首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Eutrophication and noxious bloom events are becoming more prevalent with increasing anthropogenic activities. To lessen ecological damage, there is a need to develop phytoplankton management programs aimed at enhancing growth of beneficial algae. The success of such management schemes with be dependent on the predictability of phytoplankton succession within the target system to a controlled perturbation. Freshwater lakes appear to exhibit a degree of predictability as described by the PEG-model and Equilibrium Resource Competition theory. We investigated whether these concepts could be applied to a marine system, the Nueces River estuary, Texas. The PEG-model predicted nicely the initial occurrence of edible phytoplankton forms after a favorable nutrient perturbation. Equilibrium Resource Competition theory, however, only successfully predicted the occurrence of major phytoplankton taxa immediately after a nutrient perturbation. Systemwide correlations between N:P and cyanobacteria, green algae, and diatoms were poor. In the Nueces River estuary, succession within the phytoplankton community showed a degree of predictability to nutrient perturbations. Therefore, management of the phytoplankton community composition may be possible. The PEG-model appears to be a useful guide for a phytoplankton management scheme, while the utility of Equilibrium Resource Competition may be limited.  相似文献   

2.
Although algal blooms, including those considered toxic or harmful, can be natural phenomena, the nature of the global problem of harmful algal blooms (HABs) has expanded both in extent and its public perception over the last several decades. Of concern, especially for resource managers, is the potential relationship between HABs and the accelerated eutrophication of coastal waters from human activities. We address current insights into the relationships between HABs and eutrophication, focusing on sources of nutrients, known effects of nutrient loading and reduction, new understanding of pathways of nutrient acquisition among HAB species, and relationships between nutrients and toxic algae. Through specific, regional, and global examples of these various relationships, we offer both an assessment of the state of understanding, and the uncertainties that require future research efforts. The sources of nutrients potentially stimulating algal blooms include sewage, atmospheric deposition, groundwater flow, as well as agricultural and aquaculture runoff and discharge. On a global basis, strong correlations have been demonstrated between total phosphorus inputs and phytoplankton production in freshwaters, and between total nitrogen input and phytoplankton production in estuarine and marine waters. There are also numerous examples in geographic regions ranging from the largest and second largest U.S. mainland estuaries (Chesapeake Bay and the Albemarle-Pamlico Estuarine System), to the Inland Sea of Japan, the Black Sea, and Chinese coastal waters, where increases in nutrient loading have been linked with the development of large biomass blooms, leading to anoxia and even toxic or harmful impacts on fisheries resources, ecosystems, and human health or recreation. Many of these regions have witnessed reductions in phytoplankton biomass (as chlorophylla) or HAB incidence when nutrient controls were put in place. Shifts in species composition have often been attributed to changes in nutrient supply ratios, primarily N∶P or N∶Si. Recently this concept has been extended to include organic forms of nutrients, and an elevation in the ratio of dissolved organic carbon to dissolved organic nitrogen (DOC∶DON) has been observed during several recent blooms. The physiological strategies by which different groups of species acquire their nutrients have become better understood, and alternate modes of nutrition such as heterotrophy and mixotrophy are now recognized as common among HAB species. Despite our increased understanding of the pathways by which nutrients are delivered to ecosystems and the pathways by which they are assimilated differentially by different groups of species, the relationships between nutrient delivery and the development of blooms and their potential toxicity or harmfulness remain poorly understood. Many factors such as algal species presence/abundance, degree of flushing or water exchange, weather conditions, and presence and abundance of grazers contribute to the success of a given species at a given point in time. Similar nutrient loads do not have the same impact in different environments or in the same environment at different points in time. Eutrophication is one of several mechanisms by which harmful algae appear to be increasing in extent and duration in many locations. Although important, it is not the only explanation for blooms or toxic outbreaks. Nutrient enrichment has been strongly linked to stimulation of some harmful species, but for others it has not been an apparent contributing factor. The overall effect of nutrient over-enrichment on harmful algal species is clearly species specific.  相似文献   

3.
Groundwater discharge is increasingly recognized as a significant source of nutrient input to coastal waters, relative to surface water inputs. There remains limited information, however, on the extent to which nutrients and organic matter from each of these two flowpaths influence the functional responses of coastal microbial communities. As such, this study determined dissolved organic carbon (DOC) and nutrient concentrations of surface water runoff and groundwater from both an urbanized and a relatively pristine forested drainage basin near Myrtle Beach, South Carolina, and quantified the changes in production rates and biomass of phytoplankton and bacterioplankton in response to these inputs during two microcosm incubation experiments (August and October, 2011). Rainwater in the urbanized basin that would otherwise enter the groundwater appeared to be largely rerouted into the surface flowpath by impervious surfaces, bypassing ecosystem buffers and filtration mechanisms. Surface runoff from the developed basin was most enriched in nutrients and DOC and yielded the highest production rates of the various source waters upon addition to coastal waters. The metabolic responses of phytoplankton and bacterioplankton were generally well predicted as a function of initial chemical composition of the various source waters, though more so with bacterial production. Primary and bacterial productivities often correlated at reciprocal time points (24-h measurement of one with the 72-h measurement of the other). These results suggest human modification of coastal watersheds enhances the magnitude of dissolved constituents delivered to coastal waters as well as alters their distributions between surface and groundwater flowpaths, with significant implications for microbial community structure and function in coastal receiving waters.  相似文献   

4.
Hydrologists have long been concerned with the interface of groundwater flow into estuaries, but not until the end of the last century did other disciplines realize the major role played by groundwater transport of nutrients to estuaries. Mass balance and stable isotopic data suggest that land-derived NO3, NH4, and dissolved organic N do enter estuaries in amounts likely to affect the function of the receiving ecosystem. Because of increasing human occupancy of the coastal zone, the nutrient loads borne by groundwater have increased in recent decades, in spite of substantial interception of nutrients within the land and aquifer components of watersheds. Groundwater-borne nutrient loads have increased the N content of receiving estuaries, increased phytoplankton and macroalgal production and biomass, decreased the area of seagrasses, and created a cascade of associated ecological changes. This linkage between land use and eutrophication of estuaries occurs in spite of mechanisms, including uptake of land-derived N by riparian vegetation and fringing wetlands, “unloading” by rapid water removal, and direct N inputs to estuaries, that tend to uncouple the effects of land use on receiving estuaries. It can be expected that as human activity on coastal watersheds continues to increase, the role of groundwater-borne nutrients to the receiving estuary will also increase.  相似文献   

5.
Seasonal wind-driven upwelling along the U.S. West Coast supplies large concentrations of nitrogen to surface waters that drives high primary production. However, the influence of coastal upwelled nutrients on phytoplankton productivity in adjacent small estuaries and bays is poorly understood. This study was conducted in Drakes Estero, California, a low inflow estuary located in the Point Reyes National Seashore and the site of an oyster mariculture facility that produces 40 % of the oysters harvested in California. Measurements of nutrients, chlorophyll a, phytoplankton functional groups, and phytoplankton carbon and nitrogen uptake were made between May 2010 and June 2011. A sea-to-land gradient in nutrient concentrations was observed with elevated nitrate at the coast and higher ammonium at the landward region. Larger phytoplankton cells (>5 μm diameter) were dominant within the outer and middle Estero where phytoplankton primary productivity was fueled by nitrate and f-ratios were >0.5; the greatest primary production rates were in the middle Estero. Primary production was lowest within the inner Estero, where smaller phytoplankton cells (<5 μm) were dominant, and nitrogen uptake was dominated by ammonium. Phytoplankton blooms occurred at the outer and middle Estero and were dominated by diatoms during the spring and dry-upwelling seasons but dinoflagellates during the fall. Small flagellated algae (>2 μm) were dominant at the inner Estero where no blooms occurred. These results indicate that coastal nitrate and phytoplankton are imported into Drakes Estero and lead to periods of high new production that can support the oyster mariculture; a likely scenario also for other small estuaries and bays.  相似文献   

6.
Numerous phytoplankton-oriented ecological studies have been conducted since 1965 in the extensive North Carolina estuarine system. Throughout a range of geomorphological estuarine types, a basic underlying pattern of phytoplankton productivity and abundance following water temperature seasonal fluctuations was observed. Overlying this solar-driven pattern was a secondary forcing mechanism consisting of a complex interaction between meteorology and hydrology, resulting in periodic winter or early spring algal blooms and productivity pulses in the lower riverine estuaries. Wet winters caused abundant nitrate to reach the lower estuaries and stimulate the blooms, whereas dry winters resulted in low winter phytoplankton abundance and primary production. Dinoflagellates (Heterocapsa triquetra, Prorocentrum minimum, Gymnodinium spp.) and various cryptomonads dominated these cool-weather estuarine blooms. Sounds were less productive than the riverine estuaries, and were dominated by diatoms such asSkeletonema costatum, Thalassiosira spp.,Melosira spp., andNitzschia spp., as were the most saline portions of riverine estuaries. Nutrient-limitation studies found that nitrogen was the principal limiting nutrient in these estuarine systems over a range of trophic states, with phosphorus occasionally co-limiting. Freshwater and oligohaline portions of large coastal plain rivers were often subject to summer blue-green algal blooms. Formation of these blooms on a year-to-year basis was also determined by meteorology and hydrology: wet winters or springs and consequent nutrient loading, coupled with low summer flow conditions and regeneration of nutrients from the sediments. Dry winters or springs resulted in less available nutrients for subsequent summer regeneration, and high flow conditions in summer flushed out the blooms. In recent years, there has been a dramatic increase in reported fish kills attributed to toxic dinoflagellate blooms, particularly in nutrient-enriched estuarine areas. This issue has become a major coastal ecological and economic concern.  相似文献   

7.
Baseflow and storm runoff fluxes of water, suspended particulate matter (SPM), and nutrients (N and P) were assessed in conservation, urban, and agricultural streams discharging to coastal waters around the tropical island of Oahu, Hawai‘i. Despite unusually low storm frequency and intensity during the study, storms accounted for 8–77% (median 30%) of discharge, 57–99% (median 93%) of SPM fluxes, 11–79% (median 36%) of dissolved nutrient fluxes and 52–99% (median 85%) of particulate nutrient fluxes to coastal waters. Fluvial nutrient concentrations varied with hydrologic conditions and land use; land use also affected water and particulate fluxes at some sites. Reactive dissolved N:P ratios typically were ≥16 (the ‘Redfield ratio’ for marine phytoplankton), indicating that inputs could support new production by coastal phytoplankton, but uptake of dissolved nutrients is probably inefficient due to rapid dilution and export of fluvial dissolved inputs. Particulate N and P fluxes were similar to or larger than dissolved fluxes at all sites (median 49% of total nitrogen, range 22–82%; median 69% of total phosphorus, range 49–93%). Impacts of particulate nutrients on coastal ecosystems will depend on how efficiently SPM is retained in nearshore areas, and on the timing and degree of transformation to reactive dissolved forms. Nevertheless, the magnitude of particulate nutrient fluxes suggests that they represent a significant nutrient source for many coastal ecosystems over relatively long time scales (weeks–years), and that reductions in particulate nutrient loading actually may have negative impacts on some coastal ecosystems.  相似文献   

8.
Tillamook Bay, Oregon, is a drowned river estuary that receives freshwater input from 5 rivers and exchanges ocean water through a single channel. Similar to other western United States estuaries, the bay exhibits a strong seasonal change in river discharge in which there is a pronounced winter maximum and summer minimum in precipitation and runoff. The behavior of major inorganic nutrients (phosphorus, nitrogen, and silica) within the watershed is examined over seasonal cycles and under a range of river discharge conditions for October 1997–December 1999. Monthly and seasonal sampling stations include transects extending from the mouth of each river to the mouth of the estuary as well as 6–10 sites upstream along each of the 5 major rivers. Few studies have examined nutrient cycling in Pacific Northwest estuaries. This study evaluates the distributions of inorganic nutrients to understand the net processes occurring within this estuary. Based upon this approach, we hypothesize that nutrient behavior in the Tillamook Bay estuary can be explained by two dominant factors: freshwater flushing time and biological uptake and regeneration. Superimposed on these two processes is seasonal variability in nutrient concentrations of coastal waters via upwelling. Freshwater flushing time determines the amount of time for the uptake of nutrients by phytoplankton, for exchange with suspended particles, and for interaction with the sediments. Seasonal coastal upwelling controls the timing and extent of oceanic delivery of nutrients to the estuary. We suggest that benthic regeneration of nutrients is also an important process within the estuary occurring seasonally according to the flushing characteristics of the estuary. Silicic acid, nitrate, and NH4 + supply to the bay appears to be dominated by riverine input. PO4 −3 supply is dominated by river input during periods of high river flow (winter months) with oceanic input via upwelling and tidal exchange important during other times (spring, summer, and fall months). Departures from conservative mixing indicate that internal estuarine sources of dissolved inorganic phosphorus and nitrogen are also significant over an annual cycle.  相似文献   

9.
Human activities on coastal watersheds provide the major sources of nutrients entering shallow coastal ecosystems. Nutrient loadings from watersheds are the most widespread factor that alters structure and function of receiving aquatic ecosystems. To investigate this coupling of land to marine systems, we are studying a series of subwatersheds of Waquoit Bay that differ in degree of urbanization and hence are exposed to widely different nutrient loading rates. The subwatersheds differ in the number of septic tanks and the relative acreage of forests. In the area of our study, groundwater is the major mechanism that transports nutrients to coastal waters. Although there is some attenuation of nutrient concentrations within the aquifer or at the sediment-water interface, in urbanized areas there are significant increases in the nutrient content of groundwater arriving at the shore’s edge. The groundwater seeps or flows through the sediment-water boundary, and sufficient groundwater-borne nutrients (nitrogen in particular) traverse the sediment-water boundary to cause significant changes in the aquatic ecosystem. These loading-dependent alterations include increased nutrients in water, greater primary production by phytoplankton, and increased macroaglal biomass and growth (mediated by a suite of physiological responses to abundance of nutrients). The increased macroalgal biomass dominates the bay ecosystem through second- or third-order effects such as alterations of nutrient status of water columns and increasing frequency of anoxic events. The increases in seaweeds have decreased the areas covered by eelgrass habitats. The change in habitat type, plus the increased frequency of anoxic events, change the composition of the benthic fauna. The data make evident the importance of bottom-up control in shallow coastal food webs. The coupling of land to sea by groundwater-borne nutrient transport is mediated by a complex series of steps; the cascade of processes make it unlikely to find a one-to-one relation between land use and conditions in the aquatic ecosystem. Study of the process and synthesis by appropriate models may provide a way to deal with the complexities of the coupling.  相似文献   

10.
Benthic nutrient recycling is a significant source of dissolved nitrogen for south Texas coastal waters in the region of the Corpus Christi Bay estuary. Studies indicate that 90% of the dissolved nitrogen supply for phytoplankton production is derived from sediments in the upper-estuary, whereas benthic regeneration supplies only 33% of the dissolved nitrogen required for primary production outside the barrier island in coastal waters (15 m depth). In the upper-estuary relationships were observed between fluvial flow, water-column dissolved nitrogen, and phytoplankton productivity. In the middle-estuary relationships were observed between sediment recycling rates and water-column dissolved nitrogen. Beyond the barrier island, relationships were observed between fluvial flow and water-column dissolved nitrogen during high flow periods, while benthic regeneration appeared to be the major nutrient source during low flow periods. We suggest that combined effects from new and recycled nutrient sources buffer south Texas coastal productivity against long periods of low nutrient input from fluvial flow. The comparison of biological responses at several trophic levels to temporal variability in nitrogen recycling and fluvial flow indicated the importance of freshwater nitrogen inputs in stimulating primary production. Freshwater nitrogen inputs also appeared to sustain long-term productivity by replacing nutrients lost from the system by extended reliance upon recycling.  相似文献   

11.
Understanding of the role of oceanic input in nutrient loadings is important for understanding nutrient and phytoplankton dynamics in estuaries adjacent to coastal upwelling regions as well as determining the natural background conditions. We examined the nitrogen sources to Yaquina Estuary (Oregon, USA) as well as the relationships between physical forcing and gross oceanic input of nutrients and phytoplankton. The ocean is the dominant source of dissolved inorganic nitrogen (DIN) and phosphate to the lower portion of Yaquina Bay during the dry season (May through October). During this time interval, high levels of dissolved inorganic nitrogen (primarily in the form of nitrate) and phosphate entering the estuary lag upwelling favorable winds by 2 days. The nitrate and phosphate levels entering the bay associated with coastal upwelling are correlated with the wind stress integrated over times scales of 4–6 days. In addition, there is a significant import of chlorophyll a to the bay from the coastal ocean region, particularly during July and August. Variations in flood-tide chlorophyll a lag upwelling favorable winds by 6 days, suggesting that it takes this amount of time for phytoplankton to utilize the recently upwelled nitrogen and be transported across the shelf into the estuary. Variations in water properties determined by ocean conditions propagate approximately 11–13 km into the estuary. Comparison of nitrogen sources to Yaquina Bay shows that the ocean is the dominant source during the dry season (May to October) and the river is the dominant source during the wet season with watershed nitrogen inputs primarily associated with nitrogen fixation on forest lands.  相似文献   

12.
Calico Creek differs from neighboring estuaries in that it receives sewage effluent, and its waters therefore contain ample nutrients. High nutrient levels enable the phytoplankton population, which is probably light-limited, to reach densities of 109 cells·1?1 during the summer, 2 to 3 orders of magnitude higher than the surrounding, nutrient-limited populations. At cell densities greater than 108 cells·1?1 the number of dominant species is greatly reduced, and the level of diversity drops sharply. Calico Creek also differs by being very shallow; the population can be drastically affected by high runoff. The productivity of both the phytoplankton and the surroundingSpartina marsh is much higher than the neighboring unpolluted estuaries. Unlike the larger and more stable estuaries nearby, the dependence of the population on the effluent for nutrients, the possibility of toxic materials entering the creek with the effluent, and its small size make Calico Creek subject to sudden change.  相似文献   

13.
Atmospheric deposition of nitrogen (AD-N) is a significant source of nitrogen enrichment to nitrogen (N)-limited estuarine and coastal waters downwind of anthropogenic emissions. Along the eastern U.S. coast and eastern Gulf of Mexico, AD-N currently accounts for 10% to over 40% of new N loading to estuaries. Extension of the regional acid deposition model (RADM) to coastal shelf waters indicates that 11, 5.6, and 5.6 kg N ha−1 may be deposited on the continental shelf areas of the northeastern U.S. coast, southeast U.S. coast, and eastern Gulf of Mexico, respectively. AD-N approximates or exceeds riverine N inputs in many coastal regions. From a spatial perspective, AD-N is a unique source of N enrichment to estuarine and coastal waters because, for a receiving water body, the airshed may exceed the watershed by 10–20 fold. AD-N may originate far outside of the currently managed watersheds. AD-N may increase in importance as a new N source by affecting waters downstream of the oligohaline and mesohaline estuarine nutrient filters where large amounts of terrestrially-supplied N are assimilated and denitrified. Regionally and globally, N deposition associated with urbanization (NOx, peroxyacetyl nitrate, or PAN) and agricultural expansion (NH4 + and possibly organic N) has increased in coastal airsheds. Recent growth and intensification of animal (poultry, swine, cattle) operations in the midwest and mid-Atlantic regions have led to increasing amounts of NH4 + emission and deposition, according to a three decadal analysis of the National Acid Deposition Program network. In western Europe, where livestock operations have dominated agricultural production for the better part of this century, NH4 + is the most abundant form of AD-N. AD-N deposition in the U.S. is still dominated by oxides of N (NOx) emitted from fossil fuel combustion; annual NH4 + deposition is increasing, and in some regions is approaching total NO3 deposition. In receiving estuarine and coastal waters, phytoplankton community structural and functional changes, associated water quality, and trophic and biogeochemical alterations (i.e, algal blooms, hypoxia, food web, and fisheries habitat disruption) are frequent consequences of N-driven eutrophication. Increases in and changing proportions of various new N sources regulate phytoplankton competitive interactions, dominance, and successional patterns. These quantitative and qualitative aspects of AD-N and other atmospheric nutrient sources (e.g., iron) may promote biotic changes now apparent in estuarine and coastal waters, including the proliferation of harmful algal blooms, with cascading impacts on water quality and fisheries.  相似文献   

14.
Hydrologic conditions, especially changes in freshwater input, play an important, and at times dominant, role in determining the structure and function of phytoplankton communities and resultant water quality of estuaries. This is particularly true for microtidal, shallow water, lagoonal estuaries, where water flushing and residence times show large variations in response to changes in freshwater inputs. In coastal North Carolina, there has been an increase in frequency and intensity of extreme climatic (hydrologic) events over the past 15 years, including eight hurricanes, six tropical storms, and several record droughts; these events are forecast to continue in the foreseeable future. Each of the past storms exhibited unique hydrologic and nutrient loading scenarios for two representative and proximate coastal plain lagoonal estuaries, the Neuse and New River estuaries. In this synthesis, we used a 13-year (1998–2011) data set from the Neuse River Estuary, and more recent 4-year (2007–2011) data set from the nearby New River Estuary to examine the effects of these hydrologic events on phytoplankton community biomass and composition. We focused on the ability of specific taxonomic groups to optimize growth under hydrologically variable conditions, including seasonal wet/dry periods, episodic storms, and droughts. Changes in phytoplankton community composition and biomass were strongly modulated by the amounts, duration, and seasonality of freshwater discharge. In both estuaries, phytoplankton total and specific taxonomic group biomass exhibited a distinctive unimodal response to varying flushing rates resulting from both event-scale (i.e., major storms, hurricanes) and more chronic seasonal changes in freshwater input. However, unlike the net negative growth seen at long flushing times for nano-/microphytoplankton, the pigments specific to picophytoplankton (zeaxanthin) still showed positive net growth due to their competitive advantage under nutrient-limited conditions. Along with considerations of seasonality (temperature regimes), these relationships can be used to predict relative changes in phytoplankton community composition in response to hydrologic events and changes therein. Freshwater inputs and droughts, while not manageable in the short term, must be incorporated in water quality management strategies for these and other estuarine and coastal ecosystems faced with increasing frequencies and intensities of tropical cyclones, flooding, and droughts.  相似文献   

15.
Nutrient fluxes and primary production were examined in Lake Illawarra (New South Wales, Australia), a shallow (Zmean=1.9 m) coastal lagoon with a surface area of 35 km2, by intensive measurement of dissolved nutrients and oxygen profiles over a 22-h period. Rates of primary production and nutrient uptake were calculated for the microphytobenthos, seagrass beds, macroalgae, and pelagic phytoplankton. Although gross nutrient release rates to the water column and sediment pore waters were potentially high, primary production by microphytobenthos rapidly sequesters the re-mineralized nutrients so that net releases, averaged over times longer than a day, were low. Production in the water column was closely coupled with the relatively low sediment net nutrient release rates and detrital decomposition in the water column. Dissolved inorganic nitrogen and silica concentrations in the water column are drawn down at the beginning of the day. The system did not appear to be light limited so photosynthesis occurs as fast as the nutrients become available to the phytoplankton and microphytobenthos. We conjecture that microphytobenthos are the dominant primary producers and, as has been shown previously, that the nutrient uptake occurs in phase with the various stages of the diatom growth.  相似文献   

16.
Previous work has documented large fluxes of freshwater and nutrients from submarine groundwater discharge (SGD) into the coastal waters of a few volcanic oceanic islands. However, on the majority of such islands, including Moorea (French Polynesia), SGD has not been studied. In this study, we used radium (Ra) isotopes and salinity to investigate SGD and associated nutrient inputs at five coastal sites and Paopao Bay on the north shore of Moorea. Ra activities were highest in coastal groundwater, intermediate in coastal ocean surface water, and lowest in offshore surface water, indicating that high-Ra groundwater was discharging into the coastal ocean. On average, groundwater nitrate and nitrite (N + N), phosphate, ammonium, and silica concentrations were 12, 21, 29, and 33 times greater, respectively, than those in coastal ocean surface water, suggesting that groundwater discharge could be an important source of nutrients to the coastal ocean. Ra and salinity mass balances indicated that most or all SGD at these sites was saline and likely originated from a deeper, unsampled layer of Ra-enriched recirculated seawater. This high-salinity SGD may be less affected by terrestrial nutrient sources, such as fertilizer, sewage, and animal waste, compared to meteoric groundwater; however, nutrient-salinity trends indicate it may still have much higher concentrations of nitrate and phosphate than coastal receiving waters. Coastal ocean nutrient concentrations were virtually identical to those measured offshore, suggesting that nutrient subsidies from SGD are efficiently utilized.  相似文献   

17.
The Suwannee River (USA) is an amber stained, nutrient rich, blackwater river which flows into relatively clear oceanic waters resulting in the formation of a coastal region with unique physical, chemical, and biological gradients. The intent of this study was to describe the spatial and temporal variability of phytoplankton as it relates to these gradients. Ten stations along a transect ranging from 5 km up river to 31 km offshore, were sampled during four different flow regimes. All four sampling periods included in our study of the Suwannee River and plume region exhibited a similar pattern of phytoplankton abundance; low phytoplankton biomass in the Suwannee River and offshore stations with an area of elevated biomass seaward of the Suwannee River outflow. The results of our analysis of light and nutrient limitation in the region support the hypothesis that this spatial pattern of phytoplankton abundance is strongly influenced by color dependent light limitation in the river and outflow area, combined with nutrient limitation offshore. Our results suggest that both light and nutrient availability control abundance and composition of phyto plankton in this coastal area.  相似文献   

18.
Some 60% of coastal rivers and bays in the U.S. have been moderately to severely degraded by nutrient pollution. Both nitrogen (N) and phosphorus (P) contribute to the problem, although for most coastal systems N additions cause more damage. Globally, human activity has increased the flux of N and P from land to the oceans by 2-fold and 3-fold, respectively. For N, much of this increase has occurred over the past 40 years, with the increase varying by region. Human activity has increased the flux of N in the Mississippi River basin by 4-fold, in the rivers of the northeastern U.S. by 8-fold, and in the rivers draining to the North Sea by more than 10-fold. The sources of nutrients to the coast vary. For some estuaries, sewage treatment plants are the largest single input; for most systems nonpoint sources of nutrients are now of relatively greater importance, both because of improved point source treatment and control (particularly for P) and because of increases in the total magnitude of nonpoint sources (particularly for N) over the past three decades. For P, agricultural activities dominate nonpoint source fluxes. Agriculture is also the major source of N in many systems, including the flux of N down the Mississippi River, which has contributed to the large hypoxic zone in the Gulf of Mexico. For both P and N, agriculture contributes to nonpoint source pollution both through losses at the field scale, as soils erode away and fertilizer is leached to surface and ground waters, and from losses from animal feedlot operations. In the U.S. N from animal wastes that leaks directly to surface waters or is volatilized to the atmosphere as ammonia may be the single largest source of N that moves from agricultural operations into coastal waters. In some regions, including the northeastern U.S., atmospheric deposition of oxidized N from fossil-fuel combustion is the major flux from nonpoint sources. This atmospheric component of the N flux into estuaries has often been underestimated, particularly with respect to deposition onto the terrestrial landscape with subsequent export downstream. Because the relative importance of these nutrient sources varies among regions and sites, so too must appropriate and effective mitigation strategies. The regional nature and variability of nutrient sources require that nutrient management efforts address large geographic areas.  相似文献   

19.
Esturies throughout much of the South Atlantic Bight (southeastern U.S.) have been considered to be relatively pristine, but are now experiencing elevated concentrations of both organic and inorganic nutrients. As is true in many parts of the world, this eutrophication is correlated with coastal population growth. These estuaries have been assumed to be immune from extended hypoxia, in large part because they are well mixed and do not generally exhibit the water column stratification that is traditionally associated with low concentrations of dissolved oxygen. data presented here show long-term (19 yr) decreases in dissolved oxygen in surface waters of the Skidaway estuary, a pattern that is occurring throughout coastal Georgia. More limited data from bottom waters exhibit the same trend. The decreases in dissolved oxygen occurred at the same time as observed increases in inorganic and organic nutrients and in bacteria concentrations, implying an increase in heterotrophic activity. These observations suggest that traditional paradigms long applied to stratified estuaries, wherein the cycle that leads to hypoxia is initiated by the uptake of inorganic nutrients by autotrophs that are then decomposed below the pycnocline, may need revision for well-mixed estuaries. Heterotrophic community metabolism, stimulated by anthropogenic loading of organic and inorganic nutrients, can overwhelm even vigorous vertical mixing and horizontal exchange to gradually cause declining oxygen concentrations and eventually hypoxia.  相似文献   

20.
We conducted monthly bioassay experiments to characterize light and nutrient use efficiency of phytoplankton communities from the chlorophyll-a maximum located in the tidal freshwater region of the James River Estuary. Bioassay results were interpreted in the context of seasonal and inter-annual variation in nutrient delivery and biomass yield using recent and long-term data. Bioassay experiments suggest that nutrient limitation of phytoplankton production has increased over the past 20 years coinciding with reductions in point source inputs and estuarine dissolved nutrient concentrations. Despite increasing nutrient stress, chlorophyll concentrations have not declined due to more efficient nutrient usage. Greater CHLa yield (per unit of N and P) may be due to feedback mechanisms by which the presence of toxin-producing cyanobacteria inhibits grazing by benthic and pelagic filter-feeders. Seasonal patterns in nutrient limitation indicate that phytoplankton in the James respond to variations in inflow concentrations of dissolved nutrients. This association gives rise to an atypical pattern whereby the severity of nutrient limitation diminishes with low discharge in late summer due to minimal dilution of local point sources inputs by riverine discharge. We suggest that this may be a common feature of estuaries located in proximity to urbanized areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号