首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Achankovil Zone of southern India, a NW–SE trending lineament of 8–10 km in width and > 100 km length, is a kinematically debated crustal feature, considered to mark the boundary between the Madurai Granulite Block in the north and the Trivandrum Granulite Block in the south. Both these crustal blocks show evidence for ultrahigh-temperature metamorphism during the Pan-African orogeny, although the exhumation styles are markedly different. The Achankovil Zone is characterized by discontinuous strands of cordierite-bearing gneiss with an assemblage of cordierite + garnet + quartz + plagioclase + spinel + ilmenite + magnetite ± orthopyroxene ± biotite ± K-feldspar ± sillimanite. The lithology preserves several peak and post-peak metamorphic assemblages including: (1) orthopyroxene + garnet, (2) perthite and/or anti-perthite, (3) cordierite ± orthopyroxene corona around garnet, and (4) cordierite + quartz symplectite after garnet. We estimate the peak metamorphic conditions of these rocks using orthopyroxene-bearing geothermobarometers and feldspar solvus which yield 8.5–9.5 kbar and 940–1040 °C, the highest PT conditions so far recorded from the Achankovil Zone. The retrograde conditions were obtained from cordierite-bearing geothermobarometers at 3.5–4.5 kbar and 720 ± 60 °C. From orthopyroxene chemistry, we record a multistage exhumation history for these rocks, which is closely comparable with those reported in recent studies from the Madurai Granulite Block, but different from those documented from the Trivandrum Granulite Block. An evaluation of the petrologic and geochronologic data, together with the nature of exhumation paths leads us to propose that the Achankovil Zone is probably the southern flank of the Madurai Granulite Block, and not a unit of the Trivandrum Granulite Block as presently believed. Post-tectonic alkali granites that form an array of “suturing plutons” along the margin of the Madurai Granulite Block and within the Achankovil Zone, but are absent in the Trivandrum Granulite Block, suggest that the boundary between the Madurai Granulite Block and the Trivandrum Granulite Block might lie along the Tenmalai shear zone at the southern extremity of the Achankovil Zone.  相似文献   

2.
Single zircon and titanite U-Pb SHRIMP data presented for tonalite-trondhjemite-granodiorite (TTG) suite gneisses and an ultramafic rock from the northern and central regions of the Lewisian Complex of northwest Scotland, show that protolith ages of tonalitic gneisses in the northern region (2800–2840?Ma) are significantly younger than those in the central region (2960–3030?Ma). Further evidence of a major (2490–2480?Ma) metamorphic event in the central region is documented by a metamorphic zircon associated with a granulite facies ultramafic body. A dioritic gneiss from the northern region has also been dated at c. 2680?Ma. The northern region therefore does not comprise reworked central region rocks and consequently the old models for the evolution of the Lewisian which were based upon this concept need replacing. It is instead proposed that two distinct crustal blocks, now the northern and central regions, were tectonically juxtaposed along a boundary corresponding to the Laxford Front. Juxtaposition would appear to have occurred in Proterozoic times, as it must have postdated the 2490–2480?Ma (?Inverian) metamorphism recorded only in the central region, and the emplacement of granite sheets restricted to the northern side of the boundary. The first recorded event common to both regions is resetting of titanite ages associated with c. 1750?Ma Laxfordian amphibolite facies metamorphism. Zircon inheritance in rocks of both regions is scarce. Within one zircon from the northern region a c. 3550?Ma core was found. This represents the oldest known material from the region.  相似文献   

3.
Trace element and U–Pb isotopic analyses of inherited zircon cores from a sample of Gil Márquez granodiorite (South Portuguese Zone, SPZ) and Almonaster nebulite (Ossa-Morena Zone, OMZ, in the Aracena Metamorphic Belt) have been obtained using laser ablation-inductively coupled plasma-mass spectrometry. These data reveal differences in the age of deep continental crust in these two zones. Inherited zircon cores from the Ossa-Morena Zone range at 600±100 Ma, 1.7–2 Ga and 2.65–2.95 Ga, while those from the South Portuguese Zone range at 400–500 and 700–800 Ma. These data support the “exotic” origin of the South Portuguese Zone basement relative to the rest of Iberian Massif. The young ages of inherited zircon cores and Nd model ages of magmatic rocks of the South Portuguese Zone are comparable to results from granulite facies xenoliths and granitic rocks from the Meguma Terrane and Avalonia and support a correlation between the basement of the southernmost part of the Iberian Massif and the northern Appalachians.  相似文献   

4.
New geochemical and isotopic data for post-collisional Early Eocene and Late Miocene adakitic rocks from the eastern part of the Sakarya Zone, Turkey, indicate that slab and lower crustal melting, respectively, played key roles in the petrogenesis of these rocks. The Early Eocene Yoncal?k dacite (54.4 Ma) exhibits high Sr/Y and La/Yb ratios, low Y and HREE concentrations, moderate Mg# (44–65), and relatively high εNd and low ISr values, similar to adakites formed by slab melting associated with subduction. Geochemical composition of the Yoncal?k dacite cannot be explained by simple crystal fractionation and/or crustal contamination of andesitic parent magma, but is consistent with the participation of different proportions of melts derived from subducted basalt and sediments. Sr/Y correlates horizontally with Rb/Y, and Pb/Nd correlates vertically with Nd isotopic composition, indicating that Sr and Pb budgets are strongly controlled by melt addition from the subducting slab, whereas positive correlations between Th/Nd and Pb/Nd, and Rb/Y and Nb/Y point to some contribution of sediment melt. In addition to low concentrations of heavy rare earth elements (~2–3 times chondrite), a systematic decrease in their concentrations and Nb/Ta ratios with increasing SiO2 contents suggests that slab partial melting occurred in the garnet stability field and that these elements were mobilized by fluid flux. These geochemical and isotopic signatures are best explained by slab breakoff and fusion shortly after the initiation of collision. Although the Late Micone Tavda?? rhyolite (8.75 Ma) has some geochemical features identical to adakites, such as high Sr/Y and La/Yb ratios, low Y and HREE concentrations, other requirements, such as sodic andesite and/or dacite with relatively high MgO and Mg# (>50), relatively high Ni and Cr, low K2O/Na2O (<0.4), high Sr (>400 ppm), for slab-derived adakites are not provided. It is sodic in composition and shows no traces of fractionation from dacitic parent magma. Low Nd and high Sr isotope ratios suggest derivation by partial fusion of calc-alkaline, juvenile crust with high Sr/Y and La/Yb ratios.  相似文献   

5.
In groundwater of the Trans-Pecos region of West Texas, unexpectedly high levels of nitrate (NO3 ?) are documented in four basins: Red Light Draw, Eagle Flats, Wild Horse and Michigan Flats, and Lobo and Ryan Flats. NO3 ? concentrations are changing over time in the majority (82.8 %) of wells and are increasing in most (69.8 %). The temporal change raises questions about the potential sources of NO3 ? and about flow dynamics in these basins. Presence of NO3 ? and temporal variability in concentration has implications beyond contamination risk because it indicates relatively rapid recharge (<60 years) to the basin groundwaters which was not expected based on previous estimates from chloride mass balance models and groundwater age-dating techniques. This research combines existing data ranging back to the 1940s with data collected in 2011 to document a multi-decadal trend of overall increasing NO3 ? concentration in deep basin groundwaters. Chlorofluorocarbon analyses of groundwater collected during 2011 indicate the presence of young (<70 years) water in the basins. The authors infer from these data that there are mechanism(s) by which relatively rapid and widespread recharge occurs on the basin floors; that recharge is spatially and temporally variable and that it results from both anthropogenic (irrigated agriculture) and natural (precipitation) sources. In light of these observations, fundamental conceptual models of flow in these basins should be re-evaluated.  相似文献   

6.
The Song Ma region, which is located in the northwestern Vietnam represents the zone of amalgamation between Indochina and South China blocks. Numerous scattered ultramafic rocks occur in this region in association with Early to Middle Palaeozoic greenschists and paragneisses, and all these rocks were subjected to hydrous metamorphism and deformation. Here, we present new field data, mineral chemistry and geochemistry from a suite of hydrated peridotites within the Song Ma region and discuss the tectonic significances of the region. We also combine the available data within the Song Ma region and Indochina–South China blocks to discuss the tectonic evolution of the subduction zone. Based on the results, we suggest that the peridotites from the Song Ma are mantle residues that suffered a high degree of partial melting in a forearc tectonic setting. The present data together with the available data within the Song Ma region and the Indochina and South China blocks clearly represent a southward directed Middle Palaeozoic subduction system. The Middle Palaeozoic subduction and accretion events mark the evolutionary history along an active convergent margin between the Indochina and South China blocks, possibly related to the amalgamation of the Pangaea supercontinent. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Thermal history modelling based on zircon‐ and apatite fission track and apatite (U–Th)/He data constrain and refine the near‐surface exhumation of the south‐eastern Tauern Window (Penninic units) and neighbouring Austroalpine basement units in the Eastern Alps. Fast exhumation on both sides of the Penninic/Austroalpine boundary coincides with a period of lateral extrusion and tectonic denudation of the Penninic units in Miocene time (22–12 Ma). The jump to older ages occurs within the Austroalpine unit along the Polinik fault, which therefore defines the boundary between the tectonically denuded units and the hangingwall at that time. According to the different (U–Th)/He ages between the Penninic Hochalm‐ and Sonnblick Domes we demonstrate a differential cooling history of these two domes in the latest Miocene and early Pliocene.  相似文献   

8.
Silicic volcanic deposits (>65 wt% SiO2), which occur as domes, lavas and pyroclastic deposits, are relatively abundant in the Macolod Corridor, SW Luzon, Philippines. At Makiling stratovolcano, silicic domes occur along the margins of the volcano and are chemically similar to the silicic lavas that comprise part of the volcano. Pyroclastic flows are associated with the Laguna de Bay Caldera and these are chemically distinct from the domes and lavas at Makiling stratovolcano. As a whole, samples from the Laguna de Bay Caldera contain lower concentrations of MgO and higher concentrations of Fe2O3(t) than the samples from domes and lavas. The Laguna de Bay samples are more enriched in incompatible trace elements. The silicic rocks from the domes, Makiling Volcano and Laguna de Bay Caldera all contain high alkalis and high K2O/Na2O ratios. Melting experiments of primitive basalts and andesites demonstrate that it is difficult to produce high K2O/Na2O silicic magmas by fractional crystallization or partial melting of a low K2O/Na2O source. However, recent melting experiments (Sisson et al., Contrib Mineral Petrol 148:635–661, 2005) demonstrate that extreme fractional crystallization or partial melting of K-rich basalts can produce these silicic magmas. Our model for the generation of the silicic magmas in the Macolod Corridor requires partial melting of mantle-derived, evolved, moderate to K-rich, crystallized calc-alkaline magmas that ponded and crystallized in the mid-crust. Major and trace element variations, along with oxygen isotopes and ages of the deposits, are consistent with this model. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

9.
The 1300 Ma Fraser Complex in the Albany‐Fraser Orogen of Western Australia is a thrust stack of mainly gabbroic rocks metamorphosed to granulite facies. This package of fault‐bounded units was elevated from a deep crustal level onto the margin of the Yilgarn Craton during continental collision between the Mawson and Yilgarn Cratons. Incompatible trace‐element distributions demand at least three mantle sources. Primitive‐mantle‐normalised incompatible‐element distributions show strong negative Ta–Nb anomalies, typical of subduction‐derived magmas. Three lines of evidence indicate that the mafic magmas did not acquire these anomalies by assimilation of crustal rocks: (i) major‐element compositions do not allow appreciable contamination with felsic material; (ii) Ni contents of many mafic rocks are too high for a significant contribution from a felsic assimilant; and (iii) Sr and Nd isotopic data support a largely juvenile source for the magmas that produced the Fraser Complex. Hence, the Ta–Nb anomalies are interpreted to reflect subduction‐related magmatic sources. On multielement diagrams, depletions in Sr, Eu, P, and Ti can be explained by fractional crystallisation, whereas Th and Rb depletions in many of the Fraser Complex rocks probably reflect losses during granulite‐facies metamorphism. These results suggest that the lower crust in this region at 1300 Ma was dominantly of arc origin, and there is no evidence to support mantle plume components. The Fraser Complex is interpreted as remnants of oceanic arcs that were swept together and tectonically interleaved with the margin of the Mawson Craton just before, or during, collision with the Yilgarn Craton at 1300 Ma.  相似文献   

10.
The growth of the continental crust is generally believed to have been essentially completed in the Precambrian, and the amount of juvenile crust produced in the Phanerozoic is considered insignificant. Such idea of negligible growth in the Phanerozoic is now challenged by the revelation of very large volume of juvenile crust produced in the period of 500 to 100 Ma in several orogenic belts. While appreciable volumes of juvenile terranes in North America (Canadian Cordillera, Sierra Nevada and Peninsular Range, Appalachians) have been documented based on Nd isotopic data, the mass of new crust formed in the East-Central Asian Orogenic Belt (ECAOB), eastern part of the Altaid Tectonic Collage, appears to be much greater than the above terranes combined. New and published Nd-Sr isotope data indicate that the Phanerozoic granitoids from the southern belt of the ECAOB (Xinjiang-West Mongolia-Inner Mongolia-NE China) as well as from Mongolia and Transbaikalia were generated from sources dominated by a depleted mantle component. These granitoids represent a significant growth of juvenile crust in the Phanerozoic. Although most plutons in this huge orogenic belt belong to the calc-alkaline series, the ECAOB is also characterized by the emplacement of voluminous A-type granites. The origin of these rocks is probably multiple and is still widely debated. However, the isotopic data (Sr-Nd-O) and trace element abundance patterns of A-type granites from the ECAOB clearly indicate their mantle origin. The evolution of the ECAOB and the entire Altaid Collage is most likely related to successive accretion of arc complexes. However, the emplacement of a large volume of post-tectonic A-type granites requires another mechanism—probably through a series of processes including underplating of massive basaltic magma, partial melting of these basic rocks to produce granitic liquids, followed by extensive fractional crystallization. The proportion of juvenile to recycled, as well as that of arc-related to plume-generated, continental crust remains to be evaluated by more systematic dating and isotope tracer studies.  相似文献   

11.
The north-northwest-south-southeast striking Rustenburg Fault Zone in the western Transvaal Basin, South Africa, has been extensively mapped in order to unravel its tectonic history. In post-Pretoria Group times, but before the intrusion of the Bushveld Complex at 2050 Ma, the area surrounding the fault zone was subjected to two compressive deformational events. The shortening direction of the first event was directed northeast-southwest, producing southeast-northwest trending folds, and the shortening direction of the second was directed north-northwest - south-southeast, producing east-northeast - west-southwest trending folds. The second set of folds refolded the first set to form typical transitional Type 1-Type 2 interference folding. This compression ultimately caused reactivation of the Rustenburg Fault, with dextral strike-slip movement displacing the Pretoria Group sediments by up to 10.6 km. The subsequent intrusion of the Bushveld Complex intensely recrystallised, and often ponded against the strata along the fault zone. The fault rocks within the fault zone were also recrystallised, destroying any pre-existing tectonic fabric. Locally, the fault zone may have been assimilated by the Bushveld Complex. After the intrusion of the Bushveld Complex, little movement has occurred along the fault, especially where the fault passes under areas occupied by the Bushveld Complex. It is thought that the crystallisation of the Bushveld Complex has rheologically strengthened the neighbouring strata, preventing them from being refaulted. This model is at variance with previous assumptions, which suggest that continuous regional extension during Pretoria Group sedimentation culminated in the intrusion of the Bushveld Complex.  相似文献   

12.
Abstract The E-W-trending Kohistan terrane in the NW Himalaya is a sandwich of a magmatic arc between the collided Karakoram (Asian) and Indian plates. The southern part of the Kohistan arc is principally made up of amphibolites derived from volcanic and plutonic rocks of Early Cretaceous age. Gabbroic relics in the amphibolites display calc-alkaline character, and their mineralogy is similar to low-P plutonic rocks reported from modern and ancient island arcs. The largest of these relics, occurring along the southern margin of the amphibolite belt near Khwaza Khela, is subcircular in outline and is about 1 km across. It consists of cumulate gabbros and related rocks displaying a record of cooling and crustal thickening. Primary olivine and anorthite reacted to produce coronas consisting of two pyroxenes +Mg-Fe2+-Al spinel ± tschermakitic hornblende at about 800° C, 5.5–7.5 kbar. This thermotectonic event is of regional extent and may be related to the overthrusting of the Karakoram plate onto the Kohistan arc some 85 Ma ago, or even earlier. Later the gabbros were locally traversed by veins containing high-P assemblages: garnet, kyanite, zoisite, paragonite, oligoclase, calcite, scapolite and quartz ° Chlorite ° Corundum ± diopside. Formed in the range 510–600° C, and 10–12 kbar, these suggest further thickening and cooling of the crust before its uplift during the Tertiary. This paper presents microprobe data on the minerals, and discusses the tectonic implications of the coronitic and vein assemblages in the gabbros.  相似文献   

13.
In the South Portuguese Zone close associations of diorites, tonalites and trondhjemites occur north of the Pyrite Belt. The period of their emplacement is Pre-Carboniferous and not, as has generally been assumed, Variscanpostorogen. The trondhjemitic intrusive suite and the Lower Carboniferous spilite-keratophyre association are related through their comagmatic derivation. Both series share sodium dominance, low concentrations of large-ion lithophile elements, indicators of a water-rich original magma and a deficient scorification of the element potential, which was acummulated in the sulphide and manganese deposits of the Pyrite Belt through post-volcanic hydrothermal processes. The mineralogically and geochemically primitive composition of both plutomtes and vulcanites, their mode of eruption from acid to basic facies as well as their position in the orogenic process indicate that they represent products of a successively proceeding partial melting of subducting oceanic crust. The trondhjemitic intrusives are the initialites in the magmatic-orogenic development.
Zusammenfassung In der Südportugiesischen Zone treten nördlich des Pyritgürtels enge Vergesellschaftungen von Dioriten, Tonaliten und Trondhjemiten auf. Der Zeitraum ihrer Platznahme ist päkarbonisch und nicht, wie bisher allgemein angenommen, variszisch-postorogen. Die trondhjemitische Intrusivsequenz und die unterkarbonische Spilit-Keratophyr-Assoziation sind in weiten Bereichen durch komagmatische Herkunft verbunden. Gemeinsamkeiten beider Abfolgen sind ihre Na-Dominanz, die niedrigen Gehalte an gro\ionigen Elementen, die Anzeichen für ein wasserreiches Ausgangsmagma und die mangelhafte Verschlackung des Elementpotentials, das in den Sulfid- und Manganlagerstätten des Pyritgürtels während postvulkanischer, hydrothermaler Proze\e angereichert wurde. Die mineralogisch wie geochemisch primitive Zusammensetzung sowohl der Plutonite wie der Vulkanite, ihr Eruptionsmodus von saurer zu basischer Fazies sowie ihre Position im orogenen Ablauf deuten darauf hin, da\ sie die Produkte einer sukzessiv fortschreitenden Aufschmelzung subduzierender, ozeanischer Kruste darstellen. Die trondhjemitischen Intrusiva sind die Initialite innerhalb der magmatisch-orogenen Entwicklung.

Résumé Dans la zone sud du Portugal, il existe, au nord de la ceinture pyriteuse, des associations étroites de diorites, de tonalites et de trondhjémites. Leur mise en place date de la période pré-carbonifère et non, comme on l'avait généralement admis jusqu'à présent, de la période varisque post-orogénique. Le faisceau intrusif trondhjémitique et l'association spilite-kératophyre du Carbonifère inférieur sont liés par une origine comagmatique. Les points communs des deux successions sont leur dominante sodique, les faibles teneurs en éléments à gros ions, les indices d'un magma de départ aquifère et la scorification réduite du potentiel d'éléments qui, dans les gisements de sulfure et de manganèse de la ceinture pyriteuse a été enrichi par des processus post-volcaniques et hydrothermaux. La composition primitive, tant minéralogique que géochimique, de la plutonite comme de la vulcanite, leur mode d'éruption qui va du type acide au type basique, ainsi que leur position dans le processus orogénique indiquent qu'il s'agit de produits successifs de la fusion partielle d'une croûte océanique en voie de subduction. Les intrusions trondhjémitiques représentent le stade initial dans l'évolution orogéno-magmatique.

, , , . - , , . - . ; , , , - . , , . - .
  相似文献   

14.
Phenocryst assemblages of lavas from the long-lived Aucanquilcha Volcanic Cluster (AVC) have been probed to assess pressure and temperature conditions of pre-eruptive arc magmas. Andesite to dacite lavas of the AVC erupted throughout an 11-million-year, arc magmatic cycle in the central Andes in northern Chile. Phases targeted for thermobarometry include amphibole, plagioclase, pyroxenes, and Fe–Ti oxides. Overall, crystallization is documented over 1–7.5 kbar (~25 km) of pressure and ~680–1,110 °C of temperature. Pressure estimates range from ~1 to 5 kbar for amphiboles and from ~3 to 7.5 kbar for pyroxenes. Pyroxene temperatures are tightly clustered from ~1,000–1,100 °C, Fe–Ti oxide temperatures range from ~750–1,000 °C, and amphibole temperatures range from ~780–1,050 °C. Although slightly higher, these temperatures correspond well with previously published zircon temperatures ranging from ~670–900 °C. Two different Fe–Ti oxide thermometers (Andersen and Lindsley 1985; Ghiorso and Evans 2008) are compared and agree well. We also compare amphibole and amphibole–plagioclase thermobarometers (Ridolfi et al. 2010; Holland and Blundy 1994; Anderson and Smith 1995), the solutions from which do not agree well. In samples where we employ multiple thermometers, pyroxene temperature estimates are always highest, zircon temperature estimates are lowest, and Fe–Ti oxide and amphibole temperature estimates fall in between. Maximum Fe–Ti oxide and zircon temperatures are observed during the middle stage of AVC activity (~5–3 Ma), a time associated with increased eruption rates. Amphibole temperatures during this time are relatively restricted (~850–1,000 °C). The crystal record presented here offers a time-transgressive view of an evolving, multi-tiered subvolcanic reservoir. Some crystals in AVC lavas are likely to be true phenocrysts, but the diversity of crystallization temperatures and pressures recorded by phases in individual AVC lavas suggests erupting magma extensively reams and accumulates crystals from disparate levels of the middle to upper crust.  相似文献   

15.
Structural transfer zones in a half-graben rift basin play a significant role in controlling sandy sediments and providing a target for hydrocarbon exploration. Previous studies have classified the transfer zone in lacustrine environments into two different patterns: synthetic approaching transfer zones and synthetic overlapping transfer zones. However, the evolution of the depositional pattern and the controlling factors of the above transfer zones are still unclear. In the Fushan Sag, the northern South China Sea, an overlapping transfer zone developed in the early Eocene Epoch, while a synthetic approaching transfer zone developed in the late Eocene, due to tectonic uplift. This evolutionary process provided an opportunity to study the stacking pattern of strata architectural variability and facies distribution in the structural transfer zone of the Eocene lacustrine basin. In this study, following the indications of the oriented sedimentary structures in core samples and heavy mineral assemblages of 18 wells, the evolution of the paleo-hydrodynamic distribution during the early and late Eocene has been reconstructed. The sequence-stratigraphy was then divided and the sand body parameters calculated, according to the seismic data and well log interpretations. During the early Eocene, the lake level was at a low stand, the faults broken displacement in the East block being over 50?m. The prograding delta and turbidites are oriented perpendicular to the structural transfer zone. According to the quantitative analysis of the flow rate and the depositional parameters, we speculate that gravity transportation of the sediment and the sediment-supply are the dominating factors during this period. Up to the late Eocene, the rising lake level and the decreased fault displacement leads the flow to divert to a NE-direction, resulting in it being parallel to the axis of the transfer zone. Thus, we speculate that the accommodation space is predominant in this period. In comparison with the above two periods, a braided river delta with an isolated sand body and turbidites developing in the deep area is prominent in the overlapping transfer zone, while a meandering river delta is characteristic of the synthetic approaching transfer zone.  相似文献   

16.
L. Millonig  A. Zeh  A. Gerdes  R. Klemd 《Lithos》2008,103(3-4):333-351
The Bulai pluton represents a calc-alkaline magmatic complex of variable deformed charnockites, enderbites and granites, and contains xenoliths of highly deformed metamorphic country rocks. Petrological investigations show that these xenoliths underwent a high-grade metamorphic overprint at peak P–T conditions of 830–860 °C/8–9 kbar followed by a pressure–temperature decrease to 750 °C/5–6 kbar. This P–T path is inferred from the application of P–T pseudosections to six rock samples of distinct bulk composition: three metapelitic garnet–biotite–sillimanite–cordierite–plagioclase–(K-feldspar)–quartz gneisses, two charnoenderbitic garnet–orthopyroxene–biotite–K-feldspar–plagioclase–quartz gneisses and an enderbitic orthopyroxene–biotite–plagioclase–quartz gneiss. The petrological data show that the metapelitic and charnoenderbitic gneisses underwent uplift, cooling and deformation before they were intruded by the Bulai Granite. This relationship is supported by geochronological results obtained by in situ LA-ICP-MS age dating. U–Pb analyses of monazite enclosed in garnet of a charnoenderbite gneiss provide evidence for a high-grade structural-metamorphic–magmatic event at 2644 ± 8 Ma. This age is significantly older than an U–Pb zircon crystallisation age of 2612 ± 7 Ma previously obtained from the surrounding, late-tectonic Bulai Granite. The new dataset indicates that parts of the Limpopo's Central Zone were affected by a Neoarchaean high-grade metamorphic overprint, which was caused by magmatic heat transfer into the lower crust in a ‘dynamic regional contact metamorphic milieu’, which perhaps took place in a magmatic arc setting.  相似文献   

17.
Apatite fission track dating from a central transect in the Argentera massif (southernmost External Crystalline Massif = ECM) yielded ages between 8.05 ± 0.6 and 2.4 ± 0.2 Myr, with a positive age/altitude correlation above 3 Ma, 1200 m. Recognising a thermal peak at c . 250°C, 33 Ma, based on stratigraphic, metamorphic and 39Ar/40Ar data, the present results suggest a slow cooling rate (8–5°C) for the Argentera massif during the Oligocene–early Pliocene. This rate compares with that from the Pelvoux massif, but contrasts with those observed in the northern ECM (Mont-Blanc and Aar: up to 14°C Myr−1) for the same time interval. This can be related to the different location of the ECM within the collided European margin. At about 3–4 Ma, the denudation rate would have increased up to c . 1 mm yr−1 in the Argentera massif, reaching the same value as in the Belledonne and northern ECM, likely a consequence of Penninic thrust inversion.  相似文献   

18.
The brevity of carbonatite sources in the mantle: evidence from Hf isotopes   总被引:5,自引:0,他引:5  
Hf, Zr and Ti in carbonatites primarily reside in their non-carbonate fraction while the carbonate fraction dominates the Nd and Sr elemental budget of the whole rock. A detailed investigation of the Hf, Nd and Sr isotopic compositions shows frequent isotopic disequilibrium between the carbonate and non-carbonate fractions. We suggest that the trace element and isotopic composition of the carbonate fraction better represents that of the carbonatite magma, which in turn better reflects the composition of the carbonatitic source. Experimental partitioning data between carbonatite melt and peridotitic mineralogy suggest that the Lu/Hf ratio of the carbonatite source will be equal to or greater than the Lu/Hf ratio of the carbonatite. This, combined with the Hf isotope systematics of carbonatites, suggests that, if carbonatites are primary mantle melts, then their sources must be short-lived features in the mantle (maximum age of 10–30 Ma), otherwise they would develop extremely radiogenic Hf compositions. Alternatively, if carbonatites are products of extreme crystal fractionation or liquid immiscibility then the lack of radiogenic initial Hf isotope compositions also suggests that their sources do not have long-lived Hf depletions. We present a model in which the carbonatite source is created in the sublithospheric mantle by the crystallization of earlier carbonatitic melts from a mantle plume. This new source melts shortly after its formation by the excess heat provided by the approaching hotter center of the plume and/or the subsequent ascending silicate melts. This model explains the HIMU-EMI isotope characteristics of the East African carbonatites, their high LREE/HREE ratios as well as the rarity of carbonatites in the oceanic lithosphere.  相似文献   

19.
李建  王汝建 《地质学报》2004,78(2):228-233
通过南海北部ODP 1144站蛋白石含量测定及其堆积速率的计算,并结合氧同位素记录等相关资料,获得南海北部1050ka以来高分辨率的表层古生产力变化与冰期旋回和东亚季风的关系。约900ka以来,蛋白石含量及其堆积速率较900ka以前明显增加,反映了“中更新世革命”事件之后,全球气候变冷,并导致表层生产力的提高。由于第四纪冰期旋回中的冬、夏季风的加强,加上1144站特殊的地理位置,使该站在冰期时表层生产力增加,间冰期时表层生产力降低。浮游有孔虫氧同位素记录与蛋白石含量及其堆积速率的时间序列频谱分析结果显示,三者均出现了相对应的偏心率周期、斜率周期和岁差周期,说明该站表层生产力的变化主要受地球轨道周期的驱动。  相似文献   

20.
Differentiation of the continental crust is the result of complex interactions between a large number of processes, which govern partial melting of the deep crust, magma formation and segregation, and magma ascent to significantly higher crustal levels. The anatectic metasedimentary rocks exposed in the Southern Marginal Zone of the Limpopo Belt represent an unusually well‐exposed natural laboratory where the portion of these processes that operate in the deep crust can be directly investigated in the field. The formation of these migmatites occurred via absent incongruent melting reactions involving biotite, which produced cm‐ to m‐scale, K2O‐poor garnet‐bearing stromatic leucosomes, with high Ca/Na ratios relative to their source rocks. Field investigation combined with geochemical analyses, and phase equilibrium modelling designed to investigate some aspects of disequilibrium partial melting show that the outcrop features and compositions of the leucosomes suggest several steps in their evolution: (1) Melting of a portion of the source, with restricted plagioclase availability due to kinetic controls, to produce a magma (melt + entrained peritectic minerals in variable proportions relative to melt); (2) Segregation of the magma at near peak metamorphic conditions into melt accumulation sites (MAS), also known as future leucosome; (3a) Re‐equilibration of the magma with a portion of the bounding mafic residuum via chemical diffusion (H2O, K2O), which triggers the co‐precipitation of quartz and plagioclase in the MAS; (3b) Extraction of melt‐dominated magma to higher crustal levels, leaving peritectic minerals entrained from the site of the melting reaction, and the minerals precipitated in the MASs to form the leucosome in the source. The key mechanism controlling this behaviour is the kinetically induced restriction of the amount of plagioclase available to the melting reaction. This results in elevated melt H2O and K2O and chemical potential gradient for these components across the leucosome/mafic residuum contact. The combination of all of these processes accurately explains the composition of the K2O‐poor leucosomes. These findings have important implications for our understanding of melt segregation in the lower crust and minimum melt residency time which, according to the chemical modelling, is <5 years. We demonstrate that in some migmatitic granulites, the leucosomes constitute a type of felsic refractory residuum, rather than evidence of failed magma extraction. This provides a new insight into the ways that source heterogeneity may control anatexis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号