首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
不同矿化度下泥质对岩石电性影响的逾渗网络研究   总被引:5,自引:1,他引:4       下载免费PDF全文
为了进一步认识泥质对岩石宏观电性的影响规律,本文利用非规整三维逾渗网络模型,通过数值模拟研究了不同矿化度下泥质对岩石电性影响的规律. 模拟结果表明:在中低矿化度下,泥质对岩石导电整体上呈现减阻作用,随着泥质含量的增加,电阻率降低的速度减慢;中等矿化度下泥质的减阻效果明显弱于低矿化度下的减阻效果;在高矿化度下泥质对岩石导电整体上呈现增阻作用. 在高矿化度、高含水饱和度下泥质对岩石电性的影响较小. 泥质起减阻、增阻作用的具体矿化度范围取决于储层的孔隙度、连通性以及地层温度等特性.  相似文献   

2.
Electrical conductivity of alluvial sediments depends on litho‐textural properties, fluid saturation and porewater conductivity. Therefore, for hydrostratigraphic applications of direct current resistivity methods in porous sedimentary aquifers, it can be useful to characterize the prevailing mechanisms of electrical conduction (electrolytic or shale conduction) according to the litho‐textural properties and to the porewater characteristics. An experimental device and a measurement protocol were developed and applied to collect data on eight samples of alluvial sediments from the Po plain (Northern Italy), characterized by different grain‐size distribution, and fully saturated with porewater of variable conductivity. The bulk electrical conductivities obtained with the laboratory tests were interpreted with a classical two‐component model, which requires the identification of the intrinsic conductivity of clay particles and the effective porosity for each sample, and with a three‐component model. The latter is based on the two endmember mechanisms, surface and electrolytic conduction, but takes into account also the interaction between dissolved ions in the pores and the fluid‐grain interface. The experimental data and their interpretation with the phenomenological models show that the volumetric ratio between coarse and fine grains is a simple but effective parameter to determine the electrical behaviour of clastic hydrofacies at the scale of the representative elementary volume.  相似文献   

3.
The dependence of elastic moduli of shales on the mineralogy and microstructure of shales is important for the prediction of sweet spots and shale gas production. Based on 3D digital images of the microstructure of Longmaxi black shale samples using X-ray CT, we built detailed 3D digital images of cores with porosity properties and mineral contents. Next, we used finite-element (FE) methods to derive the elastic properties of the samples. The FE method can accurately model the shale mineralogy. Particular attention is paid to the derived elastic properties and their dependence on porosity and kerogen. The elastic moduli generally decrease with increasing porosity and kerogen, and there is a critical porosity (0.75) and kerogen content (ca. ≤3%) over which the elastic moduli decrease rapidly and slowly, respectively. The derived elastic moduli of gas- and oil-saturated digital cores differ little probably because of the low porosity (4.5%) of the Longmaxi black shale. Clearly, the numerical experiments demonstrated the feasibility of combining microstructure images of shale samples with elastic moduli calculations to predict shale properties.  相似文献   

4.
With the advancement in oil exploration,producible oil and gas are being found in low resistivity reservoirs,which may otherwise be erroneously thought as water zones from their resistivity.However,the evaluation of low resistivity reservoirs remains difficult from log interpretation.Since low resistivity in hydrocarbon bearing sands can be caused by dispersed clay,laminated shale,conductive matrix grains,microscopic capillary pores and high saline water,a new resistivity model is required for more accurate hydrocarbon saturation prediction for low resistivity formations.Herein,a generalized effective medium resistivity model has been proposed for low resistivity reservoirs,based on experimental measurements on artificial low resistivity shaly sand samples,symmetrical anisotropic effective medium theory for resistivity interpretations,and geneses and conductance mechanisms of low resistivity reservoirs.By analyzing effects of some factors on the proposed model,we show theoretically the model can describe conductance mechanisms of low resistivity reservoirs with five geneses.Also,shale distribution largely affects water saturation predicted by the model.Resistivity index decreases as fraction and conductivity of laminated shale,or fraction of dispersed clay,or conductivity of rock matrix grains increases.Resistivity index decreases as matrix percolation exponent,or percolation rate of capillary bound water increases,and as percolation exponent of capillary bound water,or matrix percolation rate,or free water percolation rate decreases.Rock sample data from low resistivity reservoirs with different geneses and interpretation results for log data show that the proposed model can be applied in low resistivity reservoirs containing high salinity water,dispersed clay,microscopic capillary pores,laminated shale and conductive matrix grains,and thus is considered as a generalized resistivity model for low resistivity reservoir evaluation.  相似文献   

5.
In order to better understand the nature of deep crustal high electrical conductivity, we studied the electrical properties of a tilted section of a former lower continental crust exposed in the Calabrian arc of the Alpine-Apennine mountain system. Geoelectric field measurements and impedance measurements on rock samples showed that these high-grade metamorphic rocks are generally highly resistive as expected for crystalline, electrolytically conducting rocks of low porosity. This holds for graphite-free metabasites as well as for metapelites which generally contain accessory, up to 3% biogenic graphite in the form of isolated grains. Clearly as an exception, a group of thin stratiform black horizons with thicknesses of 1-15 cm within the metapelitic series was detected by means of self-potential (SP) measurements. Rock samples from these horizons exhibit high, quasi-metallic bulk conductivities of up to 50 S/m (0.02 Ωm) in agreeement with up to 20% syngenetic graphite, forming a network of interconnected streaks or crack fillings. The high amount of carbon most probably originates from organic matter of Corg-rich black shales. Relative enrichment of the low mobility graphitic matter compared to the carbon content of the assumed protoliths may have been due to pressure solution and partial melting during prograde metamorphism, without major contribution of a fluid phase, resulting in isolated graphite flakes. Although enriched, graphite in this form has little effect on electrical conductivity. For the Calabrian black horizons, microscopic analyses make conceivable that, in a further decisive step, isolated graphite grains were mechanically smeared to continuous pathways during uplift by shearing, producing hereby the observed graphitic network which is needed to generate high conductivity. As Corg-rich black shales are common members of sedimentary sequences throughout the earth’s history, good conductors of this type may be expected in the continental crust at any depth depending on tectonic and metamorphic history, with the exception of magmatic protoliths. Regarding the extremely high conductivity of the meta-black shale samples containing syngenetic sheared graphite, a total thickness of a few meters of such rocks is sufficient to explain magnetotelluric high conductivity anomalies in the deep crust.  相似文献   

6.
The results of magnetotelluric and magnetovariational studies in the Uzon caldera are considered. An analysis of magnetotelluric parameters yielded the required method of interpretation. The MTS curves were interpreted in the framework of a 2D model using the REBOCC program. Geoelectric cross sections of the caldera were constructed along two orthogonal lines. Anomalies of high electrical conductivity were identified in the sediments and in the basement and were found to be confined to the locations of geothermal springs. The higher conductivity of these anomalies is here related to the presence of highly mineralized hydrothermal solutions. Electrical conductivity was used for an approximate estimation of porosity in the sediments and basement. A subvertical zone of higher porosity was identified at depths of 1.5–3.5 km in the caldera with a connection to the channelways of fluids rising into the sediments. It is hypothesized that highly mineralized solutions are diluted with vadose water in that zone and come through fissures onto the ground surface in the form of hot springs. The totality of these data suggested a conceptual model to characterize the main features in the generation of hydrothermal springs in the Uzon caldera.  相似文献   

7.
The recent use of marine electromagnetic technology for exploration geophysics has primarily focused on applying the controlled source electromagnetic method for hydrocarbon mapping. However, this technology also has potential for structural mapping applications, particularly when the relative higher frequency controlled source electromagnetic data are combined with the lower frequencies of naturally occurring magnetotelluric data. This paper reports on an extensive test using data from 84 marine controlled source electromagnetic and magnetotelluric stations for imaging volcanic sections and underlying sediments on a 128‐km‐long profile. The profile extends across the trough between the Faroe and Shetland Islands in the North Sea. Here, we focus on how 2.5D inversion can best recover the volcanic and sedimentary sections. A synthetic test carried out with 3D anisotropic model responses shows that vertically transverse isotropy 2.5D inversion using controlled source electromagnetic and magnetotelluric data provides the most accurate prediction of the resistivity in both volcanic and sedimentary sections. We find the 2.5D inversion works well despite moderate 3D structure in the synthetic model. Triaxial inversion using the combination of controlled source electromagnetic and magnetotelluric data provided a constant resistivity contour that most closely matched the true base of the volcanic flows. For the field survey data, triaxial inversion of controlled source electromagnetic and magnetotelluric data provides the best overall tie to well logs with vertically transverse isotropy inversion of controlled source electromagnetic and magnetotelluric data a close second. Vertical transverse isotropy inversion of controlled source electromagnetic and magnetotelluric data provided the best interpreted base of the volcanic horizon when compared with our best seismic interpretation. The structural boundaries estimated by the 20‐Ω·m contour of the vertical resistivity obtained by vertical transverse isotropy inversion of controlled source electromagnetic and magnetotelluric data gives a maximum geometric location error of 11% with a mean error of 1.2% compared with the interpreted base of the volcanic horizon. Both the model study and field data interpretation indicate that marine electromagnetic technology has the potential to discriminate between low‐resistivity prospective siliciclastic sediments and higher resistivity non‐prospective volcaniclastic sediments beneath the volcanic section.  相似文献   

8.
Based on the drilling data of the Upper Ordovician Wufeng Shale and the Lower Silurian Longmaxi Shale in southern Sichuan Basin,the construction of matrix pores and the development condition of fractures in a marine organic-rich shale are quantitatively evaluated through the establishment of the reservoir petrophysical models and porosity mathematical models.Our studies show that there are four major characteristics of the Longmaxi Shale confirmed by the quantitative characterization:(1)the pore volume of per unit mass is the highest in organic matter,followed in clay minerals,finally in brittle minerals;(2)the porosity of the effective shale reservoir is moderate and equal to that of the Barnett Shale,and the main parts of the shale reservoir spaces are interlayer pores of clay minerals and organic pores;(3)the porosity of the organic-rich shale is closely related to TOC and brittle mineral/clay mineral ratio,and mainly increases with TOC and clay mineral content;(4)fractures are developed in this black shale,and are mainly micro ones and medium-large ones.In the Longmaxi Shale,the fracture density increases from top to bottom,reflecting the characteristics with high brittle mineral content,high Young’s modulus,low Poisson's ratio and high brittleness at its bottom.  相似文献   

9.
A detailed magnetotelluric survey was conducted in 2013 in the Sehqanat oil field, southwestern Iran to map the geoelectrical structures of the sedimentary Zagros zone, particularly the boundary between the Gachsaran Formation acting as cap rock and the Asmari Formation as the reservoir. According to the electrical well logs, a large resistivity contrast exists between the two formations. The Gachsaran Formation is formed by tens to hundreds of metres of evaporites and it is highly conductive (ca. 1 Ωm–10 Ωm), and the Asmari Formation consists of dense carbonates, which are considerably more resistive (more than 100 Ωm). Broadband magnetotelluric data were collected along five southwest–northeast directed parallel lines with more than 600 stations crossing the main geological trend. Although dimensionality and strike analysis of the magnetotelluric transfer functions showed that overall they satisfied local 2D conditions, there were also strong 3D conditions found in some of the sites. Therefore, in order to obtain a more reliable image of the resistivity distribution in the Sehqanat oil field, in addition to standard 2D inversion, we investigated to what extent 3D inversion of the data was feasible and what improvements in the resistivity image could be obtained. The 2D inversion models using the determinant average of the impedance tensor depict the main resistivity structures well, whereas the estimated 3D model shows significantly more details although problems were encountered in fitting the data with the latter. Both approaches resolved the Gachsaran–Asmari transition from high conductivity to moderate conductivity. The well‐known Sehqanat anticline could also be delineated throughout the 2D and 3D resistivity models as a resistive dome‐shaped body in the middle parts of the magnetotelluric profiles.  相似文献   

10.
芦山MS7.0地震余震期间大地电磁视电阻率变   总被引:4,自引:2,他引:2       下载免费PDF全文
以2013年4月20日芦山MS7.0地震震后5月3—24日距主震震中约7 km处所观测到的大地电磁数据为基础, 分析地下电阻率变化与较大余震(MS>3.0)活动的关系. 为确保用于地震异常分析的观测数据的可靠性, 基于大地电磁方法的特点, 使用稳定估算(robust)技术和相干度因子约束等方法得到各频点一定数量的自功率谱和互功率谱, 再根据视电阻率和相位曲线的分布形态, 剔除引起视电阻率和相位曲线突变的谱值之后得到高质量的视电阻率和相位曲线. 此外, 根据曲线形态和误差分布来判断数据质量, 剔除可能受到干扰影响的数据, 以获得能够真实地反映地下电阻率变化的视电阻率分析结果. 结果显示: 观测期内的yx极化模式的视电阻率值总体呈非单调的增大趋势, 最大增幅达27%; yx极化模式的视电阻率值几乎在每个相对集中的较大余震丛集后均会出现高值, 而较大余震丛集期间对应的则是视电阻率低值. 从物理机制上分析地震的电阻率效应源于微裂隙内孔隙流体的变化, 故推测芦山地震余震期间电阻率的增加趋势是由于震后应变释放区应力恢复和孔隙度恢复所致.   相似文献   

11.
储层渗透性与地层因素关系的实验研究与分析   总被引:3,自引:0,他引:3       下载免费PDF全文
本文对渤海湾盆地不同孔隙结构样品的孔、渗、核磁、岩电、压汞、X衍射及铸体薄片等配套岩石物理实验数据进行了综合分析,通过逐一考察同一套岩芯样品的地层因素与渗透率、压汞喉径均值、储层品质指数之间的实验关系,并分别与地层因素-孔隙度交绘图进行对比分析,发现储层渗透性与地层因素之间并非简单的单调函数关系,孔隙度相近但孔隙结构类型不同、渗透率差异明显的岩芯可以具有相近的地层因素,导电能力接近.在实验数据分析的基础上通过理论分析证明了这一实验关系的合理性,并指出孔隙度及导电能力相近的岩芯,其渗透率差异与喉径均值的平方比、孔隙曲折度及几何形态相关.  相似文献   

12.
海拉尔盆地中-上地壳电性结构特征研究   总被引:2,自引:2,他引:0       下载免费PDF全文
本文通过对横穿海拉尔盆地的一条长约222km的北西—南东向大地电磁测深剖面数据的定性分析及二维定量反演解释,首次获得了海拉尔盆地高精度大范围的电性结构图.海拉尔盆地中-上地壳电性结构纵向上具有典型的分层特性,总体可分为四层,即低阻层-高阻层-低阻层-高阻层,而横向上又具有分块特点.海拉尔盆地边缘及内部分布的众多断裂将盆地划分为隆起与坳陷相间的格局,并发现盆地内部坳陷区也存在有小规模凸起,每一构造单元内部电性结构各具特点.海拉尔盆地中-上地壳低阻层底面最深达28km,通常在6~16km之间,但厚度变化不大,在4~10km之间,且隆起区与坳陷区底面埋深差别较大.据电性结构模型推测出两条新断裂F8和F9,且断裂F9规模较大,为基底断裂.中-上地壳的低阻层可能在一定程度上控制着海拉尔盆地内油气田的分布格局.  相似文献   

13.
Sedimentary rocks beneath the Columbia River Basalt Group are recognized as having potential for oil and gas production, but the overlying layered basalts effectively mask seismic reflections from the underlying sediments. Four electromagnetic (EM) methods have been applied on profiles crossing Boylston Ridge, a typical east–west trending anticline of the Yakima Fold Belt, in an attempt to map the resistivity interface between the basalts and the sediments and to map variations in structure and resistivity within the sediments. The EM surveys detected strong variations in resistivity within the basalts, and in particular the continuous magnetotelluric array profiling (EMAP) revealed resistivity lows beneath the surface anticlines. These low resistivity zones probably coincide with fracturing in the core of the anticlines and they appear to correlate well with similar zones of low seismic velocity observed on a nearby seismic profile. The controlled-source EM surveys (in-loop transient, long-offset transient, and variable-offset frequency-domain) were designed in anticipation of relatively uniform high resistivity basalts, and were found to have been seriously distorted by the intrabasalt conductors discovered in the field. In particular, the resistivity sections derived from 1D inversions were found to be inconsistent and misleading. The EMAP survey provided the most information about the subsurface resistivity distribution, and was certainly the most cost-effective. However, both controlled-source and EMAP surveys call for accurate 2D or 3D inversion to accommodate the geological objectives of this project.  相似文献   

14.
Stream bottom resistivity tomography to map ground water discharge   总被引:2,自引:0,他引:2  
This study investigates the effectiveness of direct current electrical resistivity as a tool for assessing ground water/surface water interactions within streams. This research has shown that patterns of ground water discharge can be mapped at the meter scale, which is important for understanding stream water quality and ecosystem function. Underwater electrical resistivity surveys along a 107-m stream section within the Burd Run Watershed in South Central Pennsylvania identified three resistivity layers: a resistive (100 to 400 Ωm) surface layer corresponding to the streambed sediments, a conductive (20 to 100 Ωm) middle layer corresponding to residual clay sediments, and a resistive (100 to 450 Ωm) bottom layer corresponding to the carbonate bedrock. Tile probing to determine the depth to the bedrock and resistivity test box analysis of augered sediment samples confirmed these interpretations of the resistivity data. Ground water seeps occurred where the resistivity data showed that the residual clays were thinnest and bedrock was closest to the streambed. Plotting the difference in resistivity between two surveys, one conducted during low-stage and the other during high-stage stream conditions, showed changes in the conductivity of the pore fluids saturating the sediments. Under high-stream stage conditions, the top layer showed increased resistivity values for sections with surface water infiltration but showed nearly constant resistivity in sections with ground water seeps. This was expressed as difference values less than 50 Ωm in the area of the seeps and greater than 50 Ωm change for the streambed sediments saturated by surface water. Thus, electrical resistivity aided in characterizing ground water discharge zones by detecting variations in subsurface resistivity under high- and low-stream stage conditions as well as mapping subsurface heterogeneities that promote these exchanges.  相似文献   

15.
不同泥质分布形式泥质砂岩导电规律实验研究   总被引:2,自引:1,他引:1       下载免费PDF全文
本文利用人工制作的不同含量分散泥质和层状泥质砂岩岩心样品,测量不同矿化度和不同含油饱和度的岩心电阻率,从实验角度研究了不同泥质分布形式和含量的岩心导电规律,结果表明,泥质分布形式或含量不同,则泥质砂岩导电规律不同.基于层状泥质与分散泥质砂岩的并联导电实验规律,以及分散粘土和地层水混合物的导电规律可用HB电阻率方程描述,建立了考虑泥质分布形式影响的泥质砂岩电阻率模型.通过1组不同泥质分布形式泥质砂岩人造岩心实验数据的测试,表明该模型可以描述分散泥质砂岩、层状泥质砂岩和混合泥质砂岩地层的导电规律.分散泥质,层状泥质,人造岩样,实验测量,并联导电,HB方程,电阻率模型  相似文献   

16.
The efficacy of the magnetotelluric and audiomagnetotelluric (MT/AMT) methods for detailing the structure of a hypothetical geological section is investigated by using the singular value decomposition (SVD) technique. The section is representative of southeastern Turkey, which is mostly covered by basalt and is a prime area for oil exploration. One of the geological units, the Germav shale at a depth of 600 m, is a problem layer for electromagnetic surveys because of its very low resistivity (on average 3 Ωm) and highly variable thickness across the area (200–900 m). In the MT frequency range (0.0004–40 Hz) its total conductance—or, since its resistivity is known from resistivity log information, its thickness—is the best resolved model parameter. The total depth to the Germav shale and the resistivity of the Cambrian/Precambrian basement are the marginally resolved parameters. In the AMT frequency range (4–10000 Hz) the resistivity of the surface basalt layer strongly affects the resolution of the other, less important, model parameters which are the total depth to the Germav shale and the total conductance of the Germav shale. The errors in the measurements determine the number of model parameters resolvable, and are also important for interpretation of the geological model parameters to within a desired accuracy. It is shown that statistical evaluation of the MT and/or AMT interpretations by using an SVD factorization of the sensitivity matrix can be helpful to define the importance of some particular stage of the interpretation, and also provides a priori knowledge to plan a proposed survey. Arrangements of MT and AMT observations, together with some Schlumberger resistivity soundings, on a large grid will certainly provide three-dimensional detailed information of the deep geoelectric structure of the area.  相似文献   

17.
The oil shale exploration program in Jordan is undertaking great activity in the domain of applied geophysical methods to evaluate bitumen‐bearing rock. In the study area, the bituminous marl or oil shale exhibits a rock type dominated by lithofacies layers composed of chalky limestone, marls, clayey marls, and phosphatic marls. The study aims to present enhancements for oil shale seam detection using progressive interpretation from a one‐dimensional inversion to a three‐dimensional modelling and inversion of ground‐based transient electromagnetic data at an area of stressed geological layers. The geophysical survey combined 58 transient electromagnetic sites to produce geoelectrical structures at different depth slices, and cross sections were used to characterise the horizon of the most likely sites for mining oil shale. The results show valuable information on the thickness of the oil shale seam at 3.7 Ωm, which is correlated to the geoelectrical layer between 2‐ and 4 ms transient time delays, and at depths ranging between 85 and 105 m. The 300 m penetrated depth of the transient electromagnetic soundings allows the resolution of the main geological units at narrow resistivity contrast and the distinction of the main geological structures that constrain the detection of the oil shale seam. This geoelectrical layer at different depth slices illustrates a localised oil shale setting and can be spatially correlated with an area bounded by fold and fault systems. Also, three‐dimensional modelling and inversion for synthetic and experimental data are introduced at the faulted area. The results show the limitations of oil shale imaging at a depth exceeding 130 m, which depends on the near‐surface resistivity layer, the low resistivity contrast of the main lithological units, and the degree of geological detail achieved at a suitable model's misfit value.  相似文献   

18.
The conductance of pyrite-bearing laminated and dispersed shaly sands is not well understood and resistivity models for pyrite-bearing shaly sands are nonexistent. Thus, we first synthesize clean pyrite-matrix samples, and quartz-matrix samples with variable laminated shale, dispersed shale, and pyrite content and then perform petrophysics experiments to assess the effect of pyrite content on the conductivity of pyrite-bearing shaly sands. Second, based on the differences in conductivity and conduction pathways and geometries because of the variable composition of the pyrite-bearing laminated and dispersed shaly sands, we divide the shaly sands into their components, i.e., laminated shale, quartz grains, pyrite grains, hydrocarbon, dispersed shale, microscopic capillary water, and mobile water. A generalized resistivity model is proposed to describe the conductivity of pyrite-bearing laminated and dispersed shaly sands, based on the combined conductivity differential equation and generalized Archie equation. In the generalized resistivity model, the conductivity differential equation is used to describe the conductivity of dispersed inclusions in a host, whereas the generalized Archie equation is used to describe the conductivity of two conducting phases. Moreover, parallel conductance theory is used to describe the conductivity of dispersed shaly sands and laminated shale. Theoretical analysis suggests that the proposed model satisfies the physical constraints and the model and experimental results agree. The resistivity and resistivity index of shaly sands decrease with increasing conductivity and pyrite. Finally, the accuracy of the resistivity model is assessed based on experimental data from 46 synthetic core samples with different oil saturation. The model can describe the conductivity of clean pyrite-matrix samples, and quartz-matrix samples with different volumes of laminated shale, dispersed shale, and pyrite. An accurate saturation model of pyrite-bearing laminated and dispersed shaly sands is thus obtained and the log data interpretation in complex shaly sands can improve with the proposed model.  相似文献   

19.
庐江-枞阳矿集区是长江中下游成矿带内的一个重要的多矿种成矿区.为揭示矾山-将军庙地区的地质结构以指导找矿,首先,在庐枞矿集区北部的矾山-将军庙地区开展了三维音频大地电磁数据采集工作,采用Rhoplus方法进行AMT数据死频带校正保证数据质量,利用相位张量分析地下介质的维性特征;其次,利用模块化三维反演并行代码ModEM开展了实测数据的三维反演,获得了一个典型的具有双层结构特征的火山岩盆地三维地下电性模型;最后通过电性模型及其他地质资料的综合解释,依据反演模型中近地表的低阻层和深部的高阻隆起区,分别勾画出了火山岩地层的厚度和深部侵入岩的分布范围,并在小岭地区发现地表浅部下方存在一个含矿次级火山机构的高导体.  相似文献   

20.
泥质分布形式对泥质砂岩电性的影响规律研究   总被引:1,自引:1,他引:0       下载免费PDF全文
介绍了将混合理论用于结构泥质、将基于距离的升尺度(DBU)方法用于层状泥质电性研究的原理和方法,通过对实际岩心资料以及井资料的分析处理,证实了将混合理论用于结构泥质、将DBU方法用于层状泥质砂岩电性研究的合理性,最后利用上述方法进一步分析了泥质含量、泥质的分布形式等对泥质砂岩电阻率的影响及规律,研究结果表明:随着泥质含量的增加,泥质砂岩电阻率逐渐降低,且降低的幅度随含水饱和度的降低而增大;当测量电流方向与层状泥质垂直时,泥质对电性的影响较弱,但层状泥质和结构泥质的相对含量对结果的影响很大;当测量电流方向与层状泥质平行时,泥质对电性的影响较强,但层状泥质和结构泥质的相对含量对结果的影响不大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号