首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
为了研究海底滑坡对海洋单桩的冲击力大小,首先通过调整高岭土、粉砂的不同含量,得到不同流变特性、不同密度的碎屑流,采用Herschel-Bulkley模型和幂率模型对流体流变性质进行描述;随后利用自制海底滑坡模型槽,模拟碎屑流在不同流速和黏度下对模型桩的冲击;并结合流体力学理论,建立阻力系数与非牛顿流体雷诺数之间关系表达式。试验数据表明:碎屑流黏度和流速是影响海底滑坡冲击力的主要因素,海底滑坡冲击力随着泥浆黏度和流速的增加而增大。同时,考虑碎屑流剪切稀释特性,得到管桩阻力系数随雷诺数变化的拟合公式,为海洋桩基础设计提供参考。  相似文献   

2.
Based upon 2D seismic data, this study confirms the presence of a complex deep-water sedimentary system within the Pliocene-Quaternary strata on the northwestern lower slope of the Northwest Sub-Basin, South China Sea. It consists of submarine canyons, mass-wasting deposits, contourite channels and sheeted drifts. Alongslope aligned erosive features are observed on the eastern upper gentle slopes (<1.2° above 1,500 m), where a V-shaped downslope canyon presents an apparent ENE migration, indicating a related bottom current within the eastward South China Sea Intermediate Water Circulation. Contourite sheeted drifts are also generated on the eastern gentle slopes (~1.5° in average), below 2,100 m water depth though, referring to a wide unfocused bottom current, which might be related to the South China Sea Deep Water Circulation. Mass wasting deposits (predominantly slides and slumps) and submarine canyons developed on steeper slopes (>2°), where weaker alongslope currents are probably dominated by downslope depositional processes on these unstable slopes. The NNW–SSE oriented slope morphology changes from a three-stepped terraced outline (I–II–III) east of the investigated area, into a two-stepped terraced (I–II) outline in the middle, and into a unitary steep slope (II) in the west, which is consistent with the slope steepening towards the west. Such morphological changes may have possibly led to a westward simplification of composite deep-water sedimentary systems, from a depositional complex of contourite depositional systems, mass-wasting deposits and canyons, on the one hand, to only sliding and canyon deposits on the other hand.  相似文献   

3.
M. Drago   《Ocean Engineering》2002,29(14):1769-1780
In the last decade, offshore pipeline engineering extended its action field to very deep waters and continental slopes. This implied the necessity to deal with continental slope instability and mass gravity flows. Mass gravity flows are rare and have random occurrence; therefore, considering also the technical difficulties, the direct measurement of the phenomena is practically impossible. This has encouraged the development of physical and numerical models for investigating the characteristics and intensity of the phenomena (Proc. OTC Conf., Houston, TX (2000); Proc. 19th OMAE Conference, New Orleans, LA (2000)). In order to provide design activities with reliable predictive tools, two numerical models, one for debris flows and the other for turbidity currents, have been developed. The two models are coupled by the bottom boundary conditions of the turbidity current model that depends on the instantaneous velocity of the debris flow model. The two models used together provide a tool for the evaluation of a mass gravity flow event starting as a debris flow and evolving into a turbidity current.  相似文献   

4.
A high-resolution acoustic survey over a fjord side fan delta revealed distinctive bottom features resulting from slope instability processes. Delta-front chutes occurring on slopes of l3° are partially filled with radiating splays of coarse-grained sediment, apparently transported downslope by coarse-grained debris flows that originated on the subaerial slopes above the fan. Arcuate scarp patterns represent shallow successive, rotational slides, with numcrous small displacements of individual blocks and slabs of sediment. Blocky, ridged depositional areas occur at the base of the fan delta, but there is no evidence of long-distance mass movement farther downfjord.  相似文献   

5.
A high-resolution acoustic survey over a fjord side fan delta revealed distinctive bottom features resulting from slope instability processes. Delta-front chutes occurring on slopes of l3° are partially filled with radiating splays of coarse-grained sediment, apparently transported downslope by coarse-grained debris flows that originated on the subaerial slopes above the fan. Arcuate scarp patterns represent shallow successive, rotational slides, with numcrous small displacements of individual blocks and slabs of sediment. Blocky, ridged depositional areas occur at the base of the fan delta, but there is no evidence of long-distance mass movement farther downfjord.  相似文献   

6.
The South China Sea (SCS) shows favorable conditions for gas hydrate accumulation and exploration prospects. Bottom simulating reflectors (BSRs) are widely distributed in the SCS. Using seismic and sequence stratigraphy, the spatial distribution of BSRs has been determined in three sequences deposited since the Late Miocene. The features of gas hydrate accumulations in northern SCS were systematically analyzed by an integrated analysis of gas source conditions, migration pathways, heat flow values, occurrence characteristics, and depositional conditions (including depositional facies, rates of deposition, sand content, and lithological features) as well as some depositional bodies (structural slopes, slump blocks, and sediment waves). This research shows that particular geological controls are important for the presence of BSRs in the SCS, not so much the basic thermodynamic controls such as temperature, pressure and a gas source. Based on this, a typical depositional accumulation model has been established. This model summarizes the distribution of each depositional system in the continental shelf, continental slope, and continental rise, and also shows the typical elements of gas hydrate accumulations. BSRs appear to commonly occur more in slope-break zones, deep-water gravity flows, and contourites. The gas hydrate-bearing sediments in the Shenhu drilling area mostly contain silt or clay, with a silt content of about 70%. In the continental shelf, BSRs are laterally continuous, and the key to gas hydrate formation and accumulation lies in gas transportation and migration conditions. In the continental slope, a majority of the BSRs are associated with zones of steep and rough relief with long-term alternation of uplift and subsidence. Rapid sediment unloading can provide a favorable sedimentary reservoir for gas hydrates. In the continental rise, BSRs occur in the sediments of submarine fans, turbidity currents.  相似文献   

7.
Some massive channelized strata preserved in the rock record are characterized by a lower slump member which evolves upward to a turbidite. This merging is indicative of probable generation of sediment gravity flows from submarine sliding. Conditions essential for deposition of such sequences are short transport distance between point of failure and depositional site, and an environment likely to retain both facies. Fan valleys are a likely setting for welded couplets: flowing sand, initiated by the sliding event, comes to rest at nearly the same time and position as the slump mass deposited near the base of the valley wall and in the axis proper.  相似文献   

8.
The purpose of this study is to evaluate the behavior and mechanism of a debris flow on various slopes through numerical simulation. The numerical simulation consisted of using equations related to mass conservation and momentum conservation in order to consider erosion and deposition, and the Finite Difference Method was applied. As the inflow water discharge in the upstream of the channel increases, the curve of the water discharge exhibits instability and, as time passes, the fluctuation of the high water discharge continues. In regions where the mountain areas and the ocean are connected, it is deduced that the high level of sediment concentration can greatly affect the environment surrounding the ocean. The numerical model of this study was applied in Kangwon Province of South Korea. The results show that when the debris flow reaches downstream, the flow discharge and water flow depth increase. Erosion occurs more than deposition and much of the sediment runs off downstream. The result of the simulation performed at point of sediment discharge runoff is 114,216 m3. This study will provide useful information in predicting disasters caused by debris flow and in planning for various countermeasures to prevent debris-flow-related disasters.  相似文献   

9.
A sediment slide complex has been mapped on the West African continental margin north of Dakar, Senegal. Four major slides covering approximately 44,300 km2 were delineated by seismic reflection profiles, 3.5 and 12 kHz echograms and piston cores. Although the slide areas have been altered by later erosion and deposition by turbidity flows, the major components of the slides — slide scar, zones of hummocky and blocky slide material and zones of debris flow — are recognizable. Cores containing flow folds with horizontal axial surfaces substantiate the echogram interpretations of debris flow. Morphology and depositional areas of the slides indicate that several major slide movements have occurred in each of the various slide areas. The triggering mechanism for these slides is perhaps earthquakes associated with the Cape Verde Islands, Cape Verde Plateau, and adjacent fracture zones.  相似文献   

10.
Offshore pipelines are critical infrastructures and any possible damage may have devastating financial and environmental consequences. Earthquake-related geohazards (such as strong ground motion, active seismic faults, submarine landslides and debris flows) consist crucial threats that an offshore pipeline has to overcome. The main aim of the current study is to examine analytically a seabed-laid offshore pipeline subjected to a lateral kinematic distress due to a submarine landslide or a debris flow. Extra emphasis is given on the impact of pipe-soil interaction on the pipe response, by the realistic representation of the soil resistance via a tri-linear model. Firstly, the proposed analytical model is validated with a numerical model utilizing the finite-element method. Subsequently, various combinations of soil parameters and loading conditions that affect the examined problem are investigated with realistic input data taken from the offshore section of the high-pressure natural-gas pipeline TAP (Trans Adriatic Pipeline) in the Adriatic Sea. Finally, useful conclusions are drawn regarding the applicability and the efficiency of the proposed approach.  相似文献   

11.
Gravity flow deposits form a significant component of the stratigraphic record in ancient and modern deep-water basins worldwide. Analyses of high-resolution 3D seismic reflection data in a predominantly slope setting, the southern slope of Qiongdongnan Basin, South China Sea, reveal the extensive presence of gravity flow depositional elements in the Late Pliocene−Quaternary strata. Three key elements were observed: (1) mass transport deposits (MTDs) including slumps and debris flows, (2) turbidity current deposits including distributary channel complexes, leveed channel complexes and avulsion channel complexes, and (3) deep-water drapes (highstand condensed sections). Each depositional element displays a unique seismic expression and internal structures in seismic profiles and attribute maps. Based on seismic characteristics, the studied succession is subdivided into six units in which three depositional cycles are identified. Each cycle exhibits MTDs (slump or debris) at the base, overlain by turbidities or a deep-water drape. The genesis of these cycles is mainly controlled by frequent sea-level fluctuations and high sedimentation rates in the Late Pliocene–Quaternary. Moreover, tectonics, differential subsidence, and paleo-seafloor morphology may have also contributed to their formation processes. The present study is aimed to a better understanding of deep-water depositional systems, and to a successful hydrocarbon exploration and engineering-risk assessment.  相似文献   

12.
波致海底缓倾角无限坡滑动稳定性计算分析探讨   总被引:1,自引:1,他引:0  
波浪作用下海底无限坡滑动稳定性计算的极限平衡法中,忽略了坡体水平向应力状态的影响,为此,针对波浪作用下海底缓倾角无限边坡的特点,提出直接基于滑动面处土体应力状态的滑动稳定性计算方法(简称应力状态法),并分析了其适用范围。对具体算例的分析表明,应力状态法计算得出的安全系数大于极限平衡法的安全系数,且随着滑动面深度的增加、土体泊松比以及边坡坡角的增大,两种计算方法得出的安全系数的差异会逐渐增大;对于波浪作用下的海底缓倾角无限边坡,在失稳时极可能沿具有一定厚度的滑动带而不是单一的滑动面而滑动,且波致最大剪应力所在的深度,常常不是斜坡体最易失稳滑移的深度。  相似文献   

13.
The Plio-Pleistocene stratigraphic record of the Peri-Adriatic basin (eastern central Italy) is well exposed along the uplifted western margin of the basin and consists of a series of coarse-grained slope canyon fills encased in a thick succession of hemipelagic mudstones. This study deals with the detailed sedimentology, stratal architecture, and sequence-stratigraphic interpretation of two of these submarine canyon-fills (namely CMC1 and CMC2) exposed at Colle Montarone. These strata contain widespread evidence of gravity-driven sedimentation processes, with high- and low-density turbidity currents, slumps and cohesive debris flows being responsible for most of the sediment transport and deposition. Beds are organised into four recurrent lithofacies, each corresponding to a specific deep-water depositional element: (i) clast-supported conglomerates (channel complexes); (ii) thin-bedded sandstones and mudstones (levee-overbank); (iii) very thinly-bedded mudstones (tributary channels); (iv) pebbly mudstones and chaotically bedded mudstones (mass-transport complexes).  相似文献   

14.
We present a series of experiments that investigate the morphology of sediment deposits within sinuous submarine channels of different sinuosity (S = 1.14–1.94) and planform (symmetric and asymmetric bends), generated by bedload-dominated turbidity current flows. Flows were generated by releasing dense saline gravity currents over a mobile sediment bed through pre-formed sinuous channels. Flows had a basal-outwards helicity and produced a characteristic bed morphology with point bars downstream of the bend apex at the inside of bends and scour at the outside of bends. An increasing loss of fluid through overspill with increasing channel sinuosity results in a decreasing magnitude of cross-stream velocity downstream, a decreasing amount of erosion and deposition, and decreasing transverse slopes of in-channel deposits. Basal fluid from within the channel is transported over the outer-levee at bends, implying that proximal outer-bend levee deposits will have similar sediment composition to that within the channel. More deposition of coarse material might be expected on levees and in overbank regions close to higher amplitude bends. No simple relationship was observed between superelevation and sinuosity, probably due to changes in the relative influences of downstream velocity and bend curvature on centrifugal force and inertial run-up. In the channel with the tightest initial bend curvature, overspill fluid from Bend 1 re-entered the channel at Bend 2, dominating flow characteristics and disrupting the basal-outwards helicity observed in the other channels. Higher sinuosity channels and those with shallow regional and levee slopes are thus more likely to have a higher proportion of anomalous flow and sedimentation patterns due to the influence of overspill fluid re-entry into the channel. The results of this investigation are combined with published observations to enable the synthesis of a new model for sedimentation in sinuous submarine channels.  相似文献   

15.
Multibeam bathymetry, high (sleeve airguns) and very high resolution (parametric system-TOPAS-) seismic records were used to define the morphosedimentary features and investigate the depositional architecture of the Cantabrian continental margin. The outer shelf (down to 180–245 m water depth) displays an intensively eroded seafloor surface that truncates consolidated ancient folded and fractured deposits. Recent deposits are only locally present as lowstand shelf-margin deposits and a transparent drape with bedforms. The continental slope is affected by sedimentary processes that have combined to create the morphosedimentary features seen today. The upper (down to 2000 m water depth) and lower (down to 3700–4600 m water depth) slopes are mostly subject to different types of slope failures, such as slides, mass-transport deposits (a mix of slumping and mass-flows), and turbidity currents. The upper slope is also subject to the action of bottom currents (the Mediterranean Water — MW) that interact with the Le Danois Bank favouring the reworking of the sediment and the sculpting of a contourite system. The continental rise is a bypass region of debris flows and turbidity currents where a complex channel-lobe transition zone (CLTZ) of the Cap Ferret Fan develops.The recent architecture depositional model is complex and results from the remaining structural template and the great variability of interconnected sedimentary systems and processes. This margin can be considered as starved due to the great sediment evacuation over a relatively steep entire depositional profile. Sediment is eroded mostly from the Cantabrian and also the Pyrenees mountains (source) and transported by small stream/river mountains to the sea. It bypasses the continental shelf and when sediment arrives at the slope it is transported through a major submarine drainage system (large submarine valleys and mass-movement processes) down to the continental rise and adjacent Biscay Abyssal Plain (sink). Factors controlling this architecture are tectonism and sediment source/dispersal, which are closely interrelated, whereas sea-level changes and oceanography have played a minor role (on a long-term scale).  相似文献   

16.
基于最新的高分辨率多波束全覆盖测深数据、单道地震和多道地震剖面数据,对南海北部陆坡一统峡谷群9条峡谷的地形地貌及沉积特征进行了分析:峡谷群自陆坡向深海盆方向呈聚敛型,横断面主要呈“V”型,谷壁对称发育,坡度较陡; 研究区海底地层受多条断裂控制,呈典型阶梯状发育,海底断陷、重力滑塌面和小型滑坡体等海底不稳定地质灾害高度发育,说明峡谷群海底环境处于极不稳定状态。在研究区海底峡谷群地貌演化过程中,西沙海槽区域沉降等新生代构造运动控制着峡谷群地貌格局的形成; 来自北部陆架的充足沉积碎屑物质的输入往往伴随着高密度浊流、海底滑坡、坍塌等海底灾害的发生,控制着峡谷群的进一步发育; 相对海平面变化直接改变了研究区的沉积环境,为陆源碎屑物质的搬运提供了更加直接的通道,这也是诱发陆坡海底失稳、塑造峡谷群地貌特征的重要因素之一。  相似文献   

17.
We present field evidence from the Middle Eocene deep-marine Ainsa Basin, Spanish Pyrenees, to show channel-like features likely created by erosive subaqueous debris flows. Evidence from this basin suggests that the most erosive subaqueous debris-flows may create megascours removing up to ∼35 m thickness of sandy submarine-fan deposits from base-of-slope and lower-slope settings. This study suggests that individual debris flows may have been more erosive than turbidity currents, an observation that is opposed to many previous studies from the Ainsa Basin and other ancient deep-water clastic systems. In the Ainsa Basin, many of the debris flows deposited pebbly mudstones immediately above the basal erosion surfaces into which gouging flow-parallel grooves and pebble scours left isolated pebbles embedded in the immediately underlying sandstones. In one particularly well-exposed case, the sandstones immediately below the eroding debris flow were incorporated into it and preserved as sheared, disaggregated, brecciated, and partially liquefied sandstone beds within the pebbly mudstone. Our study suggests that erosion by large-volume debris flows in base-of-slope settings can be at least as important, if not more so, than turbidity currents in producing submarine megascours (probably chutes that, in cross section, superficially resemble submarine channels). This has important implications for understanding the erosivity of debris flows versus turbidity currents in modern and ancient environments, and it has significant implications for hydrocarbon reservoir continuity and heterogeneity, including the origin and recognition of mudstone-filled chutes or channels.  相似文献   

18.
东海陆架盆地丽水凹陷古新统明月峰组发育典型的海底扇沉积,且已获得工业油气发现。该文利用现有地震地质资料,运用层序地层学理论方法,总结出丽水凹陷的海底扇沉积模式。海底扇沉积相标志包括:岩心主要表现为滑塌揉皱、包卷层理、泄水构造、块状砂岩、黑色泥岩撕裂屑、漂砾、砂注等构造;C-M图主要表现为重力流沉积特征;结构成熟度和成分成熟度中等—差。扇体地震反射结构主要为顺物源方向双向下超,垂直物源方向丘状反射特征,平面地震属性显示为典型扇形。丽水凹陷明月峰组由低位体系域、水进体系域和高位体系域组成,其中海底扇发育在低位体系域,在扇体近端发育多个下切谷,下切谷下切规模较大;坡折主要划分为断裂坡折和沉积坡折,其中断坡坡度较大,坡度7.2°左右,沉积坡折坡度较小,一般在5°左右,与下切谷相对应在谷口形成一系列的扇体,沟–坡–扇耦合关系良好。扇体规模较大,单个扇体面积最大124 km2,整个低位域由6个扇体组成,展示了丽水凹陷良好的岩性圈闭勘探前景。本次研究根据扇体的成因特点建立明月峰组低位域时期沟–坡–扇沉积模式,对指导勘探寻找出岩性圈闭和开创丽水凹陷油气勘探新局面具有一定意义。  相似文献   

19.
This paper presents a process-response model for submarine channel-lobe systems based on the integration of sedimentology, architectural element analysis, paleogeographic reconstructions, and stratigraphy to characterize the migration patterns of the channel-lobe transition zone (CLTZ). In the Permian Brushy Canyon basinal cycle, deposition is the product of the basinward then landward migration of the CLTZ across the depositional profile (zonal or facies tract shift). This is expressed in outcrop by the vertical association of sandstone lobes overlain by channel fills capped by sandstone lobes. Linking these sedimentary bodies to their facies associations provides the framework for relating variable degrees of flow confinement to small-scale composite erosional depressions (less than 150 m wide by 5 m deep). This model identifies (1) coeval geomorphological expressions of the depositional profile and (2) the stratigraphic evolution of depositional cycles at every profile position. This permits relating facies associations to lateral and longitudinal changes in flow conditions at the time of deposition. Stacking patterns, geometry of sedimentary bodies and facies associations reflect fluctuations in flow volume and efficiency. Architectural element analysis differentiates evolutionary phases of channel-lobe systems. The power of the model lies in its ability to compare architecture and evolution across several scales of sedimentary bodies. Recognizing the vertical and lateral association of sedimentary bodies, arranged in a hierarchical order, permits understanding how the geomorphological building blocks of this depositional system change through time. Channel-fill, channel-flank and lobe strata represent the building blocks that form composite features documented at four scales. These range from tens of meters to several kilometers wide, by meters to hundreds of meters thick. Areal distribution of sedimentary bodies at each scale responds to specific controls, i.e. flow volume and topography. For example, channels extending basinward of a canyon mouth form local depositional topography that produces lateral migration of channel-lobe systems through time. This strongly controls the frequency of channel avulsion and lateral deposition.  相似文献   

20.
Most submarine canyons are erosive conduits cut deeply into the world’s continental shelves through which sediment is transported from areas of high coastal sediment supply onto large submarine fans. However, many submarine canyons in areas of low sediment supply do not have associated submarine fans and show significantly different morphologies and depositional processes from those of ‘classic’ canyons. Using three-dimensional seismic reflection and core data, this study contrasts these two types of submarine canyons and proposes a bipartite classification scheme.The continental margin of Equatorial Guinea, West Africa during the late Cretaceous was dominated by a classic, erosional, sand-rich, submarine canyon system. This system was abandoned during the Paleogene, but the relict topography was re-activated in the Miocene during tectonic uplift. A subsequent decrease in sediment supply resulted in a drastic transformation in canyon morphology and activity, initiating the ‘Benito’ canyon system. This non-typical canyon system is aggradational rather than erosional, does not indent the shelf edge and has no downslope sediment apron. Smooth, draping seismic reflections indicate that hemipelagic deposition is the chief depositional process aggrading the canyons. Intra-canyon lateral accretion deposits indicate that canyon concavity is maintained by thick (>150 m), dilute, turbidity currents. There is little evidence for erosion, mass-wasting, or sand-rich deposition in the Benito canyon system. When a canyon loses flow access, usually due to piracy, it is abandoned and eventually filled. During canyon abandonment, fluid escape causes the successive formation of ‘cross-canyon ridges’ and pockmark trains along buried canyon axes.Based on comparison of canyons in the study area, we recognize two main types of submarine canyons: ‘Type I’ canyons indent the shelf edge and are linked to areas of high coarse-grained sediment supply, generating erosive canyon morphologies, sand-rich fill, and large downslope submarine fans/aprons. ‘Type II’ canyons do not indent the shelf edge and exhibit smooth, highly aggradational morphologies, mud-rich fill, and a lack of downslope fans/aprons. Type I canyons are dominated by erosive, sandy turbidity currents and mass-wasting, whereas hemipelagic deposition and dilute, sluggish turbidity currents are the main depositional processes sculpting Type II canyons. This morphology-based classification scheme can be used to help predict depositional processes, grain size distributions, and petroleum prospectivity of any submarine canyon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号