首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
ABSTRACT

Water from the alluvium of ephemeral rivers in Zimbabwe is increasingly being used. These alluvial aquifers are recharged annually from infiltrating floodwater. Nonetheless, the size of this water resource is not without limit and an understanding of the hydrological processes of an alluvial aquifer is required for its sustainable management. This paper presents the development of a water balance model, which estimates the water level in an alluvial aquifer recharged by surface flow and rainfall, while allowing for abstraction, evaporation and other losses. The model is coupled with a watershed model, which generates inflows from upland catchment areas and tributaries. Climate, hydrological, land cover and geomorphological data were collected as inputs to both models as well as observed flow and water levels for model calibration and validation. The sand river model was found to be good at simulating the observed water level and was most sensitive to porosity and seepage.  相似文献   

2.
选择1979-2016年间多时期、多类型、多光谱遥感数据,分析评价洞庭湖区内湖近40年的面积变化.结果表明,最近40年洞庭湖区内湖面积保持相对稳定,丰水期间呈上升趋势,枯水期间波动下降,2016年内湖总面积比1980s初减少3.94%.随着湖泊面积增加,湖泊水面面积变化的比例和幅度逐渐减小,大型湖泊(>10 km2)和中型湖泊(5~10 km2)面积相对稳定,小型内湖(<5 km2)面积变化尤为剧烈.内湖水面面积主要受降雨、蒸发等气候因素和生产生活取水、防洪排涝和退田还湖等人为活动调控.1980-2000年和2001-2015年两个时期,洞庭湖区多年平均降雨量呈现不同程度的下降趋势,多年平均蒸发量明显上升.三峡工程运行后,三口分流衰减,但水资源需求量不断增长,退田还湖和留蓄雨洪作为水资源使得丰水期间内湖水面面积增长,气候变化和水资源开发利用导致枯水期水面面积趋于减少.有必要加强洞庭湖区内湖的研究和保护,适当退田还湖提高湖泊率,优化三口水系格局,实施河湖水系连通工程,缓解洞庭湖区季节性水资源紧张问题.  相似文献   

3.
Field observations on small rivers of the Amazon basin are less common due to their remote location and difficult accessibility. Here we show, through remote sensing analysis and field works, the planform evolution and riverbed topography of a small river located in the upper foreland Amazon basin, the Ichilo River. By tracking planform changes over 30 years, we identified the factors that control meander migration rates in the Ichilo River: cutoffs, climate and human interventions. The data suggest that neck cutoffs are the main controls in the Ichilo River, with an annual density of 0.022 cutoffs/km. In addition, climate controls have been identified in the form of high-precipitation events that may have promoted cutoffs, an increase in meander migration rate and channel widening. The width distribution of the Ichilo River is well represented by general extreme value and inverse Gaussian distributions. The spatiotemporal variability of meandering migration rates in the Ichilo River is analysed in two locations where neck cutoffs are expected. Analysing the distance across the neck in these two points, we predict the occurrence of a new cutoff. The combined methodology of bathymetric surveys and structure from motion photogrammetry shows us the Ichilo riverbed topography and banks at high resolution, where two scour holes were identified. Finally, we discuss the impact of planform changes of the Ichilo River on communities that are established along its riverbanks.  相似文献   

4.
The hydrogeomorphology of the Vietnamese Mekong Delta (VMD) has been significantly altered by natural and anthropogenic drivers. In this study, the spatiotemporal changes of the flow regime were examined by analysing the long-term daily, monthly, annual and extreme discharges and water levels from 1980 to 2018, supported by further investigation of the long-term annual sediment load (from the 1960s to 2015), river bathymetric data (in 1998, 2014 and 2017) and daily salinity concentration (from the 1990s to 2015) using various statistical methods and a coupled numerical model. Then, the effects of riverbed incision on the hydrology were investigated. The results show that the dry season discharge (i.e., in March–June) of the Tien River increased by up to 23% from the predam period (1980–1992) to the postdam period (1993–2018) but that the dry season water level at My Thuan decreased by up to −46%. The annual mean and monthly water levels in June at Tan Chau and in January and June–October at My Thuan in the Tien River decreased statistically, even though the respective discharges increased significantly. These decreased water levels instead of the increased discharges were attributed to the accelerated riverbed incision upstream from My Thuan, which increased by more than three times, from a mean rate of −0.16 m/year (−16.7 Mm3/year) in 1998–2014 to −0.5 m/year (−52.5 Mm3/year) in 2014–2017. This accelerated riverbed incision was likely caused by the reduction in the sediment load of the VMD (from 166.7 Mt/year in the predam period to 57.6 Mt/year in the postdam period) and increase in sand mining (from 3.9 Mm3 in 2012 to 13.43 Mm3 in 2018). Collectively, the decreased dry season water level in the Tien River is likely one of the main causes of the enhanced salinity intrusion.  相似文献   

5.
Arid basins in the alpine-cold area have their unique environmental settings and special groundwater circulation system. Sources, components and their variation of recharge processes for most rivers and groundwater of seasonal scale are still unknown in response to climate warming. Stable H and O isotopes were sampled monthly in river water and groundwater, and water table fluctuations were monitored over a complete seasonal cycle from dry to wet season conditions in the Nalenggele River catchment in the western Qaidam Basin, China. The primary objectives of our study were to demonstrate and explain the mechanism governing the rapid circulation in the groundwater system. Distinct seasonal fluctuations in the water table with corresponding stable isotopic variations can be observed in the alluvial fan of the Nalenggele River catchment. The recharge mechanism is related to the coincidence of several favourable hydrological conditions including an abundant recharge water source from summer precipitation and glacial snow melt in the high Kunlun Mountains, large-scale active faults, a volcanic crater, and other macro-structures that act as favourable recharge conduits, a large hydraulic head, and the presence of >100 m of unconsolidated sand and gravel acting as the main aquifer. Abundant and rapid renewable groundwater resources are potential water sources for future development in the Qaidam Basin.  相似文献   

6.
In semi‐arid and arid river basins, understanding the connectivity between rivers and alluvial aquifers is one of the key challenges for the management of groundwater resources. The type of connection present (gaining, losing‐connected, transitional and losing‐disconnected) was assessed at 12 sites along six Murray–Darling Basin river reaches. The assessments were made by measuring the hydraulic head in the riparian zone near the rivers to evaluate if the water tables intersected the riverbeds and by measuring fluid pressure (ψ) in the riverbeds. The rationale for the latter was that ψ will always be greater than or equal to zero under connected conditions (either losing or gaining) and always lesser than or equal to zero under losing‐disconnected conditions. A mixture of losing‐disconnected, losing‐connected and gaining conditions was found among the 12 sites. The losing‐disconnected sites all had a riverbed with a lower hydraulic conductivity than the underlying aquifer, usually in the form of a silty clay or clay unit 0.5–2 m in thickness. The riparian water tables were 6 to 25 m below riverbed level at the losing‐disconnected sites but never lower than 1 m below riverbed level at the losing‐connected ones. The contrast in water table depth between connected and disconnected sites was attributed to the conditions at the time of the study, when a severe regional drought had generated a widespread decline in regional water tables. This decline was apparently compensated near losing‐connected rivers by increased infiltration rates, while the decline could not be compensated at the losing‐disconnected rivers because the infiltration rates were already maximal there. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Abstract

Streamflow in the Himalayan rivers is generated from rainfall, snow and ice. The distribution of runoff produced from these sources is such that the streamflow may be observed in these rivers throughout the year, i.e. they are perennial in nature. Snow and glacier melt runoff contributes substantially to the annual flows of these rivers and its estimation is required for the planning, development and management of the water resources of this region. The average contribution of snow and glacier melt runoff in the annual flows of the Satluj River at Bhakra Dam has been determined. Keeping in view the availability of data for the study basin, a water balance approach was used and a water budget period of 10 years (October 1986-September 1996) was considered for the analysis. The rainfall input to the study basin over the water budget period was computed from isohyets using rainfall data of 10 stations located at different elevations in the basin. The total volume of flow for the same period was computed using observed flow data of the Satluj River at Bhakra Dam. A relationship between temperature and evaporation was developed and used to estimate the evapotranspiration losses. The snow-covered area, and its depletion with time, was determined using satellite data. It was found that the average contribution of snow and glacier runoff in the annual flow of the Satluj River at Bhakra Dam is about 59%, the remaining 41% being from rain.  相似文献   

8.
Total organic carbon(TOC) and grain size distribution(sand,silt,and clay) in the ephemeral Mahi River(western India) sediments were measured to look at their effectiveness in understanding the late Quaternary monsoon conditions.Four sites spread across the alluvial zone and three sites from the estuarine zone were sampled.TOC concentration in the sediments of the alluvial and estuarine zone sites ranged between 0.04 and 0.39%and 0.04 and 0.23%,respectively.It was observed that grain size differed significantly at the alluvial zone sites,whereas an uniform trend was found in the estuarine zone sites.The study indicated that low concentration of TOC and coarse size fractions(sand) in sediments were well correlated with available records of arid/weaker palaeomonsoon periods,whereas higher concentration of TOC and fine grain size fractions(silt + clay) in sediments were well correlated with available records of enhanced palaeomonsoon periods of the ephemeral Mahi River.Uniform concentrations of TOC and fine grain size particles in sediments at the estuarine zone sites are attributed to the backwater in the system,deeper sedimentation,and/or greater decomposition processes.It is concluded that,TOC and grain size distributions in the ephemeraL river sediments are simple and effective parameters to develop an understanding about late Quaternary monsoon conditions in ephemeral rivers.  相似文献   

9.
1993年太湖流域的洪涝灾害及水利工程的作用   总被引:2,自引:1,他引:1  
王同生 《湖泊科学》1994,6(3):193-200
1993年汛期太湖最高水位高居建国以来的第3位,仅次于1991年和1954年,达到4.51m(平均水位,下同),局部地区发生了洪涝灾害。本文对1993年太湖流域汛期的雨情和水情做了论述,并对1993、1991、1954年三个典型大水年的降雨和洪水特征作了比较。同时,还对洪涝灾害和水利工程的作用进行分析。太湖流域的雨季一般为5—7月,但是1993年汛期的降雨在时间上的分布有些异常。降雨集中在8月,而河道最高水位则出现在8月下旬。降雨的空间分布有以下3个特征:(1)上游地区的降雨集中在浙西山区;(2)太湖湖区的降雨量很大;(3)下游地区的降雨集中在淀泖和杭嘉湖地区。淀泖和杭嘉湖地区一些水位站的实测河道水位,比发生大洪水的1991年还要高。发生洪涝灾害的原因可归纳为,上游地区洪水来量大,当地的降雨强度高,以及下游河道排水不畅通。为了改进防汛调度和完善治理规划,需要对不同典型洪水年份的降雨和洪水模式做进一步研究。  相似文献   

10.
Stable isotopes of water have been widely used in understanding the hydrological functions of alpine inland catchments. This study identifies dominant runoff generation mechanisms based on isotopic data (δ18O and δ2H) of 487 rainwater and river-water samples from three tributaries in the Tarim River Basin in China for the period May–September 2013. The isotope hydrograph separation results provide a comprehensive overview of the rainfall influence on hydrological processes. Stream water and groundwater have varied responses to different intensities of rainfall events. Only a small proportion of rainfall is directly transported to the stream during such events. An inconsistent temporal trend of event water contribution is observed in the three catchments. The average fractional contributions of rainfall for the Tizinafu, Kumalak and Huangshuigou rivers are 10.3% (±1.1%), 9.7% (±2.9%) and 8.7% (±2.4%), respectively.  相似文献   

11.
卫星红外遥感亮温数据值除与地球的自转和公转存在密切关系外,还与大气环境和地理环境有密切关系。应用青海省黄河门堂观测点的降水量和水位,以及对应点地表亮温资料进行对比分析,其结果为:降水量与亮温存在可比性,在峰值时间区段内,亮温与降水量呈现明显的反向变化关系;降水量的波动变化导致地表温度的波动变化;水位、降水量和亮温属于温度对气候变化较为敏感的物理量。  相似文献   

12.
Dam construction in the 1960s to 1980s significantly modified sediment supply from the Kenyan uplands to the lower Tana River. To assess the effect on suspended sediment fluxes of the Tana River, we monitored the sediment load at high temporal resolution for 1 year and complemented our data with historical information. The relationship between sediment concentration and water discharge was complex: at the onset of the wet season, discharge peaks resulted in high sediment concentrations and counterclockwise hysteresis, while towards the end of the wet season, a sediment exhaustion effect led to low concentrations despite the high discharge. The total sediment flux at Garissa (c. 250 km downstream of the lowermost dam) between June 2012 and June 2013 was 8.8 Mt yr‐1. Comparison of current with historical fluxes indicated that dam construction had not greatly affected the annual sediment flux. We suggest that autogenic processes, namely river bed dynamics and bank erosion, mobilized large quantities of sediments stored in the alluvial plain downstream of the dams. Observations supporting the importance of autogenic processes included the absence of measurable activities of the fall‐out radionuclides 7Be and 137Cs in the suspended sediment, the rapid lateral migration of the river course, and the seasonal changes in river cross‐section. Given the large stock of sediment in the alluvial valley of the Tana River, it may take centuries before the effect of damming shows up as a quantitative reduction in the sediment flux at Garissa. Many models relate the sediment load of rivers to catchment characteristics, thereby implicitly assuming that alterations in the catchment induce changes in the sediment load. Our research confirms that the response of an alluvial river to external disturbances such as land use or climate change is often indirect or non‐existent as autogenic processes overwhelm the changes in the input signal. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
The currently enforced Bulgarian water legislation [the Water Act (1999), the Environmental Protection Act (2002), etc.] requires conducting special studies for accurate assessments of sand and gravel flux along the rivers, prior to the issue of the license for operation of the quarries, where they will be dredged. The activity of a quarry necessitates special investigations because of the large dimensions of the damages inflicted on the environment. Ours studies have shown that there are two types of river reaches, in which abstraction of sand and gravel is performed. The first one refers usually to the plain area river reaches. The other type is mountainous with high rate of sediment load, which consists of coarse solid matter. The “on-the-spot” study on the environmental impact of the sand and gravel dredging has revealed that in the area of the quarry the riverbed cuts into the alluvial sediments to about 6-7 m and this ditch has spread by attenuation at a distance of more than 25 km upstream. Downstream the pit the picture is replicated and at the 8th km a local scour on the riverbed, amounting to more than 1.80-2.00 m, has been measured near the foundation of a massive bridge in the centre of city of Plovdiv. Such assessments of dynamic resources of sand and gravel materials are expected to serve for the purposes of gradual limitation of this activity in river sections close to renewable resources. The amount of sediment load, which may be abstracted in the area of the Orizare quarry in Bulgaria on a yearly basis has been calculated as 6000 m^3/a. It ensures that the resources will not be exhausted and irreversible distortion of the riverbed will be prevented. This is an environmentally safe limit.  相似文献   

14.
While it is critical to accurately understand the sources and transformation of sulfate based on time-series analysis, there are limited studies on temporal variation of sulfate in rivers and on rock weathering by sulfuric acids.We conducted a monthly sampling campaign in the Beipan, Nanpan, and Hongshui Rivers over the course of one hydrological year. This study examined seasonal variations in riverine sulfate impacted by the monsoon climate in the upper reaches of the Xijiang River basin. In general, the SO_4~(2-) contents in these rivers dropped from relatively high levels to low values during the high-flow season, in response to increasing discharge. The sulfate was generally enriched in heavy isotopes during the low-flow season compared to the high-flow season. The calculated results indicate that the riverine sulfate was mainly derived from sulfide oxidation, but that evaporite dissolution could be an important source during the low-flow season, based on isotopic evidence. Mine drainage is likely an important source of sulfate to these rivers during the high-flow season due to contributions from fast surface flow, which responds to frequent heavy rain in monsoonal climate regions. Arelatively high proportion of HCO_3~- was found to be derived from rock weathering by sulfuric acid during the high-flow season when compared to that observed during the low-flow season. The results suggest that approximately one quarter of the HCO_3~- in the Hongshui River originated from carbonate weathering by sulfuric acid derived from the oxidation of sulfide. Such information on the specific dual isotopic characteristics of riverine sulfate throughout a hydrological year can provide unique evidence for understanding the temporal variability of sulfate concentrations and weathering processes in rivers.  相似文献   

15.
Recharge through intermittent and ephemeral stream channels is believed to be a primary aquifer recharge process in arid and semiarid environments. The intermittent nature of precipitation and flow events in these channels, and their often remote locations, makes direct flow and loss measurements difficult and expensive. Airborne and satellite optical images were interpreted to evaluate aquifer recharge due to stream losses on the Frio River in south-central Texas. Losses in the Frio River are believed to be a major contributor of recharge to the Edwards Aquifer. The results of this work indicate that interpretation of readily available remote sensing optical images can offer important insights into the spatial distribution of aquifer recharge from losing streams. In cases where upstream gauging data are available, simple visual analysis of the length of the flowing reach downstream from the gauging station can be used to estimate channel losses. In the case of the Frio River, the rate of channel loss estimated from the length of the flowing reach at low flows was about half of the loss rate calculated from in-stream gain-loss measurements. Analysis based on water-surface width and channel slope indicated that losses were mainly in a reach downstream of the mapped recharge zone. The analysis based on water-surface width, however, did not indicate that this method could yield accurate estimates of actual flow in pool and riffle streams, such as the Frio River and similar rivers draining the Edwards Plateau.  相似文献   

16.
Physical properties of alluvial environments typically feature a high degree of anisotropy and are characterized by dynamic interactions between the surface and the subsurface. Hydrogeological models are often calibrated under the assumptions of isotropic hydraulic conductivity fields and steady-state conditions. We aim at understanding how these simplifications affect predictions of the water table using physically based models and advanced calibration and uncertainty analysis approaches based on singular value decomposition and Bayesian analysis. Specifically, we present an analysis of the information content provided by steady-state hydraulic data compared to transient data with respect to the estimation of aquifer and riverbed hydraulic properties. We show that assuming isotropy or fixed anisotropy may generate biases both in the estimation of aquifer and riverbed parameters as well as in the predictive uncertainty of the water table. We further demonstrate that the information content provided by steady-state hydraulic heads is insufficient to jointly estimate the aquifer anisotropy together with the aquifer and riverbed hydraulic conductivities and that transient data can help to reduce the predictive uncertainty to a greater extent. The outcomes of the synthetic analysis are applied to the calibration of a dynamic and anisotropic alluvial aquifer in Switzerland (The Rhône River). The results of the synthetic and real world modeling and calibration exercises documented herein provide insight on future data acquisition as well as modeling and calibration strategies for these environments. They also provide an incentive for evaluation and estimation of commonly made simplifying assumptions in order to prevent underestimation of the predictive uncertainty.  相似文献   

17.
Over the last few decades, remote sensing has revealed buried river channels in a number of regions worldwide, in many cases providing evidence of dramatic paleoenvironmental changes over Cenozoic time scales. Using orbital radar satellite imagery, we mapped a major paleodrainage system in eastern Libya, that could have linked the Kufrah Basin to the Mediterranean coast through the Sirt Basin, possibly as far back as the middle Miocene. Synthetic Aperture Radar images from the PALSAR sensor clearly reveal a 900 km-long river system, which starts with three main tributaries (north-eastern Tibesti, northern Uweinat and western Gilf Kebir/Abu Ras) that connect in the Kufrah oasis region. The river system then flows north through the Jebel Dalmah, and forms a large alluvial fan in the Sarir Dalmah. The sand dunes of the Calanscio Sand Sea prevent deep orbital radar penetration and preclude detailed reconstruction of any possible connection to the Mediterranean Sea, but a 300 km-long link to the Gulf of Sirt through the Wadi Sahabi paleochannel is likely. If this connection is confirmed, and its Miocene antiquity is established, then the Kufrah River, comparable in length to the Egyptian Nile, will have important implications for the understanding of the past environments and climates of northern Africa from the middle Miocene to the Holocene.  相似文献   

18.
Motivated by the need for rainfall prediction models in data scarce areas, we adapted a simple storage based cloud model to use routinely available thermal infrared (TIR) data. The data is obtained from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) of the Meteosat Second Generation (MSG-2) satellite. Model inputs are TIR cloud top temperatures at 15-min intervals and observations of pressure, temperature, and dew point temperatures from ground-based stations at 30-min intervals. The sensitivity of the parsimonious cloud model to its parameters is evaluated by a regional sensitivity analysis (RSA) which suggests that model performance is sensitive to few parameters. The model was calibrated and tested for four convective events that were observed during the wet season in the source basin of the Upper Blue Nile River. The difference between the simulated and the observed depth of the selected rain events varies between 0.2 and 1.8 mm with a root mean square error of smaller than 0.5 mm for each event. It is shown that the updraft velocity characteristic can provide relevant information for rainfall forecasting. The simulation results suggest the effectiveness of the model approach as evaluated by selected performance measures. The various characteristics of the rainfall events as simulated generally match to observed counter parts when ground-based and remote sensing observations are combined.  相似文献   

19.
维系江湖关系的重要基础是江湖之间的物质通量,而江湖之间物质通量的核心内容是水的通量.规划中的鄱阳湖水利枢纽工程,以"一湖清水"为建设目标,坚持"江湖两利"的原则,按"调枯不控洪"方式运行.目前,国内学者对拟建的鄱阳湖水利枢纽工程可能导致湖泊影响方面的研究较多,但对该工程能否实现或维持"江湖两利"方面的研究较少.本文采用二维水动力模型,针对拟建的鄱阳湖水利枢纽工程和规划中的水位调度方案,分别从湖泊丰水期和枯水期两个时段,选择鄱阳湖丰、平、枯3种典型年型,在无枢纽与有枢纽两种情景模拟的基础上,定量分析丰、平、枯3种典型年枢纽工程的水位调度方案对长江干流流量的可能影响.模拟结果表明:在一个鄱阳湖水利枢纽工程水位调度周期中,无枢纽状态与有枢纽情景下湖泊外排到长江干流的径流总量差异很小,从模拟的年份来看,有枢纽外排减少量在0.2%~0.7%之间变化,基本维持了有枢纽与无枢纽状态下的水量平衡,但在一定程度上改变了湖泊外排长江干流水量的分配时间,使不同年型丰水期的湖泊外排水量有所减少,而在湖泊和长江低枯水期,对长江流量则有一定的增排作用,且增排效果为枯水年型平水年型丰水年型,不同年型的增排比例在2.1%~17.0%之间变化;在丰水期湖泊水位偏低,且枢纽位置的实际水位严重不足9 m的年型情况下,按照枢纽工程的水位调度方案要在9月15日将湖泊水位提升至14~15 m是难于实现的,现有的枢纽工程调度方案在这种情况下缺乏可操作性,有进一步细化和优化的空间.  相似文献   

20.
夏军强  曹玉芹  周美蓉  刘鑫  邓宇 《湖泊科学》2023,35(6):2144-2154
沙波形态影响水流结构、泥沙输移及动床阻力。本研究采用多波束测深系统首次精细测量了上荆江典型河段的床面地形,采用改进后的沙波形态量化算法统计了各类沙波形态参数,分析了不同水流强度下沙波形态的变化特征。计算结果表明:(1)测量河段小型与大型沙波的平均波高分别为0.16~0.81和0.96~2.31 m,波长分别为13~27和16~41m;沙波尺度相较于水深较小,小型与大型沙波的波高分别不超过水深的0.045和0.150倍;(2)沙波背流面坡度基本不超过14°,小于泥沙水下休止角,其与陡度之间的关系可以用线性方程描述;(3)中洪水流量对沙波形态尺度的塑造作用强于枯水流量,且对浅水区大型沙波形态尺度的塑造作用强于深水区。本研究量化了天然河流的沙波形态,较好地反映了沙波形态特征,能为大型冲积河流沙波形态的量化及特征参数的统计分析提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号