首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
In marine acquisition, reflections of sound energy from the water–air interface result in ghosts in the seismic data, both in the source side and the receiver side. Ghosts limit the bandwidth of the useful signal and blur the final image. The process to separate the ghost and primary signals, called the deghosting process, can fill the ghost notch, broaden the frequency band, and help achieve high‐resolution images. Low‐signal‐to‐noise ratio near the notch frequencies and 3D effects are two challenges that the deghosting process has to face. In this paper, starting from an introduction to the deghosting process, we present and compare two strategies to solve the latter. The first is an adaptive mechanism that adjusts the deghosting operator to compensate for 3D effects or errors in source/receiver depth measurement. This method does not include explicitly the crossline slowness component and is not affected by the sparse sampling in the same direction. The second method is an inversion‐type approach that does include the crossline slowness component in the algorithm and handles the 3D effects explicitly. Both synthetic and field data examples in wide azimuth acquisition settings are shown to compare the two strategies. Both methods provide satisfactory results.  相似文献   

2.
The key objective of an imaging algorithm is to produce accurate and high‐resolution images of the subsurface geology. However, significant wavefield distortions occur due to wave propagation through complex structures and irregular acquisition geometries causing uneven wavefield illumination at the target. Therefore, conventional imaging conditions are unable to correctly compensate for variable illumination effects. We propose a generalised wave‐based imaging condition, which incorporates a weighting function based on energy illumination at each subsurface reflection and azimuth angles. Our proposed imaging kernel, named as the directional‐oriented wavefield imaging, compensates for illumination effects produced by possible surface obstructions during acquisition, sparse geometries employed in the field, and complex velocity models. An integral part of the directional‐oriented wavefield imaging condition is a methodology for applying down‐going/up‐going wavefield decomposition to both source and receiver extrapolated wavefields. This type of wavefield decomposition eliminates low‐frequency artefacts and scattering noise caused by the two‐way wave equation and can facilitate the robust estimation for energy fluxes of wavefields required for the seismic illumination analysis. Then, based on the estimation of the respective wavefield propagation vectors and associated directions, we evaluate the illumination energy for each subsurface location as a function of image depth point and subsurface azimuth and reflection angles. Thus, the final directional‐oriented wavefield imaging kernel is a cross‐correlation of the decomposed source and receiver wavefields weighted by the illuminated energy estimated at each depth location. The application of the directional‐oriented wavefield imaging condition can be employed during the generation of both depth‐stacked images and azimuth–reflection angle‐domain common image gathers. Numerical examples using synthetic and real data demonstrate that the new imaging condition can properly image complex wave paths and produce high‐fidelity depth sections.  相似文献   

3.
We study the azimuthally dependent hyperbolic moveout approximation for small angles (or offsets) for quasi‐compressional, quasi‐shear, and converted waves in one‐dimensional multi‐layer orthorhombic media. The vertical orthorhombic axis is the same for all layers, but the azimuthal orientation of the horizontal orthorhombic axes at each layer may be different. By starting with the known equation for normal moveout velocity with respect to the surface‐offset azimuth and applying our derived relationship between the surface‐offset azimuth and phase‐velocity azimuth, we obtain the normal moveout velocity versus the phase‐velocity azimuth. As the surface offset/azimuth moveout dependence is required for analysing azimuthally dependent moveout parameters directly from time‐domain rich azimuth gathers, our phase angle/azimuth formulas are required for analysing azimuthally dependent residual moveout along the migrated local‐angle‐domain common image gathers. The angle and azimuth parameters of the local‐angle‐domain gathers represent the opening angle between the incidence and reflection slowness vectors and the azimuth of the phase velocity ψphs at the image points in the specular direction. Our derivation of the effective velocity parameters for a multi‐layer structure is based on the fact that, for a one‐dimensional model assumption, the horizontal slowness and the azimuth of the phase velocity ψphs remain constant along the entire ray (wave) path. We introduce a special set of auxiliary parameters that allow us to establish equivalent effective model parameters in a simple summation manner. We then transform this set of parameters into three widely used effective parameters: fast and slow normal moveout velocities and azimuth of the slow one. For completeness, we show that these three effective normal moveout velocity parameters can be equivalently obtained in both surface‐offset azimuth and phase‐velocity azimuth domains.  相似文献   

4.
To advance and optimize secondary and tertiary oil recovery techniques, it is essential to know the areal propagation and distribution of the injected fluids in the subsurface. We investigate the applicability of controlled‐source electromagnetic methods to monitor fluid movements in a German oilfield (Bockstedt, onshore Northwest Germany) as injected brines (highly saline formation water) have much lower electrical resistivity than the oil within the reservoir. The main focus of this study is on controlled‐source electromagnetic simulations to test the sensitivity of various source–receiver configurations. The background model for the simulations is based on two‐dimensional inversion of magnetotelluric data gathered across the oil field and calibrated with resistivity logs. Three‐dimensional modelling results suggest that controlled‐source electromagnetic methods are sensitive to resistivity changes at reservoir depths, but the effect is difficult to resolve with surface measurements only. Resolution increases significantly if sensors or transmitters can be placed in observation wells closer to the reservoir. In particular, observation of the vertical electric field component in shallow boreholes and/or use of source configurations consisting of combinations of vertical and horizontal dipoles are promising. Preliminary results from a borehole‐to‐surface controlled‐source electromagnetic field survey carried out in spring 2014 are in good agreement with the modelling studies.  相似文献   

5.
三维随钻反射声波成像测井的数值模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
采用有限差分方法对基于圆弧片状声源和接收器的三维随钻反射声波成像测井进行模拟,研究了反射信号的幅度、相位等参数随方位和源距的变化规律,着重分析了利用该方法在水平井中对地层界面进行探测的可行性.研究结果表明,钻铤的存在使得圆弧片状声源能够向固定方位辐射声场,其主瓣三分贝角宽窄,旁瓣级低,向目的方位辐射的纵波场的幅度约为传统环状声源的0.6倍,适用于三维随钻反射声波成像测井;对于本文计算的井孔模型,反射波信号约为井孔导波信号的1/100;随着源距的增加,反射纵波幅度逐渐减小,转换波(P-SV、SV-P)的幅度先增加后减小,反射SV波的幅度增加,建议在实际应用中,选择合适源距的波形进行处理,并对其他非目的波动进行压制,以期获得更好的成像效果.本文模拟了在水平井中对地层上下界面进行探测的例子,结果显示,反射波纵波信号有较好的方位分辨率,能够准确获得井外波阻抗不连续界面的方位,而且对上、下界面的成像互不影响.  相似文献   

6.
PKKP signals from Novaya Zemlya recorded at LASA at distances around 60° show consistent anomalies in both slowness and azimuth. The observed anomaly suggests that the signal is a BC branch arrival, although the arrival time corresponds to the DF branch. The BC branch, however, does not extend back to this distance. The azimuth of approach is in the range 229–245°, instead of the expected 186°. These anomalies are associated only with PKKP; analysis of the core phases PKiKP and P′P′ (BC) from the same events show that they arrived at LASA with the appropriate slownesses and azimuths.The PKKP signals can be interpreted as “scattered” PKKP; the scattering occurs on underside reflection at the core-mantle boundary and is probably caused by topographic irregularities on the boundary itself. The calculated scattering region has a surface projection at about 60°S, 134°E, which is outside the diametral plane through source and receiver, and about 21° from the expected PKKP reflection point at 76°S, 95°E.Both the “direct” and “scattered” arms of the PKKP signal have a PK path close to that of the “C” end of the BC branch. The unexpectedly large amplitude of the arrival suggests that there may be a focusing of energy at C, which would indicate a change in velocity gradient just above the inner core boundary. The observations nevertheless require, on the scattering interpretation, lateral variations in the topography of the core-mantle boundary and a region of relatively large topography responsible for the anomalous PKKP observations.  相似文献   

7.
The receiver function method was originally developed to analyse earthquake data recorded by multicomponent (3C) sensors and consists in deconvolving the horizontal component by the vertical component. The deconvolution process removes travel path effects from the source to the base of the target as well as the earthquake source signature. In addition, it provides the possibility of separating the emergent P and PS waves based on adaptive subtraction between recorded components if plane waves of constant ray parameters are considered. The resulting receiver function signal is the local PS wave's impulse response generated at impedance contrasts below the 3C receiver.We propose to adapt this technique to the wide‐angle multi‐component reflection acquisition geometry. We focus on the simplest case of land data reflection acquisition. Our adapted version of the receiver function approach consists in a multi‐step procedure that first removes the P wavefield recorded on the horizontal component and next removes the source signature. The separation step is performed in the τ?p domain while the source designature can be achieved in either the τ?p or the t?x domain. Our technique does not require any a priori knowledge of the subsurface. The resulting receiver function is a pure PS‐wave reflectivity response, which can be used for amplitude versus slowness or offset analysis. Stack of the receiver function leads to a high‐quality S wave image.  相似文献   

8.
The analysis of seismic ambient noise acquired during temporary or permanent microseismic monitoring campaigns (e.g., improved/enhanced oil recovery monitoring, surveillance of induced seismicity) is potentially well suited for time‐lapse studies based on seismic interferometry. No additional data acquisition required, ambient noise processing can be automatized to a high degree, and seismic interferometry is very sensitive to small medium changes. Thus there is an opportunity for detection and monitoring of velocity variations in a reservoir at negligible additional cost and effort. Data and results are presented from an ambient noise interferometry study applied to two wells in a producing oil field in Romania. Borehole microseismic monitoring on three component geophones was performed for four weeks, concurrent with a water‐flooding phase for improved oil recovery from a reservoir in ca. 1 km depth. Both low‐frequency (2 Hz–50 Hz) P‐ and S‐waves propagating through the vertical borehole arrays were reconstructed from ambient noise by the virtual source method. The obtained interferograms clearly indicate an origin of the ambient seismic energy from above the arrays, thus suggesting surface activities as sources. It is shown that ambient noise from time periods as short as 30 seconds is sufficient to obtain robust interferograms. Sonic log data confirm that the vertical and horizontal components comprise first arrivals of P‐wave and S‐waves, respectively. The consistency and high quality of the interferograms throughout the entire observation period further indicate that the high‐frequency part (up to 100 Hz) represents the scattered wave field. The temporal variation of apparent velocities based on first‐arrival times partly correlates with the water injection rate and occurrence of microseismic events. It is concluded that borehole ambient noise interferometry in production settings is a potentially useful method for permanent reservoir monitoring due to its high sensitivity and robustness.  相似文献   

9.
In 2005, a multicomponent ocean bottom node data set was collected by BP and BHP Billiton in the Atlantis field in the Gulf of Mexico. Our results are based on data from a few sparse nodes with millions of shots that were analysed as common receiver azimuthal gathers. A first‐order look at P‐wave arrivals on a common receiver gather at a constant offset reveals variation of P‐wave arrival time as a function of azimuth indicating the presence of azimuthal anisotropy at the top few layers. This prompted us to investigate shear arrivals on the horizontal component data. After preliminary processing, including a static correction, the data were optimally rotated to radial (R) and transverse (T) components. The R component shows azimuthal variation of traveltime indicating variation of velocity with azimuth; the corresponding T component shows azimuthal variation of amplitude and phase (polarity reversal). The observed shear‐wave (S‐wave) splitting, previously observed azimuthal P‐wave velocity variation and azimuthal P‐wave amplitude variation, all indicate the occurrence of anisotropy in the shallow (just below the seafloor) subsea sediment in the area. From the radial component azimuthal gather, we analysed the PP‐ and PS‐wave amplitude variation for the first few layers and determined corresponding anisotropy parameter and VP/VS values. Since fracture at this depth is not likely to occur, we attribute the observed azimuthal anisotropy to the presence of microcracks and grain boundary orientation due to stress. The evidence of anisotropy is ubiquitous in this data set and thus it argues strongly in favour of considering anisotropy in depth imaging for obtaining realistic subsurface images, at the least.  相似文献   

10.
In shallow water the frequency domain controlled source electromagnetic method is subject to airwave saturation that strongly limits the sensitivity to resistive hydrocarbon targets at depth. It has been suggested that time‐domain CSEM may offer an improved sensitivity and resolution of these deep targets in the presence of the airwave. In order to examine and test these claims, this work presents a side‐by‐side investigation of both methods with a main focus on practical considerations, and how these effect the resolution of a hydrocarbon reservoir. Synthetic noisy data for both time‐domain and frequency domain methods are simulated using a realistic frequency dependent noise model and frequency dependent scaling for representative source waveforms. The synthetic data studied here include the frequency domain response from a compact broadband waveform, the time‐domain step‐response from a low‐frequency square wave and the time‐domain impulse response obtained from pseudo‐random binary sequences. These data are used in a systematic resolution study of each method as a function of water‐depth, relative noise and stacking length. The results indicate that the broadband frequency domain data have the best resolution for a given stacking time, whereas the time‐domain data require prohibitively longer stacking times to achieve similar resolution.  相似文献   

11.
Introduction The azimuth and slowness are two major features of seismic signals. The accurate estimation of them is quite important for both phase identification and event location. Generally, there are two types of seismic stations, i.e. 3-component stations (3C) and arrays. To estimate the two direc-tional parameters, the polarization analysis (Jurkevics, 1988) is commonly used for 3C stations and the frequency-wavenumber spectrum analysis ( f-k) (Capon, 1969; Kvaerna, Doornbos, 1986) is …  相似文献   

12.
靳平  潘常洲 《地震学报》2002,24(6):617-626
介绍一种新的适合于地方遥测台网数据处理的方法,估算远震信号到达台站的方位角和慢度.该方法是根据信号在各台站上的到时与台站位置矢量在信号传播方向上的投影之间的相关性的原理.实际分析结果表明,应用该方法对地方台网的记录进行处理时可以准确地计算出信号的方位角和慢度,并能准确快捷地对地方台网记录的远震信号进行解释.   相似文献   

13.
Extended common‐image‐point gathers (CIP) constructed by wide‐azimuth TI wave‐equation migration contain all the necessary information for angle decomposition as a function of the reflection and azimuth angles at selected locations in the subsurface. The aperture and azimuth angles are derived from the extended images using analytic relations between the space‐ and time‐lag extensions using information which is already available at the time of migration, i.e. the anisotropic model parameters. CIPs are cheap to compute because they can be distributed in the image at the most relevant positions, as indicated by the geologic structure. If the reflector dip is known at the CIP locations, then the computational cost can be reduced by evaluating only two components of the space‐lag vector. The transformation from extended images to angle gathers is a planar Radon transform which depends on the local medium parameters. This transformation allows us to separate all illumination directions for a given experiment, or between different experiments. We do not need to decompose the reconstructed wavefields or to choose the most energetic directions for decomposition. Applications of the method include illumination studies in complex areas where ray‐based methods fail, and assuming that the subsurface illumination is sufficiently dense, the study of amplitude variation with aperture and azimuth angles.  相似文献   

14.
As motivation for considering new electromagnetic techniques for hydraulic fracture monitoring, we develop a simple financial model for the net present value offered by geophysical characterization to reduce the error in stimulated reservoir volume calculations. This model shows that even a 5% improvement in stimulated reservoir volume for a 1 billion barrel (bbl.) field results in over 1 billion U.S. dollars (US$) in net present value over 24 years for US$100/bbl. oil and US$0.5 billion for US$50/bbl. oil. The application of conductivity upscaling, often used in electromagnetic modeling to reduce mesh size and thus simulation runtimes, is shown to be inaccurate for the high electrical contrasts needed to represent steel‐cased wells in the earth. Fine‐scale finite‐difference modeling with 12.22‐mm cells to capture the steel casing and fractures shows that the steel casing provides a direct current pathway to a created fracture that significantly enhances the response compared with neglecting the steel casing. We consider conductively enhanced proppant, such as coke‐breeze‐coated sand, and a highly saline brine solution to produce electrically conductive fractures. For a relatively small frac job at a depth of 3 km, involving 5,000 bbl. of slurry and a source midpoint to receiver separation of 50 m, the models show that the conductively enhanced proppant produces a 15% increase in the electric field strength (in‐line with the transmitter) in a 10‐Ωm background. In a 100‐Ωm background, the response due to the proppant increases to 213%. Replacing the conductive proppant by brine with a concentration of 100,000‐ppm NaCl, the field strength is increased by 23% in the 100‐Ωm background and by 2.3% in the 10‐Ωm background. All but the 100,000‐ppm NaCl brine in a 10‐Ωm background produce calculated fracture‐induced electric field increases that are significantly above 2%, a value that has been demonstrated to be observable in field measurements.  相似文献   

15.
This paper presents the theory to eliminate from the recorded multi‐component source, multi‐component receiver marine electromagnetic measurements the effect of the physical source radiation pattern and the scattering response of the water‐layer. The multi‐component sources are assumed to be orthogonally aligned above the receivers at the seabottom. Other than the position of the sources, no source characteristics are required. The integral equation method, which for short is denoted by Lorentz water‐layer elimination, follows from Lorentz' reciprocity theorem. It requires information only of the electromagnetic parameters at the receiver level to decompose the electromagnetic measurements into upgoing and downgoing constituents. Lorentz water‐layer elimination replaces the water layer with a homogeneous half‐space with properties equal to those of the sea‐bed. The source is redatumed to the receiver depth. When the subsurface is arbitrary anisotropic but horizontally layered, the Lorentz water‐layer elimination scheme greatly simplifies and can be implemented as deterministic multi‐component source, multi‐component receiver multidimensional deconvolution of common source gathers. The Lorentz deconvolved data can be further decomposed into scattering responses that would be recorded from idealized transverse electric and transverse magnetic mode sources and receivers. This combined electromagnetic field decomposition on the source and receiver side gives data equivalent to data from a hypothetical survey with the water‐layer absent, with idealized single component transverse electric and transverse magnetic mode sources and idealized single component transverse electric and transverse magnetic mode receivers. When the subsurface is isotropic or transverse isotropic and horizontally layered, the Lorentz deconvolution decouples into pure transverse electric and transverse magnetic mode data processing problems, where a scalar field formulation of the multidimensional Lorentz deconvolution is sufficient. In this case single‐component source data are sufficient to eliminate the water‐layer effect. We demonstrate the Lorentz deconvolution by using numerically modeled data over a simple isotropic layered model illustrating controlled‐source electromagnetic hydrocarbon exploration. In shallow water there is a decrease in controlled‐source electromagnetic sensitivity to thin resistors at depth. The Lorentz deconvolution scheme is designed to overcome this effect by eliminating the water‐layer scattering, including the field's interaction with air.  相似文献   

16.
上海地震台阵的地震定位方法   总被引:3,自引:0,他引:3  
上海地震台阵数据处理软件系统的地震定位方法,采用台阵的聚束方法得到地震方位角和视慢度,根据统计得到的视慢度——震中距表推算震中距。并结合了地震台网的定位方法,由单台记录的各类主要震相从JB走时表得到震中距,然后进行地震定位。该定位方法可对近震、远震进行定位处理,并由深震相得到震源深度。  相似文献   

17.
何斌  张元生  李稳 《内陆地震》2011,25(2):136-142
使用联合定位方法对2008年5月12日至7月7日M<,L>≥3.0的1 028次地震进行重新定位.针对EVT格式的波形数据,重新求取视出射角参数和到时参数,建立地震波到时与视出射角联合定位方法.视出射角参数对深度较敏感,其联合定位结果能保证经度和纬度方向上的定位精度,特别是能提高对深度的分辨能力.联合定位结果表明,地震...  相似文献   

18.
Anisotropic variations in attenuation are of interest since they can give information on the fracture system and may be more amenable to measurement than absolute attenuation values. We examine methods for detecting changes in relative attenuation with azimuth from VSP data, and validate the techniques on synthetic data. Analysis of a multi‐azimuth walkaway VSP data set from a fractured hydrocarbon reservoir indicates that such azimuthal variations in P‐wave attenuation are observable. The effects are localized in the reservoir, and analysis allows the prediction of a fracture strike direction, which agrees with geological information. The observed effects can be modelled under reasonable assumptions, which suggests the validity of the link between the anisotropic attenuation and the fracturing.  相似文献   

19.
Shear‐wave polarization and time delay are attributes commonly used for fracture detection and characterization. In time‐lapse analysis these parameters can be used as indicators of changes in the fracture orientation and density. Indeed, changes in fracture characteristics provide key information for increased reservoir characterization and exploitation. However, relative to the data uncertainty, is the comparison of these parameters over time statistically meaningful? We present the uncertainty in shear‐wave polarization and time delay as a function of acquisition uncertainties, such as receiver and source misorientation, miscoupling and band‐limited random noise. This study is applied to a time‐lapse borehole seismic survey, recorded in Vacuum Field, New Mexico. From the estimated uncertainties for each survey, the uncertainty in the difference between the two surveys is 31° for the shear‐wave polarization angle and 4 ms for the shear‐wave time delay. Any changes in these parameters greater than these error estimates can be interpreted with confidence. This analysis can be applied to any time‐lapse measurement to provide an interval of confidence in the interpretation of shear‐wave polarization angles and time splitting.  相似文献   

20.
In this paper, source‐receiver migration based on the double‐square‐root one‐way wave equation is modified to operate in the two‐way vertical traveltime (τ) domain. This tau migration method includes reasonable treatment for media with lateral inhomogeneity. It is implemented by recursive wavefield extrapolation with a frequency‐wavenumber domain phase shift in a constant background medium, followed by a phase correction in the frequency‐space domain, which accommodates moderate lateral velocity variations. More advanced τ‐domain double‐square‐root wave propagators have been conceptually discussed in this paper for migration in media with stronger lateral velocity variations. To address the problems that the full 3D double‐square‐root equation prestack tau migration could meet in practical applications, we present a method for downward continuing common‐azimuth data, which is based on a stationary‐phase approximation of the full 3D migration operator in the theoretical frame of prestack tau migration of cross‐line constant offset data. Migrations of synthetic data sets show that our tau migration approach has good performance in strong contrast media. The real data example demonstrates that common‐azimuth prestack tau migration has improved the delineation of the geological structures and stratigraphic configurations in a complex fault area. Prestack tau migration has some inherent robust characteristics usually associated with prestack time migration. It follows a velocity‐independent anti‐aliasing criterion that generally leads to reduction of the computation cost for typical vertical velocity variations. Moreover, this τ‐domain source‐receiver migration method has features that could be of help to speed up the convergence of the velocity estimation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号