首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high resolution atmospheric modelling study was done for a 20-year recent historical period. The dynamic downscaling approach adopted used the Max Planck Institute Earth System Model (MPI-ESM) to drive the WRF running in climate mode. Three online nested domains were used covering part of the North Atlantic and Europe, with a resolution 81 km, and reaching 9 km in the innermost domain which covers the Iberian Peninsula.This paper presents the validation of the WRF configuration, which is based on historic simulations between 1986 and 2005 and observational datasets of near surface temperature and precipitation for the same period. The validation was done in terms of comparison of probability distributions between model results and observations, as daily climatologies, spatially averaged inside subdomains obtained with cluster analysis of the observations, for each of the four seasons. In addition, Taylor diagrams are presented for each of the seasons and subdomains. This validation approach was repeated with the results of a new WRF simulation with the same parameterisations but forced by the ERA-Interim reanalysis. The capacity of the MPI-ESM driven WRF configuration to compare with observations and in a manner similar to the ERA-Interim driven WRF, ensures the capacity of the configuration for climate and climate change studies.Considering the difficulty to simulate extremes in long term simulations, the results showed a comfortable comparison of both models (forced by climate model and reanalysis results) with observations. This provides us confidence on the continuity of using the MPI-ESM driven WRF configuration for climate studies.  相似文献   

2.
Climate change and extreme climate events have a significant impact on societies and ecosystems. As a result, climate change projections, especially related with extreme temperature events, have gained increasing importance due to their impacts on the well-being of the population and ecosystems. However, most studies in the field are based on coarse global climate models (GCMs). In this study, we perform a high resolution downscaling simulation to evaluate recent trends of extreme temperature indices. The model used was Weather Research and Forecast (WRF) forced by MPI-ESM-LR, which has been shown to be one of the more robust models to simulate European climate. The domain used in the simulations includes the Iberian Peninsula and the simulation covers the 1986–2005 period (i.e. recent past). In order to study extreme temperature events, trends were computed using the Theil-Sen method for a set of temperature indexes defined by the Expert Team on Climate Change Detection and Indices (ETCCDI). For this, daily values of minimum and maximum temperatures were used. The trends of the indexes were computed for annual and seasonal values and the Mann-Kendall Trend test was used to evaluate their statistical significance. In order to validate the results, a second simulation, in which WRF was forced by ERA-Interim, was performed. The results suggest an increase in the number of warm days and warm nights, especially during summer and negative trends for cold nights and cold days for the summer and spring. For the winter, contrary to the expected, the results suggest an increase in cold days and cold nights (warming hiatus). This behavior is supported by the WRF simulation forced by ERA-Interim for the autumn days, pointing to an extension of the warming hiatus phenomenon to the remaining seasons. These results should be used with caution since the period used to calculate the trends may not be long enough for this purpose. However, the general sign of trends are similar for both simulations despite some differences in their magnitudes.  相似文献   

3.
We analyzed seasonal and annual variations of the whole layer atmospheric moisture budget and precipitation during 1961–2005 and their associations with large-scale circulation in the Yangtze River basin, China. The results indicated increasing moisture budget in summer and winter, but decreasing moisture budget in spring and autumn. Positive correlations between moisture budget and precipitation illustrate tremendous impacts the moisture budget has on the precipitation changes across the Yangtze River basin. In terms of seasonal variations, significant correlations were observed between precipitation and moisture budget in spring and autumn in the upper Yangtze River basin. Besides, we also analyzed changes of geopotential height. The positive trends of the geopotential height (850 hPa) were observed in the East Asia and the negative trends in the middle and west Pacific Ocean, indicating increasing geopotential height from south to north in east Asia which largely limited the moisture propagation to north China. While decreasing meridional geopotential height from west to east along the Yangtze River basin caused more moisture propagation from the west to the east parts of the study region, which may benefit more precipitation in the middle and lower Yangtze River basin.  相似文献   

4.
Analyses of the spatio-temporal variability of precipitation extremes defined by eleven extreme precipitation indices in Shandong were conducted by utilizing the methods of linear regression, ensemble empirical mode decomposition (EEMD) and Mann–Kendall test. The results revealed that statistically significant decreasing trends existed for almost all extreme precipitation indices except for the consecutive dry days (CDD) and simple daily intensity index. A periodicity of 10–15 years for precipitation extremes is detected by EEMD analysis. Greatest 5-day total rainfall (RX5day), very wet days (R95p) and annual total wet-day precipitation (PRCPTOT) experienced decreasing trends in the region stretching from the southeast coast to the west, while the spatial distribution of the decreasing trends for other indices was more complicated. Moreover, the frequency of occurrence in precipitation extremes at Changdao station, surrounded by the sea in the northeast region, increased in contrast to surrounding stations. This may suggest a possible effect from the local marine environment on extreme precipitation. In addition, the stations with statistically significant positive trends for CDD were mainly located in mid-west Shandong and along the southeast coast, where the extreme precipitation and total rainfall were, on the contrary, characterized by decreasing trends. These results indicate that drought or severe drought events have become more frequent in those regions. Analysis of large-scale atmospheric circulation changes indicates that a strengthening anticyclonic circulation and increasing geopotential height as well as decreasing strength of monsoonal flow in recent decades may have contributed to the variations in extreme precipitation in Shandong.  相似文献   

5.
This work presents a methodology to make statistical significant and robust inferences on climate change from an ensemble of model simulations. This methodology is used to assess climate change projections of the Iberian daily-total precipitation for a near-future (2021–2050) and a distant-future (2069–2098) climates, relatively to a reference past climate (1961–1990).Climate changes of precipitation spatial patterns are estimated for annual and seasonal values of: (i) total amount of precipitation (PRCTOT), (ii) maximum number of consecutive dry days (CDD), (iii) maximum of total amount of 5-consecutive wet days (Rx5day), and (iv) percentage of total precipitation occurred in days with precipitation above the 95th percentile of the reference climate (R95T). Daily-total data were obtained from the multi-model ensemble of fifteen Regional Climate Model simulations provided by the European project ENSEMBLES. These regional models were driven by boundary conditions imposed by Global Climate Models that ran under the 20C3M conditions from 1961 to 2000, and under the A1B scenario, from 2001 to 2100, defined by the Special Report on Emission Scenarios of the Intergovernmental Panel on Climate Change.Non-parametric statistical methods are used for significant climate change detection: linear trends for the entire period (1961–2098) estimated by the Theil-Sen method with a statistical significance given by the Mann-Kendall test, and climate-median differences between the two future climates and the past climate with a statistical significance given by the Mann-Whitney test. Significant inferences of climate change spatial patterns are made after these non-parametric statistics of the multi-model ensemble median, while the associated uncertainties are quantified by the spread of these statistics across the multi-model ensemble. Significant and robust climate change inferences of the spatial patterns are then obtained by building the climate change patterns using only the grid points where a significant climate change is found with a predefined low uncertainty.Results highlight the importance of taking into account the spread across an ensemble of climate simulations when making inferences on climate change from the ensemble-mean or ensemble-median. This is specially true for climate projections of extreme indices such CDD and R95T. For PRCTOT, a decrease in annual precipitation over the entire peninsula is projected, specially in the north and northwest where it can decrease down to 400 mm by the middle of the 21st century. This decrease is expected to occur throughout the year except in winter. Annual CDD is projected to increase till the middle of the 21st century overall the peninsula, reaching more than three weeks in the southwest. This increase is projected to occur in summer and spring. For Rx5day, a decrease is projected to occur during spring and autumn in the major part of the peninsula, and during summer in northern Iberia. Finally, R95T is projected to decrease around 20% in northern Iberia in summer, and around 15% in the south-southwest in autumn.  相似文献   

6.
Wave climate simulation for southern region of the South China Sea   总被引:2,自引:0,他引:2  
This study investigates long-term variability and wave characteristic trends in the southern region of the South China Sea (SCS). We implemented the state-of-the art WAVEWATCH III spectral wave model to simulate a 31-year wave hindcast. The simulation results were used to assess the inter-annual variability and long-term changes in the SCS wave climate for the period 1979 to 2009. The model was forced with Climate Forecast System Reanalysis winds and validated against altimeter data and limited available measurements from an Acoustic Wave and Current recorder located offshore of Terengganu, Malaysia. The mean annual significant wave height and peak wave period indicate the occurrence of higher wave heights and wave periods in the central SCS and lower in the Sunda shelf region. Consistent with wind patterns, the wave direction also shows southeasterly (northwesterly) waves during the summer (winter) monsoon. This detailed hindcast demonstrates strong inter-annual variability of wave heights, especially during the winter months in the SCS. Significant wave height correlated negatively with Niño3.4 index during winter, spring and autumn seasons but became positive in the summer monsoon. Such correlations correspond well with surface wind anomalies over the SCS during El Nino events. During El Niño Modoki, the summer time positive correlation extends northeastwards to cover the entire domain. Although significant positive trends were found at 95 % confidence levels during May, July and September, there is significant negative trend in December covering the Sunda shelf region. However, the trend appears to be largely influenced by large El Niño signals.  相似文献   

7.
Drought/wetness conditions are fundamental not only for agricultural production but also ecology, human health, and economic activity. Dryness/wetness is a function of precipitation, temperature, vegetation and potential evapotranspiration. Regions with low moisture are often characterized by aridity which, in turn, reflects the degree of meteorological drought. Observed climatic data from eleven meteorological stations in and around Shiyang River basin, China, were used to calculate the aridity index (AI) which was defined as the ratio of potential evapotranspiration (ET0) to precipitation (P). ET0 was calculated using the Penman–Monteith method. The ordinary kriging method was used to interpolate the spatial variability of ET0, P and AI. The Mann–Kendall test with a pre-whitening method was employed using the Yue and Wang autocorrelation correction to detect temporal trends. The Theil–Sen estimator was used to estimate the slopes of trend lines. Results showed a higher AI in the north basin and a lower AI in the Qilian Mountain region. Annual ET0 and P had increasing trends with a slope of 0.672 and 0.459 mm per year, respectively, but trends were not statistically significant for most stations. While annual AI had a slight decreasing trend with a slope of ?0.01 per year, the trend was not statistically significant for all stations. The decreasing trends in winter AI (at a rate of ?0.313/a) was more significant than that in other seasons. The study indicates that the Shiyang River basin is getting slightly wetter, especially in winter.  相似文献   

8.
The aim of this paper is to test the ability of neural network approaches to hindcast the spring standardized precipitation index on a 6‐month time scale (SPI6) in Portugal, based on winter large‐scale climatic indices. For this purpose, the linkage of the spring SPI time series with the winter North Atlantic Oscillation (NAO) and the sea surface temperature (SST) was investigated by means of maps of the correlation coefficient for the period from October 1910 to September 2004. The results indicate that the winter NAO is a good predictor for the SPI6 of the spring (SPI6 finishing in April, May and June, SPI6April, SPI6May and SPI6June, respectively) for the northern, central and southern regions of Portugal. The winter SST1 (area of the Mediterranean Sea) must only be considered for the northern region, and the winter SST3 (area of the North Atlantic between Iberia and North America) only for the southern region. Spatial maps of predictive SPI6 for April, May and June were created and validated. The neural models explained more than 81% of the total variance for the SPI6April and SPI6May and more than 64% of the total variance for the SPI6June. Probability maps were also developed considering the values predicted by the neural methods for the spring months and all drought categories (moderate, severe and extreme). These maps indicating the probability of droughts can provide valuable support for the integrated planning and management of water resources throughout Portugal. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Climate change and runoff response were assessed for the Tizinafu River basin in the western Kunlun Mountains, China, based on isotope analysis. We examined climate change in the past 50 years using meteorological data from 1957 to 2010. Results of the Mann-Kendall non-parametric technique test indicated that temperature in the entire basin and precipitation in the mountains exhibited significant increasing trends. Climate change also led to significant increasing trends in autumn and winter runoff but not in spring runoff. By using 122 isotope samples, we investigated the variations of isotopes in different water sources and analysed the contributions of different water sources based on isotope hydrograph separation. The results show that meltwater, groundwater and rainfall contribute 17%, 40% and 43% of the annual streamflow, respectively. Isotope analysis was also used to explain the difference in seasonal runoff responses to climate change. As the Tizinafu is a precipitation-dependent river, future climate change in precipitation is a major concern for water resource management.
EDITOR A. Castellarin; ASSOCIATE EDITOR S. Huang  相似文献   

10.
《水文科学杂志》2012,57(2):296-310
ABSTRACT

Hydrological models require different inputs for the simulation of processes, among which precipitation is essential. For hydrological simulation, four different precipitation products – Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE); European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim); Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) real time (RT); and Precipitation Estimation from Remotely Sensed Information using Arti?cial Neural Networks (PERSIANN) – are compared against ground-based datasets. The variable infiltration capacity (VIC) model was calibrated for the Sefidrood River Basin (SRB), Iran. APHRODITE and ERA-Interim gave better rainfall estimates at daily time scale than other products, with Nash-Sutcliffe efficiency (NSE) values of 0.79 and 0.63, and correlation coefficient (CC) of 0.91 and 0.82, respectively. At the monthly time scale, the CC between all rainfall datasets and ground observations is greater than 0.9, except for TMPA-RT. Hydrological assessment indicates that PERSIANN is the best rainfall dataset for capturing the streamflow and peak flows for the studied area (CC: 0.91, NSE: 0.80).  相似文献   

11.
1990s长江流域降水趋势分析   总被引:2,自引:0,他引:2  
依据国家气象局提供的实测月降水和日降水资料,运用Mann-Kendall(M-K)非参数检验法验证了降水趋势,并通过空间插补法,由点扩展到面,分析了1990s长江流域降水变化特征,发现1990s长江流域降水变化以降水在时间和空间分布上的集中度的增加为主要特点:时间上,年降水的增加趋势以冬季1月和夏季6月降水的集中增加为主;一日降水量大于等于50mm的暴雨日数和暴雨量在1990s也有了较明显的增加.空间上,年降水、夏季降水、冬季降水的增加都以中下游区的增加为主,尤其以鄱阳湖水系、洞庭湖水系的降水增加为主.1990s长江流域春季和秋季降水的减少以5月和9月两个汛期月份的降水减少为主,除金沙江水系和洞庭湖水系等少数地区外,流域大部分地区降水呈减少趋势.上述1990s出现的降水趋势明显与近年来全球变暖背景下长江流域各地区不同的温度及水循环变异有关.  相似文献   

12.
In this research, drought in Yellow River basin has been studied by using dry spells. Three indices, including the maximum length (MxDS), mean length (MDS) and number of dry spells (NDS), and five periods (annual, winter, spring, summer and autumn) are considered. The results show that a south to north gradient for mean MxDS and MDS has been dominantly found in all periods except summer, in which a southwest and southeast to north gradient exists. Mean NDS shows an opposite distribution to that of mean MxDS and MDS. It is surely that the northern part of Yellow River basin, with a higher MxDS and MDS and lower NDS, is much drier than southern part in a regional scale. According to temporal analysis by using the Mann–Kendall trend method, MxDS of most stations show negative but insignificant trends during annual and winter, while the majority of stations show positive trends during spring, summer and autumn. Trends of MDS and NDS dominantly depict positive and negative for most periods, respectively. By comparing the frequency of dry spells during the ENSO events, it can be found that the frequency of intermediate and long dry spells is almost tantamount during the occurrence periods of El Niño and La Niña.  相似文献   

13.
C. Sezen 《水文科学杂志》2020,65(11):1909-1927
ABSTRACT

In this study, annual and seasonal precipitation trend analysis was performed in the Euphrates-Tigris basin, Turkey, using innovative trend analysis (ITA) and discrete wavelet transformation. In this context, it was seen that there is a downward trend in winter, spring and annual precipitation, whereas precipitation has an increasing tendency in summer and autumn seasons, in the greater part of the basin. When annual and seasonal data were decomposed into wavelet components, the most significant trends were observed for high-periodic wavelet components, such as D3 (8-year), D4 (16-year) and D5 (32-year), where these components represent the periods of the precipitation data. Then, the relationship between North Atlantic Oscillation (NAO) and trend in precipitation was investigated. In this regard, it was found that there could be a significant relationship between the NAO and precipitation trends of the Euphrates-Tigris basin, especially in winter, based on the wavelet ITA.  相似文献   

14.
Investigation of the precipitation phenomenon as one of the most important meteorological factors directly affecting access to water resources is of paramount importance. In this study, the precipitation concentration index (PCI) was calculated using annual precipitation data from 34 synoptic stations of Iran over a 50-year period (1961–2010). The trend of precipitation and the PCI index were analyzed using the Mann–Kendall test after removing the effect of autocorrelation coefficients in annual and seasonal time scales. The results of zoning the studied index at annual time scale revealed that precipitation concentration follows a similar trend within two 25-year subscales. Furthermore, the PCI index in central and southern regions of the country, including the stations of Kerman, Bandarabbas, Yazd, Zahedan, Shahrekord, Birjand, Bushehr, Ahwaz, and Esfahan indicates a strong irregularity and high concentration in atmospheric precipitations. In annual time scale, none of the studied stations, had shown regular concentration (PCI < 10). Analyzing the trend of PCI index during the period of 1961–2010 witnessed an insignificant increasing (decreasing) trend in 16 (15) stations for winter season, respectively, while it faced a significant negative trend in Dezful, Saghez, and Hamedan stations. Similarly, in spring, Kerman and Ramsar stations exhibited a significant increasing trend in the PCI index, implying significant development of precipitation concentration irregularities in these two stations. In summer, Gorgan station showed a strong and significant irregularity for the PCI index and in autumn, Tabriz and Zahedan (Babolsar) stations experienced a significant increasing (decreasing) trend in the PCI index. At the annual time scale, 50 % of stations experienced an increasing trend in the PCI index. Investigating the changes in the precipitation trend also revealed that in annual time scale, about 58 % of the stations had a decreasing trend. In winter, which is the rainiest season in Iran, about 64 % of stations experienced a decreasing trend in precipitation that caused an increasing trend in PCI index. Comparing the spatial distribution of PCI index within two 25 years sub-periods indicated that the PCI index of the second sub-period increased in the spring time scale that means irregularity of precipitation distribution has been increased. But in the other seasons any significant variations were not observed. Also in the annual time scale the PCI index increased in the second sub-period because of the increasing trend of precipitation.  相似文献   

15.
本文利用NCEP/NCAR等再分析资料和CAM3.1数值模式研究了夏季欧亚中高纬遥相关型年际变率与前期春季北极海冰变化的联系及其对我国夏季降水影响的可能机制.结果表明,夏季北大西洋-欧亚中高纬地区500 hPa位势高度场自然正交分解第二模态表现为"-+-+"遥相关波列,其中格陵兰岛-北大西洋和乌拉尔山地区为异常高空槽区所控制,而欧洲和贝加尔湖附近地区则为异常高压脊区,这种波列分布与欧亚中高纬EU型遥相关型十分类似.当遥相关波列为"-+-+"("+-+-")型分布时,前期春季巴伦支海北部和巴芬湾一带海冰偏少(多),同期夏季巴伦支海北部一带海冰亦持续偏少(多),同时在我国东北北部地区、长江和黄河之间地区降水明显偏少(多).深入分析发现,巴伦支海北部和巴芬湾一带海冰偏少后,由于该地区湍流热通量明显偏强,在动力过程影响方面会形成异常Rossby波源,准定常Rossby波活动通量将向东亚地区传播,使得夏季欧亚中高纬"-+-+"遥相关波列出现.另外,海冰异常偏少后,在热动力过程影响方面,4-5月欧亚中高纬乌拉尔山-贝加尔湖以北地区积雪会出现"西少东多"偶极子型异常分布,其通过影响后期土壤湿度及下垫面热通量异常,也有利于夏季欧亚中高纬遥相关波列的维持.伴随着欧亚中高纬"-+-+"遥相关波列的出现,乌山阻塞高压偏弱,东亚槽偏浅,且亚洲副热带急流随之加强,贝加尔湖以北的副极地地区出现西风异常,东亚副热带急流北侧出现东风异常,贝加尔湖以南地区为异常反气旋控制,南下冷空气活动减弱.受到上述环流形势影响,我国东北北部地区、黄河和长江之间地区降水明显偏少.当巴伦支海北部和巴芬湾区域海冰偏多时,结论则反之.最后,基于春季海冰指数和晚春偶极子型积雪指数,我们建立了江淮流域夏季降水的预测模型,回报结果表明其对江淮流域夏季降水的年际变率具有较高的预测技巧.  相似文献   

16.
The Northeast Atlantic possesses some of the highest wave energy levels in the world. The recent years have witnessed a renewed interest in harnessing this vast energy potential. Due to the complicated geomorphology of the Irish coast, there can be a significant variation in both the wave and wind climate. Long-term hindcasts with high spatial resolution, properly calibrated against available measurements, provide vital information for future deployments of ocean renewable energy installations. These can aid in the selection of adequate locations for potential deployment and for the planning and design of those marine operations. A 34-year (from 1979 to 2012), high-resolution wave hindcast was performed for Ireland including both the Atlantic and Irish Sea coasts, with a particular focus on the wave energy resource. The wave climate was estimated using the third-generation spectral wave model WAVEWATCH III®; version 4.11, the unstructured grid formulation. The wave model was forced with directional wave spectral data and 10-m winds from the European Centre for Medium Range Weather Forecasts (ECMWF) ERA-Interim reanalysis, which is available from 1979 to the present. The model was validated against available observed satellite altimeter and buoy data, particularly in the nearshore, and was found to be excellent. A strong spatial and seasonal variability was found for both significant wave heights, and the wave energy flux, particularly on the north and west coasts. A strong correlation between the North Atlantic Oscillation (NAO) teleconnection pattern and wave heights, wave periods, and peak direction in winter and also, to a lesser extent, in spring was identified.  相似文献   

17.
The temporal consistency of the moisture fields (precipitation, evaporation and total precipitable water) from five global reanalyses is examined over Antarctica and the Southern Ocean during 1989?C2009. This concern is important given that (1) global reanalyses are known to be prone to inhomogeneities and artificial trends caused by changes in the observing system, and (2) the period of study has seen a dramatic increase in the volume of satellite observations available for data assimilation. In particular, the study aims to determine whether the recent reanalyses are suitable for investigating changes in Antarctic surface mass balance. The datasets investigated consist of NCEP-2, JRA-25, ERA-Interim, MERRA and CFSR. Strong evidence of spurious changes is found in NCEP-2, JRA-25, MERRA and CFSR, although the magnitude, spatial patterns and timing of these artifacts vary between the reanalyses. MERRA exhibits a jump in Antarctic precipitation-minus-evaporation (P?CE) and in Southern Ocean precipitation in the late 1990s. This jump is related to the introduction of sounding radiances from the Advanced Microwave Sounding Unit (AMSU). The impact of AMSU is also discernible, albeit less pronounced, in CFSR data. It is shown that ERA-Interim likely provides the most realistic depiction of the interannual variability and overall change in Antarctic P?CE since 1989. We conclude that the presence of spurious changes is not a solved problem in recent global reanalyses. Caution should continue to be exercised when using these datasets for trend analyses in general, particularly in high southern latitudes.  相似文献   

18.
Daily temperature and precipitation data from 136 stations of Southwest China (SWC) during the last five decades, from 1960 to 2007, were analysed to determine the spatial and temporal trends by using the Mann–Kendall trend test. Results show that SWC has become warmer over the last five decades, especially in the recent 20–25 years. The increasing trends in winter months are more significant than those in the months of other seasons, and spatially Tibet, Hengduan mountains area and west Sichuan Plateau have larger temperature trend in magnitude than the other regions have. A downward trend was detected in Sichuan Basin also, but the region with cooler temperature was shrinking due to the statistically significant increasing trend of temperature after 1990s. Both annual and seasonal means of daily maximum and minimum temperatures show an increasing trend, but trend magnitude of minimum temperature was larger than that of maximum temperature, resulting in the decrease of diurnal temperature range for SWC in the last 50 years. Annual precipitation showed slightly and statistically insignificant increasing trend, but statistically significant increasing trend has been detected in winter season while autumn witnessed a statistically significant decreasing trend. The results could be a reference for the planning and management of water resources under climate change. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
The consequences of a stormy winter period (2009/2010) on the shelf and coastal dynamics off Northwest Iberia are analysed by using model results in combination with the set of available observations in the frame of the Iberian Margin Ocean Observatory (RAIA), a cross-border infrastructure among North Portugal and Galicia (Spain). During the study winter, the frequent arrival of weather fronts forced river plumes to flow along the inner shelf in a fast (>1 m?s?1) jet-like structure. The buoyant current strongly influenced the outer rías, the name of the estuaries in the region, where a strong decay of surface salinity (<10.5) has been observed. Once the weather front has passed, the wind reversal forced the offshore expansion of river plumes and also the development of a winter upwelling event. Thermohaline patterns in both model and observations revealed an intrusion of warm (>15 °C) and salty (>35.9) waters into the rías associated with the Iberian Poleward Current. Finally, some Lagrangian modelling experiments were performed to analyse the transport ability of the plume and the effect that could have had in the biological material trapped on it. The experiments reveal that an overall northward displacement of surface particles will be expected after several alternate wind events.  相似文献   

20.
The thermal and moisture balance of permafrost regions has been altered by global warming, profoundly influencing vegetation dynamics and forest carbon cycling. To understand the spatial and temporal characteristics and driving forces responsible for changes in moisture conditions in the permafrost region of the Greater and Lesser Hinggan Mountains, northeastern China, we assessed long‐term trends for temperature, precipitation, and the standardized precipitation‐evapotranspiration index. From 1951 to 2014, annual mean temperature had a significant increase trend and the annual precipitation was not with significant trend. Since 1951, the annual standardized precipitation‐evapotranspiration index has decreased significantly at the boundary between regions with seasonal soil freezing and permafrost, suggesting that conspicuous permafrost degradation and moisture loss has occurred. The study area can be divided into 4 parts with a different balance between thermal and moisture conditions: the northern Songnen Plains, the Hulun Buir Sand Land, the middle reaches of the Heilongjiang River, and the Mohe region. However, only the middle reaches of the Heilongjiang River showed an obvious long‐term drying trend. The 4 areas showed quasi‐periodic oscillation and sea surface temperature during the winter half‐year affected drought intensity in the northern of Songnen Plains. When El Niño strengthened, moisture conditions increased in the northern of Songnen Plains, whereas stronger La Niña events decreased water availability. The result of this study will be beneficial for regional water resource management and prepare for potential drought hazards in the northeastern China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号