univariate and multivariate statistical analyses were used to understand the spatiotemporal variability of 18 hydrochemical parameters comprising of 12,960 observations collected from 30 sampling sites well distributed within the lake at a grid spacing of 1 km2 from March 2014 to February 2016. Hierarchical cluster analysis (HCA) grouped all the sampled data into three clusters based on the hydrochemical similarities, Discriminant analysis also revealed the same clusters and patterns in the data, validating the results of HCA. Wilk’s λ quotient distribution revealed the contribution of ions, nutrients, secchi disk transparency, dissolved oxygen and pH in the formation of clusters. The results are in consonance with the Principal Component Analysis of the whole lake data and individual clusters, which showed that the variance is maximally explained by the ionic component (46.82%) followed by dissolved oxygen and pH (9.36%), nitrates and phosphates (7.33%) and Secchi disk transparency (5.98%). Spatial variability of the hydrochemistry of the lake is due to the variations in water depth, lake water dynamics, flushing rate of water, organic matter decomposition, and anthropogenic pressures within and around the Dal lake ecosystem. Overall, the water quality of the lake is unfit for drinking due to the presence of coliform bacteria in the lake waters.  相似文献   

12.
Data on the spring runoff of the mountain-folded part of the Middle Urals are generalized to analyze the transformation of its macrocomponent composition from 1954 to 2005. Regional stochastic models for ten hydrochemical indices are presented. The current regional hydrochemical background is substantiated. The salinity and total hardness of the spring water are shown to increase on the regional scale.  相似文献   

13.
Geochemical data indicate that the Springfield Plateau aquifer, a carbonate aquifer of the Ozark Plateaus Province in central USA, has two distinct hydrochemical zones. Within each hydrochemical zone, water from springs is geochemically and isotopically different than water from wells. Geochemical data indicate that spring water generally interacts less with the surrounding rock and has a shorter residence time, probably as a result of flowing along discrete fractures and solution openings, than water from wells. Water type throughout most of the aquifer was calcium bicarbonate, indicating that carbonate‐rock dissolution is the primary geochemical process occurring in the aquifer. Concentrations of calcium, bicarbonate, dissolved oxygen and tritium indicate that most ground water in the aquifer recharged rapidly and is relatively young (less than 40 years). In general, field‐measured properties, concentrations of many chemical constituents, and calcite saturation indices were greater in samples from the northern part of the aquifer (hydrochemical zone A) than in samples from the southern part of the aquifer (hydrochemical zone B). Factors affecting differences in the geochemical composition of ground water between the two zones are difficult to identify, but could be related to differences in chert content and possibly primary porosity, solubility of the limestone, and amount and type of cementation between zone A than in zone B. In addition, specific conductance, pH, alkalinity, concentrations of many chemical constituents and calcite saturation indices were greater in samples from wells than in samples from springs in each hydrochemical zone. In contrast, concentrations of dissolved oxygen, nitrite plus nitrate, and chloride generally were greater in samples from springs than in samples from wells. Water from springs generally flows rapidly through large conduits with minimum water–rock interactions. Water from wells flow through small fractures, which restrict flow and increase water–rock interactions. As a result, springs tend to be more susceptible to surface contamination than wells. The results of this study have important implications for the geochemical and hydrogeological processes of similar carbonate aquifers in other geographical locations. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
Hydrogeochemical evolution of interactions between surface water and groundwater is crucial for guaranteeing water supply quality in a riverside water source area. This study focuses on the seasonal and spatial characteristics of hydrogeochemical evolution affected by groundwater exploitation in the Hulan water source area using hydrochemical analyses and stable isotope tracers. Results show that the concentrations of major ions and total dissolved solids (TDS) increase considerably during the dry season. A bicarbonate water type is primarily produced by the dissolution of calcite, dolomite and gypsum, as well as the cation exchange and human activities. Along the typical infiltration path, the proportions of surface water increase with proximity to the river from 8%-63% during the wet season to 11%-84% during the dry season, which are attributed to an increased hydraulic gradient by exploitation. The typical path is classified into two zones. The first is the intensive mixing zone (within 1 km) with increasing concentrations of major ions and TDS due to mixing effect. The second is the exploitation influence zone (1-3.3 km) with increased concentrations of Ca2+, Mg2+, SO42−, and HCO3 during the dry season due to two reasons of seasonal variations in evaporation, stronger water-rock interactions and mixing effects with increased surface water by exploitation.  相似文献   

15.
Comparison study data on the hydrochemical parameters, bacterio- and phytoplankton, and reduction–oxidation characteristics of two ponds in Krasnoyarsk are presented. These water bodies are of interest due to the fact that the ecosystems of these natural model objects respond to eutrophication in different ways. It is assumed that the reason for this difference is in the hydrophysical characteristics depending on the morphology of the basins of the water bodies rather than in the hydrochemical characteristics.  相似文献   

16.
天山天池水体季节性分层特征   总被引:4,自引:1,他引:3  
王斌  马健  王银亚  尹湘江 《湖泊科学》2015,27(6):1197-1204
于2014年6-10月,对高山深水湖泊天山天池水温、电导率、溶解氧、p H值、叶绿素a浓度和蓝绿藻细胞密度进行垂直剖面的连续监测,通过对其季节动态和垂直分层结构的分析,探讨天池水体季节性分层特征.天池出现明显水温分层的时间短(6-9月),夏季温跃层变化范围为2~18 m,而秋季温跃层不断下移,10月在18 m水深以下;受水温分层影响,天池水体溶解氧浓度、电导率、p H值、叶绿素a浓度和蓝绿藻细胞密度在垂直剖面表现出明显的季节性分层,尤其是夏季水温分层影响溶解氧浓度、叶绿素a浓度和蓝绿藻细胞密度在水体中的分布,对天池水质变化产生重要影响.天池浅水层(水深小于10 m)溶解氧浓度较高(大于8 mg/L),而深水层(水深超过18 m)溶解氧浓度9月接近4 mg/L,季节性缺氧导致底泥营养盐向上扩散,对水体水质产生不利影响.所以,应在夏、秋季节加强水质监测,以防止天池水华发生;天池叶绿素a浓度与蓝绿藻细胞密度的垂直剖面变化趋势相似,均随水深增加呈先增加后减小的趋势,但叶绿素a浓度在2~12 m水深处较高,蓝绿藻细胞密度在5~15 m水深处较高,表明5~15 m深度适合藻类生长,同时,电导率、p H值的垂直变化也说明藻类的生长情况,这为监测天池水体富营养化取样和分析提供依据.  相似文献   

17.
Comprehensive studies on the spatial distribution, water quality, recharge source, and hydrochemical evolution of regional groundwater form the foundation of rational utilization of groundwater resources. In this study, we investigated the water levels, hydrochemistry, and stable isotope composition of groundwater in the vicinity of the Qinghai Lake in China to reveal its recharge sources, hydrochemical evolution, and water quality. The level of groundwater relative to the level of water in the Qinghai Lake ranged from −1.27 to 122.91 m, indicating most of the groundwater to be flowing into the lake. The local evaporation line (LEL) of groundwater was simulated as δ2H = 6.08 δ18O-3.01. The groundwater surrounding the Qinghai Lake was primarily recharged through local precipitation at different altitudes. The hydrochemical type of most of the groundwater samples was Ca-Mg-HCO3; the hydrochemistry was primarily controlled by carbonate dissolution during runoff. At several locations, the ionic concentrations in groundwater exceeded the current drinking water standards making it unsuitable for drinking. The main source of nitrate in groundwater surrounding the Qinghai Lake was animal feces and sewage, suggesting that groundwater pollution should be mitigated in areas practicing animal husbandry in the Qinghai-Tibet Plateau, regardless of industrial and urbanization rates being relatively low in the region. The scientific planning, engineering, and management of livestock manure and wastewater discharge from animal husbandry practices is a crucial and is urgently required in the Tibetan Plateau.  相似文献   

18.
Two key challenges regarding the design and operation of aquifer recharge and recovery (ARR) systems are evaluating aquifer heterogeneity and understanding hydrochemical interactions. Uncertainty in this respect can impact the volume of recoverable water and the improvement in water quality. The objective of this research is to leverage the advantages of geophysical measurements and hydrochemical sampling to reveal the properties of an ARR site to inform current ARR system operations and future design decisions. Electrical resistivity tomography was used to image the subsurface below two key infiltration/extraction areas of an ARR site in Colorado, USA. Hydrochemical measurements on transects intersecting the geophysical measurements resolved bulk parameters (i.e., total organic carbon, nitrate, and major cations and anions) and trace organic chemicals (e.g., pharmaceuticals, personal care products). Conservative tracers were also used to estimate degrees of mixing and water travel times and to better assess the performance of the ARR site regarding water quality changes and water recovery. The electrical resistivity measurements suggest that certain areas of the infiltration basins have hydraulic connections to the extraction wells through preferential flow paths, compared with other infiltration basins that are separated by fine‐grained materials from their respective extraction wells. The hydrochemical results indicate that consistent improvements in water quality can be achieved in these preferential flow paths within relatively short travel times (<5 d) at this ARR site.  相似文献   

19.
An ecological and hydrochemical classification elaborated by the authors is used to assess the present quality of water in the most important water objects of the Republic of Armenia. This classification allowed us to determine the degree of environmental safety of each water body by ranking the water quality, ecosystem ecological stability, and the reliability of conservation of water quality during transportation. Based on the results of the ecological and hydrochemical assessment of water quality, the water bodies that require special protection and rational exploitation are distinguished, and the priority of water protection measures is established.  相似文献   

20.
The results of studies of the hydrological and hydrochemical regimes carried out in 2001 in Chayvo Bay and microbiological analyses of the abundance of geterotrophic microorganisms belonging to ecological-trophic groups are given. Data on the concentrations of petroleum hydrocarbons, phenols, and metals (Fe, Pb, and Cd) in water and bottom sediments were collected. The obtained data were used to assess the water quality in the bay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号