首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Potential changes in future climate in the Texas Plains region were investigated in the context of agriculture by analyzing three climate model projections under the A2 climate scenario (medium–high emission scenario). Spatially downscaled historic (1971–2000) and future (2041–2070) climate datasets (rainfall and temperature) were downloaded from the North American Regional Climate Change Assessment Program (NARCCAP). Climate variables predicted by three regional climate models (RCMs) namely the Regional Climate Model Version3–Geophysical Fluid Dynamics Laboratory (RCM3-GFDL), Regional Climate Model Version3–Third Generation Coupled Global Climate Model (RCM3-CGCM3), and Canadian Regional Climate Model–Community Climate System Model (CRCM-CCSM) were evaluated in this study. Gaussian and Gamma distribution mapping techniques were employed to remove the bias in temperature and rainfall data, respectively. Both the minimum and maximum temperatures across the study region in the future showed an upward trend, with the temperatures increasing in the range of 1.9 to 2.9 °C and 2.0 to 3.2 °C, respectively. All three climate models predicted a decline in rainfall within a range of 30 to 127 mm in majority of counties across the study region. In addition, they predicted an increase in the intensity of extreme rainfall events in the future. The frost-free season as predicted by the three models showed an increase by 2.6–3.4 weeks across the region, and the number of frost days declined by 17.9 to 30 %. Overall, these projections indicate considerable changes to the climate in the Texas Plains region in the future, and these changes could potentially impact agriculture in this region.

  相似文献   

2.
We design, apply, and validate a methodology for correcting climate model output to produce internally consistent fields that have the same statistical intensity distribution as the observations. We refer to this as a statistical bias correction. Validation of the methodology is carried out using daily precipitation fields, defined over Europe, from the ENSEMBLES climate model dataset. The bias correction is calculated using data from 1961 to 1970, without distinguishing between seasons, and applied to seasonal data from 1991 to 2000. This choice of time periods is made to maximize the lag between calibration and validation within the ERA40 reanalysis period. Results show that the method performs unexpectedly well. Not only are the mean and other moments of the intensity distribution improved, as expected, but so are a drought and a heavy precipitation index, which depend on the autocorrelation spectra. Given that the corrections were derived without seasonal distinction and are based solely on intensity distributions, a statistical quantity oblivious of temporal correlations, it is encouraging to find that the improvements are present even when seasons and temporal statistics are considered. This encourages the application of this method to multi-decadal climate projections.  相似文献   

3.
Miao Yu  Guiling Wang 《Climate Dynamics》2014,42(9-10):2521-2538
Biases existing in the lateral boundary conditions (LBCs) influence climate simulations in regional climate models (RCMs). Correcting the biases in global climate model (GCM)-produced LBCs before running RCMs was proposed in previous studies as a possible way to reduce the GCM-related model dependence of future climate projections using RCMs. In this study the ICTP Regional Climate Model Version 4 (RegCM4) is used to investigate the impact of LBC bias correction on projected future changes of regional climate in West Africa. To accomplish this, two types of present versus future simulations are conducted using RegCM4: a control type where both the present and future LBCs are derived directly from the GCM output (as is done in most regional climate downscaling studies); an experiment type where the present-day LBCs are from reanalysis data and future LBCs are derived by combining the reanalysis data and the GCM-projected LBC changes. For each type of simulations, three different sets of LBCs are experimented on: 6-hourly synoptic forcing directly from the reanalysis or GCM, 6-hourly data interpolated from monthly climatology (without diurnal cycle), and 6-hourly data interpolated from the month-specific climatology of diurnal cycles. It is found that the simulations using different LBCs produce similar present-day summer rainfall patterns, but the predicted future changes differ significantly depending on how the LBC bias correction is treated. Specifically, both the bias correction applied at the synoptic scale and the bias correction applied to the monthly interpolated LBCs without diurnal cycle produce a spurious drying signal caused by physical inconsistency in the corrected future LBCs. Interpolated monthly LBCs with diurnal cycle alleviate the problem to a large extent. These results suggest that using bias-corrected LBCs to drive regional climate models may not guarantee reliable future projections although reasonable present climate can be simulated. Physical inconsistencies may be contained in the bias-corrected LBCs, increasing the uncertainties of RCM-produced future projections.  相似文献   

4.
Realizing the error characteristics of regional climate models (RCMs) and the consequent limitations in their direct utilization in climate change impact research, this study analyzes a quantile-based empirical-statistical error correction method (quantile mapping, QM) for RCMs in the context of climate change. In particular the success of QM in mitigating systematic RCM errors, its ability to generate “new extremes” (values outside the calibration range), and its impact on the climate change signal (CCS) are investigated. In a cross-validation framework based on a RCM control simulation over Europe, QM reduces the bias of daily mean, minimum, and maximum temperature, precipitation amount, and derived indices of extremes by about one order of magnitude and strongly improves the shapes of the related frequency distributions. In addition, a simple extrapolation of the error correction function enables QM to reproduce “new extremes” without deterioration and mostly with improvement of the original RCM quality. QM only moderately modifies the CCS of the corrected parameters. The changes are related to trends in the scenarios and magnitude-dependent error characteristics. Additionally, QM has a large impact on CCSs of non-linearly derived indices of extremes, such as threshold indices.  相似文献   

5.
High-resolution regional climate change simulations have proven to offer an added value compared to available global climate model simulations. However, over many regions of the globe, long-term high-resolution climate change projections are rather sparse. We present a transient high-resolution climate change projection with the regional climate model with the regional climate model REMO over the southern African region, following the SRES A1B emission scenario. The simulation was conducted at 18?km grid spacing for the period from 1960 to 2100, making it to the longest available climate change projection at such a high resolution for the region. In the first part of the study, we focus on the impact of the model setup on the simulated rainfall over the southern African region. In the standard setup, we used the output of the global climate model ECHAM5/MPIOM directly to force REMO. This setup led to a very strong wet bias over the region. Changing it to the double-nesting setup significantly reduced this bias, but a substantial wet bias still persists. The remaining bias could partly be attributed to a warm bias in the SST forcing over the southern Atlantic Ocean. Thus, we applied an SST correction based on the anomaly approach to the data, which led to a further improvement of the rainfall simulation. As the SST bias in the southern Atlantic is a common feature of all global climate models assessed by the IPCC, we recommend the chosen model setup, including the SST correction, as general procedure for dynamical downscaling studies over the southern African region. In the second part, we present the projected spatial and temporal changes of temperature and precipitation, including several rainfall characteristics, over the southern African region. Herby we compare the projections of the high-resolution REMO simulation to those of the forcing regional and global models. We generally find that for temperature the magnitude of the projected changes of the regional model only slightly differs from the GCM projection; however, the spatial patterns are much better resolved in the RCM projections. For precipitation, REMO shows a more intense drying toward the end of the twenty-first century than it is simulated by the global model. This can have a major influence when investigating the impacts of future climate change on a regional or even local scale. In combination with the improved spatial patterns, the application of high-resolution climate change information could therefore improve the results of such applications.  相似文献   

6.
Regional climate models (RCMs) are now commonly used to downscale climate change projections provided by global coupled models to resolutions that can be utilised at national and finer scales. Although this extra tier of complexity adds significant value, it inevitably contributes a further source of uncertainty, due to the regional modelling uncertainties involved. Here, an initial attempt is made to estimate the uncertainty that arises from typical variations in RCM formulation, focussing on changes in UK surface air temperature (SAT) and precipitation projected for the late twenty-first century. Data are provided by a relatively large suite of RCM and global model integrations with widely varying formulations. It is found that uncertainty in the formulation of the RCM has a relatively small, but non-negligible, impact on the range of possible outcomes of future UK seasonal mean climate. This uncertainty is largest in the summer season. It is also similar in magnitude to that of large-scale internal variations of the coupled climate system, and for SAT, it is less than the uncertainty due to the emissions scenario, whereas for precipitation it is probably larger. The largest source of uncertainty, for both variables and in all seasons, is the formulation of the global coupled model. The scale-dependency of uncertainty due to RCM formulation is also explored by considering its impact on projections of the difference in climate change between the north and south of the UK. Finally, the implications for the reliability of UK seasonal mean climate change projections are discussed.  相似文献   

7.
Because of model biases, projections of future climate need to combine model simulations of recent and future climate with information on observed climate. Here, 10 methods for projecting the distribution of daily mean temperatures are compared, using six regional climate change simulations for Europe. Cross validation between the models is used to assess the potential performance of the methods in projecting future climate. Delta change and bias correction type methods show similar cross-validation performance, with methods based on the quantile mapping approach doing best in both groups due to their apparent ability to reduce the errors in the projected time mean temperature change. However, as no single method performs best under all circumstances, the optimal approach might be to use several well-behaving methods in parallel. When applying the various methods to real-world temperature projection for the late 21st century, the largest intermethod differences are found in the tails of the temperature distribution. Although the intermethod variation of the projections is generally smaller than their intermodel variation, it is not negligible. Therefore, it should be preferably included in uncertainty analysis of temperature projections, particularly in applications where the extremes of the distribution are important.  相似文献   

8.
Methods are proposed to estimate the monthly relative humidity and wet bulb temperature based on observations from a dynamical downscaling coupled general circulation model with a regional climate model (RCM) for a quantitative assessment of climate change impacts. The water vapor pressure estimation model developed was a regression model with a monthly saturated water vapor pressure that used minimum air temperature as a variable. The monthly minimum air temperature correction model for RCM bias was developed by stepwise multiple regression analysis using the difference in monthly minimum air temperatures between observations and RCM output as a dependent variable and geographic factors as independent variables. The wet bulb temperature was estimated using the estimated water vapor pressure, air temperature, and atmospheric pressure at ground level both corrected for RCM bias. Root mean square errors of the data decreased considerably in August.  相似文献   

9.
General circulation models (GCMs) have demonstrated success in simulating global climate, and they are critical tools for producing regional climate projections consistent with global changes in radiative forcing. GCM output is currently being used in a variety of ways for regional impacts projection. However, more work is required to assess model bias and evaluate whether assumptions about the independence of model projections and error are valid. This is particularly important where models do not display offsetting errors. Comparing simulated 300-hPa zonal winds and precipitation for the late 20th century with reanalysis and gridded precipitation data shows statistically significant and physically plausible associations between positive precipitation biases across all models and a marked increase in zonal wind speed around 30°N, as well as distortions in rain shadow patterns. Over the western United States, GCMs project drier conditions to the south and increasing precipitation to the north. There is a high degree of agreement between models, and many studies have made strong statements about implications for water resources and about ecosystem change on that basis. However, since one of the mechanisms driving changes in winter precipitation patterns appears to be associated with a source of error in simulating mean precipitation in the present, it suggests that greater caution should be used in interpreting impacts related to precipitation projections in this region and that standard assumptions underlying bias correction methods should be scrutinized.  相似文献   

10.
The first part of this paper demonstrated the existence of bias in GCM-derived precipitation series, downscaled using either a statistical technique (here the Statistical Downscaling Model) or dynamical method (here high resolution Regional Climate Model HadRM3) propagating to river flow estimated by a lumped hydrological model. This paper uses the same models and methods for a future time horizon (2080s) and analyses how significant these projected changes are compared to baseline natural variability in four British catchments. The UKCIP02 scenarios, which are widely used in the UK for climate change impact, are also considered. Results show that GCMs are the largest source of uncertainty in future flows. Uncertainties from downscaling techniques and emission scenarios are of similar magnitude, and generally smaller than GCM uncertainty. For catchments where hydrological modelling uncertainty is smaller than GCM variability for baseline flow, this uncertainty can be ignored for future projections, but might be significant otherwise. Predicted changes are not always significant compared to baseline variability, less than 50% of projections suggesting a significant change in monthly flow. Insignificant changes could occur due to climate variability alone and thus cannot be attributed to climate change, but are often ignored in climate change studies and could lead to misleading conclusions. Existing systematic bias in reproducing current climate does impact future projections and must, therefore, be considered when interpreting results. Changes in river flow variability, important for water management planning, can be easily assessed from simple resampling techniques applied to both baseline and future time horizons. Assessing future climate and its potential implication for river flows is a key challenge facing water resource planners. This two-part paper demonstrates that uncertainty due to hydrological and climate modelling must and can be accounted for to provide sound, scientifically-based advice to decision makers.  相似文献   

11.
Although representation of hydrology is included in all regional climate models (RCMs), the utility of hydrological results from RCMs varies considerably from model to model. Studies to evaluate and compare the hydrological components of a suite of RCMs and their use in assessing hydrological impacts from future climate change were carried out over Europe. This included using different methods to transfer RCM runoff directly to river discharge and coupling different RCMs to offline hydrological models using different methods to transfer the climate change signal between models. The work focused on drainage areas to the Baltic Basin, the Bothnian Bay Basin and the Rhine Basin. A total of 20 anthropogenic climate change scenario simulations from 11 different RCMs were used. One conclusion is that choice of GCM (global climate model) has a larger impact on projected hydrological change than either selection of emissions scenario or RCM used for downscaling.  相似文献   

12.
In an effort to understand the sources of uncertainty and the physical consistency of climate models from the North American Regional Climate Change Assessment Program (NARCCAP), an ensemble of general circulation models (GCMs) and regional climate models (RCMs) was used to explore climatological water balances for the Churchill River basin in Labrador, Canada. This study quantifies mean atmospheric and terrestrial water balance residuals, as well as their annual cycles. Mean annual atmospheric water balances had consistently higher residuals than the terrestrial water balances due, in part, to the influences of sampling of instantaneous variables and the interpolation of atmospheric data to published pressure levels. Atmospheric and terrestrial water balance residuals for each ensemble member were found to be consistent between base and future periods, implying that they are systemic and not climate dependent. With regard to the annual cycle, no pattern was found across time periods or ensemble members to indicate whether the monthly terrestrial or atmospheric root mean square residual was highest. Because of the interdependence of hydrological cycle components, the complexity of climate models and the variety of methods and processes used by different ensemble members, it was impossible to isolate all causes of the water balance residuals. That being said, the residuals created by interpolating a model's native vertical resolution onto NARCCAP's published pressure levels and the subsequent vertical interpolation were quantified and several other sources were explored. In general, residuals were found to be predominantly functions of the RCM choice (as opposed to the GCM choice) and their respective modelling processes, parameterization schemes, and post-processing.  相似文献   

13.
The uncertainties and sources of variation in projected impacts of climate change on agriculture and terrestrial ecosystems depend not only on the emission scenarios and climate models used for projecting future climates, but also on the impact models used, and the local soil and climatic conditions of the managed or unmanaged ecosystems under study. We addressed these uncertainties by applying different impact models at site, regional and continental scales, and by separating the variation in simulated relative changes in ecosystem performance into the different sources of uncertainty and variation using analyses of variance. The crop and ecosystem models used output from a range of global and regional climate models (GCMs and RCMs) projecting climate change over Europe between 1961–1990 and 2071–2100 under the IPCC SRES scenarios. The projected impacts on productivity of crops and ecosystems included the direct effects of increased CO2 concentration on photosynthesis. The variation in simulated results attributed to differences between the climate models were, in all cases, smaller than the variation attributed to either emission scenarios or local conditions. The methods used for applying the climate model outputs played a larger role than the choice of the GCM or RCM. The thermal suitability for grain maize cultivation in Europe was estimated to expand by 30–50% across all SRES emissions scenarios. Strong increases in net primary productivity (NPP) (35–54%) were projected in northern European ecosystems as a result of a longer growing season and higher CO2 concentrations. Changing water balance dominated the projected responses of southern European ecosystems, with NPP declining or increasing only slightly relative to present-day conditions. Both site and continental scale models showed large increases in yield of rain-fed winter wheat for northern Europe, with smaller increases or even decreases in southern Europe. Site-based, regional and continental scale models showed large spatial variations in the response of nitrate leaching from winter wheat cultivation to projected climate change due to strong interactions with soils and climate. The variation in simulated impacts was smaller between scenarios based on RCMs nested within the same GCM than between scenarios based on different GCMs or between emission scenarios.  相似文献   

14.
A new method is proposed to compile 1 km grid data of monthly mean air temperature by dynamically downscaling general circulation model (GCM) data with a regional climate model (RCM). The downscaling method used is a technique referred to as the pseudoglobal warming method to reduce GCM bias. For the grid data, RCM data were corrected with data from an existing meteorological network. The correction model for the RCM bias was developed by stepwise multiple regression analysis using the difference in the monthly mean air temperatures between the observation and RCM output as a dependent variable and the geographical factors as independent variables. Our method corrected the RCM bias from 1.69°C to 0.58°C for the month of August in the 1990s (1990–1999).  相似文献   

15.
采用分位数映射(Quantile Mapping, QM)和delta分位数映射(Quantile Delta Mapping, QDM)两种误差订正方法对区域气候模式RegCM4在中国区域内模拟的逐日气温和降水数据进行订正。模式数据是5种不同全球气候模式驱动下的区域模式气候变化模拟结果。计算订正前后的极端气候指数进行对比分析,包括日最高气温极大值(TXx)、日最低气温极小值(TNn)、连续干旱日数(CDD)和最大日降水量(RX1day)。结果表明,5组模拟结果和其集合平均(ensR)都显示气温指数的模拟效果高于降水指数,其中对TXx模拟最好,对CDD的模拟最差;经过订正后,针对不同模式的两种订正结果都能够有效地减小模式与观测的偏差并提高了空间相关系数,且两种方法的订正效果无明显差别。对RCP4.5情景下未来变化的分析中,QM在一定程度上改变了模式模拟的未来变化幅度和空间分布特征,QDM则能够有效地保留所有极端指数的气候变化信号。从全国平均来看,除CDD外,所有指数未来都呈现增加趋势,且QDM订正结果与订正前模式模拟的变化趋势更为接近。建议在气候变化模拟的误差订正中采用QDM方法。  相似文献   

16.
All global circulation models (GCMs) suffer from some form of bias, which when used as boundary conditions for regional climate models may impact the simulations, perhaps severely. Here we present a bias correction method that corrects the mean error in the GCM, but retains the six-hourly weather, longer-period climate-variability and climate change from the GCM. We utilize six different bias correction experiments; each correcting different bias components. The impact of the full bias correction and the individual components are examined in relation to tropical cyclones, precipitation and temperature. We show that correcting of all boundary data provides the greatest improvement.  相似文献   

17.
This study aims at sharpening the existing knowledge of expected seasonal mean climate change and its uncertainty over Europe for the two key climate variables air temperature and precipitation amount until the mid-twentyfirst century. For this purpose, we assess and compensate the global climate model (GCM) sampling bias of the ENSEMBLES regional climate model (RCM) projections by combining them with the full set of the CMIP3 GCM ensemble. We first apply a cross-validation in order to assess the skill of different statistical data reconstruction methods in reproducing ensemble mean and standard deviation. We then select the most appropriate reconstruction method in order to fill the missing values of the ENSEMBLES simulation matrix and further extend the matrix by all available CMIP3 GCM simulations forced by the A1B emission scenario. Cross-validation identifies a randomized scaling approach as superior in reconstructing the ensemble spread. Errors in ensemble mean and standard deviation are mostly less than 0.1 K and 1.0 % for air temperature and precipitation amount, respectively. Reconstruction of the missing values reveals that expected seasonal mean climate change of the ENSEMBLES RCM projections is not significantly biased and that the associated uncertainty is not underestimated due to sampling of only a few driving GCMs. In contrast, the spread of the extended simulation matrix is partly significantly lower, sharpening our knowledge about future climate change over Europe by reducing uncertainty in some regions. Furthermore, this study gives substantial weight to recent climate change impact studies based on the ENSEMBLES projections, since it confirms the robustness of the climate forcing of these studies concerning GCM sampling.  相似文献   

18.
In order to perform hydrological studies on the PRUDENCE regional climate model (RCM) simulations, a special focus was put on the discharge from large river catchments located in northern and central Europe. The discharge was simulated with a simplified land surface (SL) scheme and the Hydrological Discharge (HD) model. The daily fields of precipitation, 2 m temperature and evapotranspiration from the RCM simulations were used as forcing. Therefore the total catchment water balances are constrained by the hydrological cycle of the different RCMs. The validation of the simulated hydrological cycle from the control simulations shows that the multi-model ensemble mean is closer to the observations than each of the models, especially if different catchments and hydrological variables are considered. Therefore, the multi-model ensemble mean can be used to largely reduce the uncertainty that is introduced by a single RCM. This also provides more confidence in the future projections for the multi-model ensemble means. The scenario simulations predict a gradient in the climate change signal over Northern and Central Europe. Common features are the overall warming and the general increase of evapotranspiration. But while in the northern parts the warming will enhance the hydrological cycle leading to an increased discharge, the large warming, especially in the summer, will slow down the hydrological cycle caused by a drying in the central parts of Europe which is accompanied by a reduction of discharge. The comparison of the changes predicted by the multi-model ensemble mean to the changes predicted by the driving GCM indicates that the RCMs can compensate problems that a driving GCM may have with local scale processes or parameterizations.  相似文献   

19.
Future climate projections from general circulation models (GCMs) predict an acceleration of the global hydrological cycle throughout the 21st century in response to human-induced rise in temperatures. However, projections of GCMs are too coarse in resolution to be used in local studies of climate change impacts. To cope with this problem, downscaling methods have been developed that transform climate projections into high resolution datasets to drive impact models such as rainfall-runoff models. Generally, the range of changes simulated by different GCMs is considered to be the major source of variability in the results of such studies. However, the cascade of uncertainty in runoff projections is further elongated by differences between impact models, especially where robust calibration is hampered by the scarcity of data. Here, we address the relative importance of these different sources of uncertainty in a poorly monitored headwater catchment of the Ecuadorian Andes. Therefore, we force 7 hydrological models with downscaled outputs of 8 GCMs driven by the A1B and A2 emission scenarios over the 21st century. Results indicate a likely increase in annual runoff by 2100 with a large variability between the different combinations of a climate model with a hydrological model. Differences between GCM projections introduce a gradually increasing relative uncertainty throughout the 21st century. Meanwhile, structural differences between applied hydrological models still contribute to a third of the total uncertainty in late 21st century runoff projections and differences between the two emission scenarios are marginal.  相似文献   

20.
In Europe, wildfires are an issue not only for the Mediterranean area, but also in the Alpine regions in terms of increasing number of events and severity. In this study we evaluate the impact of climate change on the fire potential in the Alps in the past and in future scenarios. The Fine Fuel Moisture Code (FFMC) of the Canadian Forest Fire Danger Rating System, which successfully distinguishes among recorded fire/no fire events, is applied to projections of Regional Climate Models (RCMs) calculated on the SRES scenario A1B. We compare two different techniques: 1) a single model run of the COSMO-CLM RCM at 18 km resolution, and 2) a combination of 25-km resolution RCMs from the ENSEMBLES project, combined with the Multimodel SuperEnsemble technique and a new probabilistic Multimodel SuperEnsemble Dressing. The single-model RCM allows for a greater coherence among the input parameters, while the Multimodel techniques permit to reduce the model biases and to downscale to a higher resolution where long term records of observations are available. The projected changes with the Multimodel in the scenario give an estimation of increasing wildfire potential in the mid XXI century. In particular the frequency of severe wildfire potential days is shown to increase dramatically. The single (independent) COSMO model gives a weaker signal and in some regions of the study area the predicted changes are opposite to the ones by the Multimodel. This is mainly due to increasing precipitation amounts simulated especially in the northern parts of the Alps. However, there are also some individual models included in the Multimodel ensemble that show a similar signal. This confirms the ambiguity of any impact study based on a single climate model due to the uncertainty of the projections of the climate models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号