首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The first data on the distribution of planktonic foraminifers and radiolarians in the Mt. Ak-Kaya section, the central Crimean Mountains, are considered. According to the analyzed distribution of foraminifers, the Upper Cretaceous deposits of the section are subdivided into three biostratigraphic units: the Marginotruncana austinensis-Globotruncana desioi (presumably upper Coniacian), Sigalia carpatica (uppermost Coniacian-lower Santonian), and Contusotruncana fornicata-Marginotruncana marginata (upper Santonian) beds. Subdivisions substantiated by distribution of radiolarians are the Alievium praegallowayi-Crucella plana (upper Coniacian-lower Santonian), Alievium gallowayi-Crucella espartoensis (the upper Santonian excluding its uppermost part), and Dictyocephalus (Dictyocryphalus) (?) legumen-Spongosaturninus parvulus (the uppermost Santonian) beds. The Contusotruncana fornicata-Marginotruncana marginata Beds are concurrent to the middle part of the Marsupites laevigatus Zone coupled with the Marsupites testudinarius Zone (the uppermost Santonian). The Alievium gallowayi-Crucella espartoensis Beds are correlative with the upper part of the Alievium gallowayi Zone in the Californian radiolarian zonation. The cooccurring assemblages of planktonic foraminifers and radiolarians provide a possibility to correlate the Coniacian-Santonian deposits within the Crimea-Caucasus region.  相似文献   

2.
A scheme of radiolarian zonal subdivision is proposed for the upper Albian–Santonian of the Tethyan regions of Eurasia. The upper Albian contains one zone: Crolanium triangulare; the Cenomanian contains three zones: Patellula spica (lower Cenomanian), Pseudoaulophacus lenticulatus (middle Cenomanian), and Triactoma parva (upper Cenomanian); the Turonian contains four zones: Acanthocircus tympanum (lower Turonian (with no upper part)), Patellula selbukhraensis (upper part of the lower Turonian), Phaseliforma turovi (middle Turonian (with no upper part)), and Actinomma (?) belbekense (upper part of the middle Turonian–upper Turonian); the Coniacian contains two zones: Alievium praegallowayi (lower part of the Coniacian) and Cyprodictyomitra longa (upper part of the Coniacian); the Santonian contains three zones: Theocampe urna (lower Santonian), Crucella robusta (middle Santonian–lower part of the upper(?) Santonian), and Afens perapediensis (upper part of the upper Santonian). The biostratigraphic subdivisions are correlated with biostrata in the schemes proposed previously for the Tethys and Pacific. A new species Patellula selbukhraensis Bragina sp. nov. is described.  相似文献   

3.
Data on the distribution of radiolarians and planktonic and benthic foraminifers are obtained for the first time from the Alan-Kyr Section (Coniacian–Campanian), in the central regions of the Crimean Mountains. Radiolarian biostrata, previously established from Ak-Kaya Mountain (central regions of the Crimean Mountains) were traced: Alievium praegallowayi–Crucella plana (upper Coniacian–lower Santonian), Alievium gallowayi–Crucella espartoensis (upper Santonian without the topmost part), and Dictyocephalus (Dictyocryphalus) (?) legumen–Spongosaturninus parvulus (upper part of the upper Santonian). Radiolarians from the Santonian–Campanian boundary beds of the Crimean Mountains are studied for the first time, and Prunobrachium sp. ex gr. crassum–Diacanthocapsa acanthica Beds (uppermost Santonian–lower Campanian) are recognized. Bolivinoides strigillatus Beds (upper Santonian) and Stensioeina pommerana–Anomalinoides (?) insignis Beds (upper part of the upper Santonian–lower part of the lower Campanian) are recognized. Eouvigerina aspera denticulocarinata Beds (middle and upper parts of the lower Campanian) and Angulogavelinella gracilis Beds (upper part of the upper Campanian are recognized on the basis of benthic foraminifers. These beds correspond to the synchronous biostrata of the East European Platform and Mangyshlak. Marginotruncana coronata-Concavatotruncana concavata Beds (Coniacian–upper Santonian), Globotruncanita elevata Beds (terminal Santonian), and Globotruncana arca Beds (lower Campanian) are recognized on the basis of planktonic foraminifers. Radiolarian and planktonic and benthic foraminiferal data agree with one another. The position of the Santonian–Campanian boundary in the Alan-Kyr Section, which is located stratigraphically above the levels of the latest occurrence of Concavatotruncana concavata and representatives of the genus Marginotruncana, is refined, i.e., at the level of the first appearance of Globotruncana arca. A gap in the Middle Campanian–lower part of the upper Campanian is established on the basis of planktonic and benthic foraminifers. The Santonian–Campanian beds of the Alan-Kyr Section, on the basis of planktonic foraminifers and radiolarians, positively correlate with synchronous beds of the Crimean-Caucasian region, and beyond. Benthic foraminifers suggest a connection with the basins of the East European Platform.  相似文献   

4.
Radiolarian biostratigraphy suggested in this work for the Cenomanian-Coniacian deposits in the Crimean and West Sakhalin Mountains is enhanced to be of a higher resolution. The Cenomanian-Coniacian succession of the West Sakhalin Mountains is subdivided into nine instead of five biostratigraphic units formerly known in this region. Deposits of the Crimean Mountains are subdivided based on radiolarians within the lower Cenomanian-lower Coniacian stratigraphic interval (the original biostratigraphic chart corresponded here to the upper Cenomanian-middle Turonian interval only). The established biostratigraphic subdivisions are correlated with those of the Tethyan and Pacific scales.  相似文献   

5.
The succession of radiolarian assemblages in the Struganik section of western Serbia is described for the first time. The following radiolarian beds are defined in carbonate flyschoid sequences represented by thin-platy limestones with calcarenite and bentonite clay intercalations (from the base upward): Theocampe urna-Dictyomitra koslovae (presumably lower Santonian); Afens perapediensis-Clathropyrgus titthium (presumably uppermost lower Santonian-basal upper Santonian); Alievium gallowayi-Crucella espartoensis (upper Santonian). The examined assemblages are characterized by high taxonomic diversity. The upper Santonian Alievium gallowayi-Crucella espartoensis Assemblage exhibits significant similarity with the coeval radiolarian assemblage of the Crimean Mountains (Ukraine). Archaeocenosphaera (?) karamatai sp. nov. is described.  相似文献   

6.
In the sections from the western and eastern peaks of Ak Mountain, the Patellula selbukhraensis Zone (upper part of the lower Turonian), which is established for the first time in the southwestern Mountainous Crimea, is traced. The first data on the radiolarian distribution in the section of the eastern peak of Ak Mountain, which is stratotypical of the Phaseliforma turovi (middle Turonian, without the upper part) and Actinomma (?) belbekense (upper part of the middle Turonian–upper Turonian) zones, are presented. These zones are also traced in the parallel section of the western peak of Ak Mountain.  相似文献   

7.
The genus Euthymiceras is considered as the junior synonym of the genus Neocosmoceras. Four species N. euthymi, N. cf. transfigurabilis, N. minutus sp. nov., and N. giganteus sp. nov. from the Berriasian deposits of the Crimean Mountains are described for the first time. The biostratigraphic unit formerly termed the “Euthymiceras-Neocosmoceras Beds” is ranked now as the Neocosmoceras euthymi Subzone with a synonymous index species. The subzone is correlated to the following biostratigraphic units: the synonymous subzone of the northern Caucasus, the Neocosmoceras-Septaliphoria semenovi (upper part) and Buchia volgensis local zones of Mangyshlak, the upper part of the Riasanites rjasanensis Zone in the East European platform, and the paramimounum Subzone of the boissieri Zone in the standard zonation of the Tethyan ammonites.  相似文献   

8.
Based on ammonites, Upper Kimmeridgian sediments are first established in the Crimean Mountains. The Kimmeridgian-Tithonian boundary recognizable in a continuous section is placed inside the Dvuyakomaya Formation of uniform largely clayey sediments. Assemblages of Kimmeridgian ammonites Lingulaticeras cf. procurvum (Ziegler), Pseudowaagenia gemmellariana Oloriz, Euvirgalithacoceras cf. tantalus (Herbich), Subplanites sp.) and Tithonian forms (?Lingulaticeras efimovi (Rogov), Phylloceras consaguineum Gemmellaro, Oloriziceras cf. schneidi Tavera, and Paraulacosphinctes cf. transitorius (Oppel) are described. A new biostratigraphic scheme proposed for the upper Tithonian-Berriasian of the Crimean Mountains includes the following new biostratigraphic units: the Euvirgalithacoceras cf. tantalus Beds of the upper Kimmeridgian, ?Lingulaticeras efimovi Beds of the lower Tithonian, and Oloriziceras cf. schneidi and Paraulacosphinctes cf. transitorius beds of the upper Tithonian. The middle Tithonian is proposed to consist of the fallauxi and semiforme (presumably) zones. The ammonities found determine the early Kimmeridgian-Berriasian age of the Dvuyakornaya Formation that is most likely in tectonic contact with the underlying Khutoran Formation.  相似文献   

9.
《Cretaceous Research》1988,9(4):321-336
The type section of the marly Daliyya Formation in Daliyat el Karmil, northern Israel, has been examined for planktonic foraminifera and ostracods. The coexisting assemblages of the upper part of the Helvetoglobotruncana helvetica total range zone (= Marginotruncana sigali interval zone) and of the Cythereis rawashensis kenaanensis assemblage zone indicate that this succession is middle Turonian in age. The depth of deposition varied from neritic (100–200 m) to shallow (≈50 m) with a short littoral episode. The palaeobathymetric oscillations agree rather well with global sea-level changes. Included in this paper are taxonomic remarks on some of the foraminifera and ostracods.  相似文献   

10.
Diverse radiolarians (over 70 species) are detected in cherty rocks above the bituminous shale horizon, the marker of anoxic event OAE-2 recorded across the Cenomanian-Turonian boundary in the upper part of the Ananuri Formation of flyschoid deposits, the Lazarevskoe area of the western Caucasus. The radiolarian assemblages studied are comparable in composition with radiolarians from concurrent Cenomanian-Turonian boundary strata in other Mediterranean regions (e.g., in the Crimea and Turkey). The lower radiolarian assemblage includes index species Dactyliosphaera silviae of synonymous Cenomanian zone. Alievium superbum present in the upper assemblage is index species of the relevant Turonian zone. Within the studied flyschoid sequence, sediments indicative of the above event (bituminous shales and cherts) are confined to upper elements of flysch rhythms.  相似文献   

11.
The Cenomanian–Turonian boundary interval is generally considered a critical time for planktonic foraminifera due to the environmental perturbations associated with Oceanic Anoxic Event 2. However, only the rotaliporids became extinct at the onset of the event, whilst several lineages evolved and/or diversified. This remarkable morphologic plasticity is often overlooked in the literature, partly because a number of stratigraphic sections have only been studied in thin-section due to the degree of lithification of the samples. Improved documentation of the morphological variability of planktonic foraminifera and better defined species concepts are required in order to improve biostratigraphy, particularly as Helvetoglobotruncana helvetica is an unreliable marker for the base of the Turonian. At the same time, detailed study of the planktonic foraminiferal response to OAE 2 demands a more profound knowledge of the assemblage composition.We present new biostratigraphic, taxonomic, and quantitative data for planktonic foraminiferal species from the Clot Chevalier section (Vocontian Basin, SE France), with the aim of (1) providing a detailed biostratigraphic analysis of the section, (2) documenting the morphological plasticity of specimens in this time interval and stabilizing species concepts, and (3) identifying promising markers to improve the resolution of the present biozonation and allow regional correlation. Samples were processed with acetic acid to extract isolated planktonic foraminifera. Assemblages were assigned to the upper Cenomanian Rotalipora cushmani Zone and to the uppermost Cenomanian–lowermost Turonian Whiteinella archaeocretacea Zone. Planktonic foraminiferal bioevents and assemblage composition identified at Clot Chevalier are compared with the well-studied Pont d'Issole section located ca. 15 km to the NE, highlighting similarities and differences in the species occurrences that may complicate the stratigraphic correlation between the two sections.The results of our study support the validity and common occurrence of species that have been misidentified and/or overlooked in the literature (i.e., Dicarinella roddai, Praeglobotruncana oraviensis, Marginotruncana caronae) and indicate that primitive marginotruncanids evolved before the onset of OAE 2, although species diversification occurred only after the event. Moreover, we believe that the first appearance of P. oraviensis might represent a promising bioevent for approximating the Cenomanian/Turonian boundary, after calibration with bio- and chemostratigraphically well-constrained sections. Finally, we describe three new trochospiral species, named “Pseudoclavihedbergellachevaliensis, Praeglobotruncana pseudoalgeriana and Praeglobotruncana clotensis.  相似文献   

12.
Lithological evidence, benthic foraminiferal census counts, and X-ray fluorescence (XRF) scanner-derived elemental data were integrated with planktonic foraminiferal biostratigraphy and bulk carbonate stable isotopes to retrace the Turonian to early Campanian paleoenvironmental evolution and sea-level history of the Tarfaya Atlantic coastal basin (SW Morocco). The lower Turonian is characterized by laminated organic-rich deposits, which contain impoverished benthic foraminiferal assemblages, reflecting impingement of the oxygen minimum zone on the shelf during a sea-level highstand. This highstand level is correlated to the global transgressive pulse above the sequence boundary Tu1. The appearance of low-oxygen tolerant benthic foraminiferal assemblages dominated by Gavelinella sp. in the middle to upper Turonian indicates an improvement in bottom water oxygenation, probably linked to offshore retraction of the oxygen minimum zone during a regressive phase. This interval is marked by major regressive events expressed by a series of erosional truncations associated with the prominent sequence boundaries Tu3 and/or Tu4. Dysoxic–anoxic conditions recorded in the upper Santonian of the Tarfaya Basin coincide with the eustatic sea-level rise prior to Sa3 sequence boundary. The lower Campanian transgression, only recorded in the southern part of the Tarfaya Basin, coincided with substantial deepening, enhanced accumulation of fine-grained clay-rich hemipelagic sediments and improved oxygenation at the seafloor (highest diversity and abundance of benthic foraminiferal assemblages). Stable isotope data from bulk carbonates are tentatively correlated to the English Chalk carbon isotope reference curve, in particular the Hitch Wood Event in the upper Turonian, the Navigation Event in the lower Coniacian, the Horseshoe Bay Event in the Santonian and the Santonian/Campanian Boundary Event.  相似文献   

13.
This study of the upper Maastrichtian to Danian sedimentary succession from the northern part of the Romanian Eastern Carpathians (Varniţa section) aims to establish an integrated biostratigraphy based on calcareous nannofossils, organic-walled dinoflagellate cysts (dinocysts) and foraminiferal assemblages, and to reconstruct the depositional environments of the interval. The stratigraphic record across the studied section is incomplete, considering that an approximately 16 m thick strata interval from the top of the Maastrichtian to lowermost Danian cannot be analyzed due to a landslide covering the outcrop. The upper Maastrichtian is marked by a succession of biostratigraphic events, such as the First Appearance Datum (FAD) of the nannoplankton taxon Nephrolithus frequens and FAD of the dinocyst species Deflandrea galeata and Disphaerogena carposphaeropsis, and the Last Appearance Datum (LAD) of Isabelidinium cooksoniae in the lower part of the section. These bioevents are followed by the LAD of the Dinogymnium spp. and Palynodinium grallator dinocyst markers in the top of the Maastrichtian deposits analyzed. In terms of foraminiferal biostratigraphy, the upper Maastrichtian Abathomphalus mayaroensis Zone is documented in the lower part of the studied section. Some bioevents, such as the bloom of the calcareous dinoflagellate genus Thoracosphaera and the FAD of the organic-walled dinocysts Damassadinium californicum, Senoniasphaera inornata, Xenicodinium lubricum and X. reticulatum suggest an early Danian age for the middle part of the section. From the Danian deposits in the Varniţa section, we describe a new organic-walled dinocyst species, Pentadinium darmirae sp. nov., which is until now the only species of the Pentadinium genus discovered in the Paleocene. The occurrence of the global Danian dinocyst marker Senoniasphaera inornata in the top of the section, suggests an age not younger than middle Danian (62.6 Ma) for the analyzed deposits.The palynofacies constituents, as well as the agglutinated foraminiferal morphogroups, used to reconstruct the depositional environments, show that the late Maastrichtian sediments were deposited in an outer shelf to distal (bathyal) environment, followed by a marine transgression during the Danian.  相似文献   

14.
An assemblage of planktonic foraminifers is recognized for the first time from the Yunusdag Formation (Kelevudag Section, northeastern Azerbaijan) The analysis of foraminifers from the studied sample suggests that it may belong to the upper part of the Marginotruncana coronata Zone, embracing the interval from the upper Turonian to the lower Coniacian inclusive. The taxonomic composition of the assemblage allows the Kelevudag section to be assigned to an intermediate province separating the Boreal and Tethyan realms and including the Late Cretaceous carbonates of Dagestan.  相似文献   

15.
Biostratigraphy of the Berriasian Stage in the Crimean Mountains is specified and substantiated. Fragments of all the standard stage zones (jacobi, occitanica, and boissieri) are distinguished based on the found index species, and position of the Jurassic-Cretaceous boundary is targeted. According to verified distribution of ammonites, the jacobi Zone is divided into the jacobi and grandis subzones crowned by the Malbosiceras chaperi Beds. The Tirnovella occitanica-Retowskiceras retowskyi Beds and overlying Dalmasiceras tauricum Subzone are recognized in deposits of the occitanica Zone. The upward succession of biostratigraphic units established in the boissieri Zone includes the Euthymiceras-Neocosmoceras Beds, Riasanites crassicostatus Subzone, Symphythyris arguinensis and Jabronella sf. paquieri-Berriasella callisto Beds. The last biostratigraphic unit is suggested in this work instead the former Zeillerina baksanensis Beds. Except for the jacobi Zone, the substantiated ammonoid zonation is practically identical to the Berriasian biostratigraphic scale of the northern Caucasus, although the Berriasian-Valanginian boundary has not been defined in the Crimean Mountains based on ammonites. Several marker levels of bivalve mollusks and four biostratigraphic subdivisions of brachiopod scale are distinguishable here. As for the latter, these are (from the base upward) the Tonasirhynchia janini, Belbekella airgulensis-Sellithyris uniplicata, Symphythyris arguinensis, and Zeillerina baksanensis beds.  相似文献   

16.
Ammonite Fauriella boissieri (Pictet), the index species of the Berriasian upper zone, is described for the first time as taxon occurring in the Crimean Mountains. In the Berriasian sections of the central Crimea and Chatyr-Dag massif, species F. boissieri are encountered only in association with upper Berriasian ammonites. The Berriasian-Valanginian boundary has not been identified based on ammonites in the Crimean Mountains. Consequently, there is no reason to include the otopeta Zone into the boissieri Zone in the rank of its upper subzone.  相似文献   

17.
The Cenomanian–Turonian carbonate-dominated lithofacies of Israel reflect a complex interplay between tectonics, sea-level change, and palaeoecology. Improved correlation based on revision of the bio- and chronostratigraphic framework has enabled the establishment of a sequence-stratigraphic model comprising five sequences delineated by four sequence boundaries, in the Late Cenomanian–Early Coniacian interval. The Late Cenomanian–Turonian succession begins with prograding, highstand, carbonate-platform deposits of the first sequence. Interruption of progradation and drowning of this platform took place within the Late Cenomanian guerangeri Zone (=the vibrayeanus Zone in Israel), resulting in a drowning unconformity which is regarded as a Type 3 sequence boundary (labelled CeUp). The drowning is attributed in part to extinctions in the rudist-dominated biofacies (e.g., Caprinidae), which led to reduced carbonate production and enhanced the impact of the sea-level rise. Similar drowning of Tethyan platforms around the C/T boundary has been linked to the establishment of coastal upwelling and consequent eutrophication. Outer ramp hemipelagic facies (Derorim and the Lower Ora formations) replaced the platform carbonates, thickening substantially southwards in the Eshet-Zenifim Basin of southern Israel. Along the ancient continental slope (Mediterranean coastal plain) evidence of this drowning is obscured by submarine erosion, while in central and northern Israel the drowned section is represented by condensation or a hiatus, reflecting an elevated, sediment-starved sea-floor. A carbonate platform dominated by rudistid shoals (‘Meleke’ Member; Shivta Formation) was re-established in the Judean hills and northern Negev during the middle part of the Turonian coloradoense Zone (local zone T4). Later, during kallesi Zone times (T7), the platform facies prograded southwards towards the Eshet-Zenifim intra-shelf basin. The drowning succession and overlying resurrected carbonate platform are topped in central and southern Israel by a pronounced Type 1 sequence boundary (Tu1) between the kallesi (T7) and ornatissimum (T8) zones (Middle Turonian). In central Israel and northern Negev the sequence boundary is overlain by lowstand deposits of the ‘Clastic Unit’ and by the transgressive and highstand inner to mid-ramp deposits of the Nezer and Upper Bina formations. In the southern Negev the sequence boundary is overlain by lowstand and transgressive systems tracts of mixed carbonates, siliciclastics, and localized evaporites (Upper Ora Formation), and then by mid to inner ramp carbonates of the Gerofit Formation. The latter represents a very high rate of accumulation, indicating rapid, continued subsidence balanced by platform growth. The Tu2 sequence boundary of the Late Turonian is expressed in the southern Negev by a shift from inner ramp carbonates of the Gerofit Formation to outer ramp chalky limestones of the Zihor Formation, indicating localized drowning. The succeeding Co1 sequence boundary again indicates localized drowning of the prograding highstand deposits of the Zihor Formation (‘Transition Zone’) overlain by Lower Coniacian transgressive deposits of the upper part of the Zihor Formation. All of these third-order sequences are expressed in southern Israel, where the rate of subsidence was in balance with sea-level fluctuations. In contrast, the Judean Hills and eastern Galilee areas have a more incomplete succession, characterized by hiatuses and condensation, because of reduced subsidence. More distal areas of continuous deep-water deposition in western Galilee and the coastal plain failed to record the Middle Turonian lowstand, while a longer term, second-order sequence spanning the entire Late Cenomanian–Early Coniacian interval, is present in the Carmel and Yirka Basin areas.  相似文献   

18.
We studied upper Albian to Turonian shallow-marine shelf deposits (Ajlun Group) of west central Jordan along a NNE-SSW running transect. The carbonate-dominated succession includes few siliciclastic intercalations, claystones and shales, and can be subdivided into five formations. The Naur, Fuheis and Hummar Formations of upper Albian to upper Cenomanian age represent shallow subtidal to supratidal platform environments. The uppermost Cenomanian to middle Turonian Shueib Formation includes deeper water deposits of the inner/mid-shelf and locally TOC-rich black shales. Shallow-marine platform environments once again dominate the Wadi As Sir Formation (middle-upper Turonian). A new multibiostratigraphic framework is based on ammonites (mainly of the middle Cenomanian rhotomagense Zone to the middle Turonian woollgari Zone) and calcareous nannofossils (biozones CC 9–CC 11), supplemented by benthic and planktonic foraminifers and ostracods. It forms the base of a sequence stratigraphic subdivision, containing eight sedimentary sequences (S1–S8), which are separated by four Cenomanian sequence boundaries (CeJo1–CeJo4) and three Turonian sequence boundaries (TuJo1–TuJo3). This scheme allows the correlation of the platform succession from distal to proximal shelf areas in contrast to previous correlations using lithologic units. Furthermore, comparisons between the platform successions and sequence patterns of west central Jordan and those from neighbouring areas allow to differentiate local, regional, and global controlling factors of platform development within the study area.  相似文献   

19.
The Aqra Formation represents a succession that was deposited over most of Northern Iraq and adjacent regions. In north Iraq, in the core of NW–SE trending Aqra anticline, a 438-m-thick section of the Aqra Formation crops out at Geli Zanta corge. The base of the Aqra Formation is not exposed here. The upper contact is unconformably overlain by Paleocene–Lower Eocene formations (Kolosh and Khurmala formations). A hundred and one samples were collected from the section and used for biostratigraphic and microfacies analysis. According to the occurrence of larger Foraminifera (Orbitoides media and Orbitoides apiculata) and planktonic Foraminifera (Abathomphalus mayaroensis), Late Upper Campanian–Maastrichtian age was determined for Aqra Formation. Fifteen facies were distinguishable throughout the formation, representing tidal flat (supratidal), restricted marine shelf (lagoon) and shelf margin rudist reef, and its related debris. These environments were used to interpret three depositional sequences which correlate with those of Aruma Formation (KSA), Simsima Formation (UAE) in Arabian Plate, and with Iraqi formation sequences. Three maximum flooding surfaces were recognized as MFS 175, MFS 180, and MFS 190.  相似文献   

20.
The middle Cenomanian–lower Turonian deposits of Ohaba-Ponor section (Southern Carpathians) were studied from biostratigraphic and isotopic points of view. Both the qualitative and semiquantitative nannofloral analyses, as well as the stable isotope (δ13C and δ18O) data support significant palaeoenvironmental changes in the investigated interval. Two δ13C positive excursions were recognized: (1) an excursion up to 1.8‰ (PDB) within the middle/late Cenomanian boundary; (2) an excursion up to 2.2‰ (PDB) in the Cenomanian/Turonian boundary interval. The oldest δ13C positive excursion recorded (placed within the Acanthoceras jukes-brownei/Eucalycoceras pentagonum Ammonite Zone boundary interval, and in the NC11 Calcareous Nannofossil Zone respectively) could be assigned to the middle Cenomanian Event II (MCEII). During the above-mentioned event, significant increase in abundance of Watznaueria barnesae, followed by successive blooms of Biscutum constans and Eprolithus floralis, were observed. The youngest δ13C positive excursion was identified in the Cenomanian/Turonian boundary interval (in the NC12 and lower part of the NC13 Calcareous Nannofossil Zones). Even the amplitude of this δ13C positive excursion is lower in the Ohaba-Ponor section, as generally reported, this may represent the regional record of the OAE2. The successive peaks of the nannofossils Biscutum constans, Zeugrhabdotus erectus and Eprolithus floralis indicate episodes of cooler surface water and high fertility, which preceded and lasted the Cenomanian/Turonian boundary event. Additionally, fluctuations of δ18O values between −2 and −6‰ suggest also cooler conditions within the Cenomanian/Turonian boundary interval.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号