首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We report the results of photometric monitoring of the Melotte 66 field in BVI filters. 10 variables were identified with nine being new discoveries. The sample includes eight eclipsing binaries of which four are W UMa type stars and one star is a candidate blue straggler. All four contact binaries are likely the members of the cluster based on their estimated distances. 10 blue stars with   U − B < −0.3  were detected inside a  14.8 × 22.8 arcmin2  field centred on the cluster. Time series photometry for seven of them showed no evidence for any variability. The brightest object in the sample of blue stars is a promising candidate for a hot subdwarf belonging to the cluster. We show that the anomalously wide main sequence of the cluster, reported in some earlier studies, results from a combination of two effects: variable reddening occurring across the cluster field and the presence of a rich population of binary stars in the cluster itself. The density profile of the cluster field is derived and the total number of the member stars with  16 < V < 21  or  2.8 < M V < 7.8  is estimated conservatively at about 1100.  相似文献   

2.
The existence of older stars within a young star cluster can be interpreted to imply that star formation occurs on time-scales longer than a free-fall time of a pre-cluster cloud core. Here, the idea is explored that these older stars are not related to the star formation process forming the young star cluster but rather that the orbits of older field stars are focused by the collapsing pre-cluster cloud core. Two effects appear: the focusing of stellar orbits leads to an enhancement of the density of field stars in the vicinity of the centre of the young star cluster; and due to the time-dependent potential of the forming cluster some of these stars can get bound gravitationally to the cluster. These stars exhibit similar kinematical properties to the newly formed stars and cannot be distinguished from them on the basis of radial velocity or proper motion surveys. Such contaminations may lead to a wrong apparent star formation history of a young cluster. In the case of the ONC, the theoretical number of gravitationally bound older low-mass field stars agrees with the number of observed older low-mass stars.  相似文献   

3.
We present our numerical simulations of the dynamical evolution of the Hyades open cluster. The simulations were performed usinga modified NBODY6 algorithm that included tidal forces and a realistic orbit of the cluster in a gravitational field described by the Miyamoto-Nagai potential. Our goal was to study the nature of movingclu sters. We show that the stars that were earlier cluster members could be later identified within a sphere of 50 pc in diameter around the Sun. The number of such stars for the chosen initial mass and virial radius of the cluster does not exceed ten. The maximum space velocity of these stars relative to the core of the current cluster does not exceed 3 km s?1. Our numerical simulations confirm the assumption that some of the moving clusters near the Sun could consist of stars that have escaped from open clusters in the course of their dynamical evolution.  相似文献   

4.
We have analyzed the formation, structure, and dynamical evolution of the population of stars that escaped from open clusters by numerical simulations using S. Aarseth’s modified NBODY6 code. In the Galactic tidal field, the population of stars that escaped from a cluster is shown to be elongated along the orbit of the cluster symmetrically about its core in the form of stellar tails of increasing sizes. We analyze the parameters of stellar tails as a function of such initial simulation conditions as the number of stars, the cluster density, the eccentricity of the Galactic cluster orbit in the plane of the Galactic disk, and the z velocity component. As a result, we constructed a grid of model stellar tails of open clusters. The grid includes such time-dependent parameters of the stellar tails as the length, the cross section, the number of stars, the velocity distribution, etc. Our simulations allow us to clarify the origin of moving clusters and stellar streams and to assess the role of star clusters in forming the stellar velocity field in the solar neighborhood.  相似文献   

5.
We use I -band imaging to perform a variability survey of the 13-Myr-old cluster h Per. We find a significant fraction of the cluster members to be variable. Most importantly, we find that variable members lie almost entirely on the convective side of the gap in the cluster sequence between fully convective stars and those which have a radiative core. This result is consistent with a scenario in which the magnetic field changes topology when the star changes from being fully convective to one containing a radiative core. When the star is convective, the magnetic field appears dominated by large-scale structures, resulting in global-size spots that drive the observed variability. For those stars with radiative cores, we observe a marked absence of variability due to spots, which suggests a switch to a magnetic field dominated by smaller-scale structures, resulting in many smaller spots and thus less apparent variability. This implies that wide field variability surveys may only be sensitive to fully convective stars. On the one hand, this reduces the chances of picking out young groups (since the convective stars are the lower mass and therefore fainter objects), but conversely the absolute magnitude of the head of the convective sequence provides a straightforward measure of age for those groups which are discovered.  相似文献   

6.
We present the results of a time-series CCD photometric survey of variable stars in the field of the open cluster NGC 7789. In a field of about one degree centering on the cluster, a total of 28 new variable stars are discovered (14 W UMa systems, nine EA-type eclipsing binaries, one RR Lyr star, and four unclassified). In addition, we recovered 11 old variables previously discovered by other authors. Preliminary parameters are given for some of these variables.  相似文献   

7.
We measured relative proper motions with a typical accuracy of 1.0 milliarcsec/year (mas/a) for 2000 stars in a 1°4 × 1°4 field around the low-latitude globular cluster NGC 6934. Four plates taken with the Bonn double refractor, spanning an epoch difference of 62 years, were digitized completely. Within the tidal radius of the cluster, we find 106 stars with proper motion errors less than 5 mas/a. Membership probalilities are computed taking into account the individual proper motion errors and the radial distances to the cluster centre. We derive the mean relative proper motion of NGC 6934 using stars with high membership probabilities from radial velocities (Smith and Bell 1986) or from their location in the colour-magnitude diagram (Harris and Racine 1973). The relative proper motions of four Hipparcos stars in the field will be used to obtain the absolute proper motion of NGC 6934 once the extragalactically calibrated Hipparcos Output Catalogue is available.  相似文献   

8.
We report the results of our search for magnetic fields in a sample of 16 field Be stars, the binary emission‐line B‐type star υ Sgr, and in a sample of fourteen members of the open young cluster NGC3766 in the Carina spiral arm. The sample of cluster members includes Be stars, normal B‐type stars and He‐strong/He‐weak stars. Nine Be stars have been studied with magnetic field time series obtained over ∼1 hour to get an insight into the temporal behaviour and the correlation of magnetic field properties with dynamical phenomena taking place in Be star atmospheres. The spectropolarimetric data were obtained at the European Southern Observatory with the multi‐mode instrument FORS1 installed at the 8m Kueyen telescope. We detect weak photospheric magnetic fields in four field Be stars, HD 62367, μ Cen, o Aqr, and ε Tuc. The strongest longitudinal magnetic field, 〈Bz〉 = 117 ± 38 G, was detected in the Be star HD 62367. Among the Be stars studied with time series, one Be star, λ Eri, displays cyclic variability of the magnetic field with a period of 21.12 min. The binary star υ Sgr, in the initial rapid phase of mass exchange between the two components with strong emission lines in the visible spectrum, is a magnetic variable star, probably on a timescale of a few months. The maximum longitudinal magnetic field 〈Bz〉 = –102 ± 10 G at MJD 54333.018 was measured using hydrogen lines. The cluster NGC3766 seems to be extremely interesting, where we find evidence for the presence of a magnetic field in seven early B‐type stars out of the observed fourteen cluster members (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We present high-resolution echelle spectroscopy of 20 stars in 16 systems catalogued as members of the TW Hydrae association, and 16 stars identified as possible new members. We have calibrated the range of coronal and chromospheric activity expected for such young stars as a function of spectral type by combining our observations with literature data for field and open cluster stars. We also compute space motions for TWA members and candidate members with proper motion measurements, using two techniques to estimate distances to stars lacking direct trigonometric parallax measurements. The mean space motion of the four TWA members with known parallaxes is  ( U , V , W : −10.0, −17.8, −4.6) km s−1  . 14 of the candidates have properties inconsistent with cluster membership; the remaining two are potential new members, although further observations are required to confirm this possibility.  相似文献   

10.
We present results of time series photometry to search for variable stars in the field of metal-poor globular cluster NGC 4590 (M68). Periods have been revised for 40 known variables and no significant changes were found. A considerable change in Blazhko effect for V25 has been detected. Among nine newly discovered variable candidates, 5 stars are of RRc Bailey type variables while 4 stars are unclassified. The variable stars V10, V21, V50 and V51 are found to be cluster members based on the radial velocity data taken from literature.  相似文献   

11.
Hot cluster horizontal branch (HB) stars and field subdwarf B (sdB) stars are core helium burning stars that exhibit abundance anomalies that are believed to be due to atomic diffusion. Diffusion can be effective in these stars because they are slowly rotating. In particular, the slow rotation of the hot HB stars (Teff > 11000 K), which show abundance anomalies, contrasts with the fast rotation of the cool HB stars, where the observed abundances are consistent with those of red giants belonging to the same cluster. The reason why sdB stars and hot HB stars are rotating slowly is unknown. In order to assess the possible role of magnetic fields on abundances and rotation, we investigated the occurrence of such fields in sdB stars with Teff < 30 000 K, whose temperatures overlap with those of the hot HB stars. We conclude that large‐scale organised magnetic fields of kG order are not generally present in these stars but at the achieved accuracy, the possibility that they have fields of a few hundred Gauss remains open. We report the marginal detection of such a field in SB 290; further observations are needed to confirm it (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
In the field of galaxies images, the relative coordinate positions of each star with respect to all the other stars are adapted. Therefore the membership of star cluster will be adapted by two basic criterions, one for geometric membership and other for physical (photometric) membership. So in this paper, we presented a new method for the determination of open cluster membership based on K-means clustering algorithm. This algorithm allows us to efficiently discriminate the cluster membership from the field stars. To validate the method we applied it on NGC 188 and NGC 2266, membership stars in these clusters have been obtained. The color-magnitude diagram of the membership stars is significantly clearer and shows a well-defined main sequence and a red giant branch in NGC 188, which allows us to better constrain the cluster members and estimate their physical parameters. The membership probabilities have been calculated and compared to those obtained by the other methods. The results show that the K-means clustering algorithm can effectively select probable member stars in space without any assumption about the spatial distribution of stars in cluster or field. The similarity of our results is in a good agreement with results derived by previous works.  相似文献   

13.
We present a homogeneous set of stellar atmospheric parameters ( T eff, log  g , [Fe/H]) for a sample of about 700 field and cluster stars which constitute a new stellar library in the near-IR developed for stellar population synthesis in this spectral region ( λ 8350–9020) . Having compiled the available atmospheric data in the literature for field stars, we have found systematic deviations between the atmospheric parameters from different bibliographic references. The Soubiran, Katz & Cayrel sample of stars with very well determined fundamental parameters has been taken as our standard reference system, and other papers have been calibrated and bootstrapped against it. The obtained transformations are provided in this paper. Once most of the data sets were on the same system, final parameters were derived by performing error weighted means. Atmospheric parameters for cluster stars have also been revised and updated according to recent metallicity scales and colour–temperature relations.  相似文献   

14.
We present the results of our comprehensive study of the Galactic open star cluster NGC 6866. The positions of stars in the investigated region have been obtained with the “Fantasy” automatic measuring machine from 10 plates of the normal astrograph at the Pulkovo Astronomical Observatory. The size of the investigated field is 40′ × 40′, the limiting magnitude is B ∼ 16· m 6, and the maximum epoch difference is 79 yr. For 1202 field stars, we have determined the relative proper motions with an rms error of 2.5 mas yr−1. Out of them, 423 stars may be considered cluster members with a probability P > 70% according to the astrometric criterion. Photometric diagrams have been used as an additional criterion. We have performed two-color BV CCD photometry of stars with the Pulkovo ZA-320M mirror astrograph. The U magnitudes from the literature have also been used to construct the two-color diagrams. A total of 267 stars have turned out to be members of NGC 6866 according to the two criteria. We present refined physical parameters of the cluster and its age estimate (5.6 × 108 yr). The cluster membership of red and blue giants, variable, double, and multiple stars is considered. We have found an almost complete coincidence of the positions of one of the stars in the region (a cluster nonmember) and a soft X-ray source in the ROSAT catalog. The “Fantasy” automatic measuring machine is described in the Appendix.  相似文献   

15.
We report the results of a time-series CCD photometric survey of variable stars in the field of open cluster NGC 2126. In about a one square degree field covering the cluster, a total of 21 variable candidates are detected during this survey, of which 16 are newly found. The periods, classifications and spectral types of 14 newly discovered variables are discussed, which consist of six eclipsing binary systems, three pulsating variable stars, three long period variables, one RS CVn star, and one W UMa or δ Scuti star. In addition, there are two variable candidates, the properties of which cannot be determined. By a method based on fitting observed spectral energy distributions of stars with theoretical ones, the membership probabilities and the fundamental parameters of this cluster are determined. As a result, five variables are probably members of NGC 2126. The fundamental parameters of this cluster are determined as: metallicity to be 0.008 Z , age log(t)=8.95, distance modulus (m - M)0 = 10.34 and reddening value E(B -V) = 0.55 mag.  相似文献   

16.
We report on the analysis of astrometric and photometric data from Hipparcos, Tycho and the ACT catalogue in a 1200 sq. degree field around the nearby open star cluster in Coma Berenices and infer the characteristic features of this cluster. From a sample of 51 kinematic members we derive the cluster's distance, size and spatial structure as well as its stellar content, mass and age. We find that the cluster consists of an elliptical core-halo system with major axis parallel to the direction of galactic motion, and of a moving group of extratidal stars. The latter have tangential distances ≥10 pc from the cluster center, but have the same distance from the Sun, the same motion and the same age as the stars in the core and halo. The luminosity function of the core-halo system steeply declines beyond absolute magnitude MV=4.5, but that of the moving group rises towards fainter magnitudes and suggests the existence of further low-mass members below the current magnitude limit. The cloud of extratidal stars witnesses the process of dissolution of the cluster.  相似文献   

17.
We have obtained and analyzed UBVRI CCD frames of the young, 4–10 Myr, open cluster NGC 3293 and the surrounding field in order to study its stellar content and determine the cluster’s IMF. We found significantly fewer lower mass stars, M≤2.5M , than expected. This is particularly so if a single age for the cluster of 4.6 Myr is adopted as derived from fitting evolutionary models to the upper main sequence. Some intermediate-mass stars near the main sequence in the HR diagram imply an age for the cluster of about 10 Myr. When compared with the Scalo (The stellar initial mass function. ASP conference series, vol. 24, p. 201, 1998) IMF scaled to the cluster IMF in the intermediate mass range, 2.5≤M/M ≤8.0 where there is good agreement, the high mass stars have a distinctly flatter IMF, indicating an over abundance of these stars, and there is a sharp turnover in the distribution at lower masses. The radial density distribution of cluster stars in the massive and intermediate mass regimes indicate that these stars are more concentrated to the cluster core whereas the lower-mass stars show little concentration. We suggest that this is evidence supporting the formation of massive stars through accretion and/or coagulation processes in denser cluster cores at the expense of the lower mass proto-stars. R.W. Slawson and E.P. Horch are guest investigators at the University of Toronto Southern Observatory, Las Campanas, Chile.  相似文献   

18.
We present N -body simulations (including an initial mass function) of globular clusters in the Galaxy in order to study effects of the tidal field systematically on the properties of the outer parts of globular clusters. Using nbody6 , which correctly takes into account the two-body relaxation, we investigate the development of tidal tails of globular clusters in the Galactic tidal field. For simplicity, we have employed only the spherical components (bulge and halo) of the Galaxy, and ignored the effects of stellar evolution which could have been important in the very early phase of the cluster evolution. The total number of stars in our simulations is about 20 000, which is much smaller than the realistic number of stars. All simulations had been done for several orbital periods in order to understand the development of the tidal tails. In our scaled-down models, the relaxation time is sufficiently short to show the mass segregation effect, but we did not go far enough to see the core collapse, and the fraction of stars lost from the cluster at the end of the simulations is only ∼10 per cent. The radial distribution of extra-tidal stars can be described by a power law with a slope around −3 in surface density. The directions of tidal tails are determined by the orbits and locations of the clusters. We find that the length of tidal tails increases towards the apogalacticon and decreases towards the perigalacticon. This is an anti-correlation with the strength of the tidal field, caused by the fact that the time-scale for the stars to respond to the potential is similar to the orbital time-scale of the cluster. The escape of stars in the tidal tails towards the pericentre could be another reason for the decrease of the length of tidal tails. We find that the rotational angular velocity of tidally induced clusters shows quite different behaviour from that of initially rotating clusters.  相似文献   

19.
We report the result of our near-infrared observations ( JHK s) for type II Cepheids (including possible RV Tau stars) in galactic globular clusters. We detected variations of 46 variables in 26 clusters (10 new discoveries in seven clusters) and present their light curves. Their periods range from 1.2 d to over 80 d. They show a well-defined period–luminosity relation at each wavelength. Two type II Cepheids in NGC 6441 also obey the relation if we assume the horizontal branch stars in NGC 6441 are as bright as those in metal-poor globular clusters in spite of the high metallicity of the cluster. This result supports the high luminosity which has been suggested for the RR Lyr variables in this cluster. The period–luminosity relation can be reproduced using the pulsation equation     assuming that all the stars have the same mass. Cluster RR Lyr variables were found to lie on an extrapolation of the period–luminosity relation. These results provide important constraints on the parameters of the variable stars.
Using Two Micron All-Sky Survey (2MASS) data, we show that the type II Cepheids in the Large Magellanic Cloud (LMC) fit our period–luminosity relation within the expected scatter at the shorter periods. However, at long periods (   P > 40  d, i.e. in the RV Tau star range) the LMC field variables are brighter by about one magnitude than those of similar periods in galactic globular clusters. The long-period cluster stars also differ from both these LMC stars and galactic field RV Tau stars in a colour–colour diagram. The reasons for these differences are discussed.  相似文献   

20.
We report on the discovery of 25 variable stars plus 13 suspected variables found in the field of the open cluster NGC 6819. The stars were identified from time-series photometric data obtained on the Isaac Newton Telescope, La Palma, during two observing runs covering the 19 nights between 1999 June  22–30  and 1999 July  22–31  . The variables found include 12 eclipsing binaries with an additional three suspected, nine BY Draconis systems, plus four variables of other types, including one star believed to be a Cepheid. Three of the 15 eclipsing binaries are believed to be cluster members. Details of a further 10 suspected variable stars are also included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号