首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
研究刺参(Apostichopus japonicus)养殖模式对池塘底质的影响,于2007年5~11月间从不同养殖模式实验围隔内采得底泥样并通过实验室培养的方法测定了底泥耗氧率(SOD)及沉积物-水界面的N、P等.结果表明,投饵对SOD影响不显著(P>0.05),说明本实验条件下投饵没有造成实验围隔底泥中的有机物积累;7月份的SOD与其它月份间存在显著差异(P<0.05);大部分模式中沉积物释放溶解性无机磷酸盐(DIP)且不同月份之间的通量存在显著差异(P<0.05),不同模式之间的变化较复杂;在硝酸盐(NO-3+NO-2)通量结果中,投饵模式下的平均通量为非投饵模式下通量值的2~3倍,夏季的交换通量为冬季交换通量的2倍;当养殖密度较大时,非投饵模式中沉积物吸收氨氮的通量大于投饵模式中的通量,其它密度下投饵模式中沉积物释放氨氮的通量大于非投饵模式中的通量,并且随着养殖密度的增加通量值降低.  相似文献   

2.
分别于2012年3和7月对长江口及其邻近海域进行了大面调查,测定了表、底层海水中溶解甲烷浓度,并对其海-气交换通量进行了估算。结果表明,春、夏季表层甲烷的平均浓度分别为(28.33±38.33)和(19.92±19.18)nmol·L-1,甲烷浓度从内河口向外海逐渐降低。长江口溶解甲烷浓度和饱和度有明显季节变化,其中春季内河口甲烷浓度和饱和度高于夏季,但外河口及邻近海域则相反,这主要是温度和长江冲淡水中甲烷浓度的季节差异造成的。该海域溶解甲烷的分布受陆源输入影响显著,夏季长江冲淡水影响范围较春季更广,但由于稀释效应夏季甲烷浓度低于春季。夏季沉积物的释放对河口区甲烷的贡献较春季更为明显。调查期间该海域溶解甲烷都处于过饱和状态,是大气甲烷的净源;根据W92公式初步估算出长江口及其邻近海区年释放CH4量约为8.81×108 mol·a-1,占全球海洋年释放量的0.08%,远高于其面积比0.01%,因此该海区是甲烷产生和释放的活跃海域。  相似文献   

3.
根据河口海岸水沙输移的特点,建立了一个新的二维分组数学模型,用来预测该区域的水沙输移过程。该模型耦合了水动力模块、泥沙输移模块和床面演变模块。其中水动力模块基于浅水方程组,综合考虑了柯氏力、床面切应力以及表面风应力的影响,引入干湿判断法处理动边界。泥沙输移模块首先将泥沙按照粒径分组,针对不同泥砂性质,对各组泥沙分别进行建模求解。床面演变模块基于质量守恒方程,实时更新床面高程以及床沙级配变化,并传递给水动力模块,更新底部边界。该模型被应用在了英国塞汶(Severn)河口,其预测的泥沙浓度和实测数据以及不分组的模型的预测结果进行了比较,结果显示,文中建立的分组模型预测的结果要明显好于不分组模型。  相似文献   

4.
In a number of regions of the world, enhanced flows of nitrogen (N) and phosphorus (P) from land to sea are of major concern because of the observable deterioration in the quality of many nearshore marine waters. Estuaries receive N and P from river and other runoff, from waste discharges, from the atmosphere and ocean and from exchange with coastal groundwaters (which in all likelihood results in a net input to the estuary). For rivers that do not discharge directly onto the continental shelf, seaward fluxes of N and P will be modified by within-estuary transformations of reactive species, the burial of particulate N and P in sediments (sub/intertidal, saltmarsh, mangrove) and the loss of gaseous N and P species by bacterial reduction.Driven by a desire to understand the effects of changing N and P loads on water quality, and to gain insights into the true modification of their fluxes within estuaries, much effort has been expended on providing quantitative estimates of the sources and sinks of these constituents. Yet, accurate and precise estimates on a global scale remain elusive. Riverine inputs of total N and P are calculated to be 35–64 and 22 Mt a−1, respectively. These inputs are dominated by particulate species, and because of this, are likely to be imprecise as overall sediment fluxes are disproportionately influenced by infrequent, poorly sampled, high flow events. Direct aeolian inputs of N to estuaries (P inputs are minor), at a minimum of 1–4 Mt a−1, are small but significant, although again good estimates are hampered by the apparent importance of infrequent, and thus under-sampled, deposition events. Indirect atmospheric inputs via deposition onto and runoff from catchments may be highly significant, at least in environments bounding the North Atlantic Ocean. Groundwater inputs are generally unknown, but, for N, may be 5–10 Mt a−1 (no data on P). Information on the global inputs of N and P from waste discharges and mariculture do not appear to be available. Denitrification, estimated to beca . 33 Mt a−1, may account for 52–94% of the currently estimated total N inputs; in contrast, the loss of P via venting of gaseous phosphine is unknown. The burial of N and P in sediments is about 7% and 30% of their total inputs, respectively. Nevertheless, reliable information on the modifying role of estuarine sediments appears far from complete.Globally, the inputs of N and P to the marine environment from all sources are expected to increase over the next few decades. The resulting effects of these increases on the marine environment, including any influences due to estuarine processing, may be partly assessed through the use of dynamic transport and transformation estuarine models for N and P. A further important development in this respect will be the linking of complementary models (e.g. catchment/river/estuarine/coastal zone) and their coupling to strategic large scale observations.  相似文献   

5.
为了更好地跟踪水产养殖活动对海湾水环境的影响,于2011年10月采集了3个具有代表性的大亚湾海域水产养殖区的水样和底泥样品,研究了底泥含水率、孔隙率、密度以及孔隙水中的氨氮和可溶活性磷酸盐的垂直分布。采用经典的Fick定律,计算了氮和磷在沉积物-水界面的释放速率和年释放量。基于环境水力学理论,应用水平二维数学模型,计算了氮和磷在沉积物-水界面释放之后在海水中的扩散迁移时空分布。结果表明,澳头、深水港、虎头门采样点沉积物-水界面的氨氮年释放量分别为13.5、5.2、0.56t·a-1,可溶活性磷酸盐的释放量分别为0.34、0.03、0.02t·a-1,使水产养殖区域沉积物成为极具潜力的污染内源。释放到海水中的氮和磷受潮流、风、水深的影响,其扩散迁移范围呈长条形带状分布。每个养殖区域的污染带长度约为1km,横向宽度约为50m。该区域的海水极易呈富营养化状态。  相似文献   

6.
研究长江口和浙江近岸海域的水团流向、缺氧程度、潮汐作用以及养殖活动对表层沉积物中颗粒磷赋存形式的影响,对东海生态环境的可持续发展有着重要的意义。长江口以北和浙江近岸泥质区各存在一个缺氧中心,杭州湾属于强潮区,而象山港遍布养殖场。2018年8—9月在上述4个海域分别采集表层沉积物,采用SEDEX方法进行了颗粒磷的形态划分和含量测定。研究结果表明:在长江口外北部缺氧区和浙江近岸泥质区的南部缺氧区,由于沉积物-水界面的还原环境可以活化铁结合态磷,使之转变为生物可以直接利用的弱吸附态无机磷,因此表现出沉积物中铁结合态磷的低值和弱吸附态无机磷的高值;前者的缺氧程度高于后者,因此其铁结合态磷的含量相应更低。杭州湾和象山港海域均受潮汐作用影响,两者沉积物中磷的分布比较均匀。象山港表层沉积物中铁结合态磷含量均较低,这可能是因为养殖活动造成的水体缺氧通过潮汐活动扩散到整个港底。象山港废弃养殖场沉积物中的碎屑磷和残余有机磷含量显著低于非养殖区,可能是由于养殖活动累积的生物沉积稀释了陆源输入的碎屑颗粒。  相似文献   

7.
闽江口海域是福建最重要的经济发展区,但也存在许多环境污染问题。2018年10—12月,对闽江入海口区域的陆源入海排污口开展调查和监测。本次共调查93个排污口,主要分布在琅岐岛(34.4%)和粗芦岛(20.4%)上。入海排污口的类型以设闸排污口为主,共调查有52个,占调查总数的55.9%,主要分布在琯头镇区域(17个)和琅岐岛(12个)。监测结果表明,闽江河口海域陆源排污口的氨氮、总氮和总磷超标严重,五类水质和劣五类水质样品分别占29.9%和37.7%。其中,设闸排污口的劣V类和V类水质样品最多,其次是自然径流。从区域来看,在琯头镇的劣V类和V类水质样品共有18个,占该镇排污口样品总数的90%。水质样品的最高监测浓度为:氨氮-20.2 mg/L,总氮-27.0 mg/L,总磷-2.86 mg/L,氨氮浓度已经超过《污水综合排放标准》的一级标准(15 mg/L)。闽江河口陆源入海排污口的污染物主要来源于农村和农业面源污染。针对排污口排污超标情况严重问题提出了加强农村面源污染监管和控制、开展重要排污口重点治理工程、开展陆源入海排污口详查等相应的措施和建议,为闽江河口陆源入海排污口整治提供科学支撑。  相似文献   

8.
This paper reports on the composition, abundance and distribution of the larval fish assemblage in the nearshore coastal waters off the St Lucia Estuary mouth, South Africa. Ichthyoplankton samples were collected over a 12 month period from five stations located along a transect up to 2·5 km offshore, and from two stations north and south of the estuary mouth, respectively. In all, 6126 fish larvae, representing 89 families and 186 species, were collected. Larvae in the families Myctophidae and Tripterygiidae comprised 21% and 16% of the total catch, respectively. The most abundant species were an unidentified triplefin, Tripterygiid 1 and the lanternfish Benthosema fibulatum, together which contributed nearly 18% of the total catch. Larvae of marine spawners independent of estuaries dominated the catch both in terms of density (90%) and in terms of number of taxa (89%). Some larvae of estuarine-associated species were present, in addition to a few specimens of estuarine resident species. Overall the dominant environmental variable affecting larval densities was temperature, particularly for Trypterygiid 1 where temperature contributed to 9% of the variance model. Densities of fish larvae peaked in November and December 1990 (late spring and early summer) and were lowest from January to June 1991 (summer, autumn an early winter). Different taxa dominated the catch each month with reef- and shelf-associated species accounting for the peak in August and September 1990, oceanic species in November 1990 and a mixture of the two groups in December. Overall larval densities were significantly higher in bottom samples with a trend of increasing densities offshore for reef and shelf taxa. The larvae of reef and shore taxa were predominantly preflexion larvae, whilst the few estuarine spawner species that were collected were mainly postflexion. Ontogenetic patterns related to depth and distance offshore were evident for the dominant species in each estuarine-association category.The present study has shown that temporal and spatial variations in the larval fish assemblage off St Lucia are related to environmental conditions and ontogenetic behavioural patterns of certain species. The origin of many of the larvae in the assemblages off the coast of St Lucia is probably from both local spawning populations in the shelf waters off KwaZulu-Natal and spawning populations farther north in shelf waters off Mozambique. Additional studies with more detailed oceanographic measurements will further our understanding of the physical processes that supply larvae to the St Lucia region.  相似文献   

9.
胶州湾氮、磷浓度的三维数值模拟   总被引:1,自引:0,他引:1  
考虑了近岸海域影响氮、磷含量、时空分布的主要物理、生物化学过程,建立了胶州湾海域非保守物质(氮、磷)的水质预测模型。模型将氮、磷及与其相关的浮游植物、浮游动物作为状态变量,模拟了胶州湾海域夏季各状态变量浓度的时空分布。结果表明胶州湾北部氮、磷浓度最高,湾中央及湾口海域水质较好,各变量垂向分布均匀。数值模拟结果与监测结果及历史资料较为符合。  相似文献   

10.
中国海洋溢油污染现状及其生态影响研究   总被引:7,自引:0,他引:7  
分析了中国近海溢油污染的现状、污染加剧的背景和原因,着重探讨了海洋溢油污染的生态危害,并提出了防治方法与对策.  相似文献   

11.
长江口夏季水体磷的形态分布特征及影响因素   总被引:2,自引:0,他引:2  
根据2006年7月至9月"海监49号"科学考察船夏季航次的调查数据,分析了长江口及邻近海域水体中磷形态的平面分布特征及其影响因素,结果表明,调查海域水体各种形态磷平均浓度均为底层高于表层,并呈现出由河口向邻近海域降低的趋势.杭州湾及最大混浊带部分区域水体中以颗粒态磷为主,且颗粒态无机磷为磷的主要存在形态;长江口门及江苏东部近海区域水体中以溶解态磷为主,溶解态无机磷为磷的主要存在形态;舟山群岛东部外海区表层水体以溶解态磷为主,溶解态有机磷为磷的主要存在形态,而底层水体中溶解态磷浓度略高于颗粒态磷,以溶解态无机磷为磷的主要存在形态.水体中颗粒态无机磷与颗粒态有机磷、颗粒总磷与总磷、总磷与悬浮颗粒物均呈非常显著的正相关,说明悬浮颗粒物是颗粒态磷的主要影响因素.调查海域外海区域绝大部分站位水体中溶解态无机磷表层浓度接近或小于浮游植物生长限制的动力学最低阈值,是磷限制或潜在的磷限制区域.  相似文献   

12.
2004年春季长江河口水体与沉积物表层的叶绿素a浓度分布   总被引:3,自引:0,他引:3  
2004年5月7日至12日在31°~31.8°N、122.5°E以西到海水上溯至0盐度的长江河口进行14个站位叶绿素a浓度的现场观测,其中N1~N3、M1~M3、S1~S3和R6这10个观测站用3条渔船在4天内进行潮周期的涨憩、落急、落憩、涨急、涨憩5个潮时的准同步周日采样观测;对S2、S3、R2、R3、M3、N2和N3这7个位于长江入海口门站位进行表层泥样的叶绿素a浓度观测。结果表明,观测海区表层海水叶绿素a浓度为0.230~11.500μg/dm3,平均值为(1.514±1.712)μg/dm3,高值出现在观测海区东北部的长江冲淡水稀释区,表层海水叶绿素a浓度平面分布从该区的东北部向西南方向逐渐降低,离岸越近叶绿素a浓度越低,低值出现在长江口门内和测区西南部的广阔浑水区域;底层叶绿素a浓度为0.291~2.620μg/dm3,平均值为(1.186±0.531)μg/dm3,其变化幅度与平均浓度均明显低于表层。在涨憩、落急、落憩、涨急和涨憩5个潮周期中水柱平均叶绿素a浓度为1.198~1.910μg/dm3,涨憩和落急潮时,叶绿素a浓度自表层向底层逐渐下降;落憩和涨急潮时,表层的平均叶绿素a浓度略低于中层和底层。2004年春季观测海区叶绿素a浓度与往年夏季和秋季的观测结果相近,但明显高于冬季。表层沉积物叶绿素a浓度为(0.089±0.052)μg/g(湿重),仅占其上方水体平均叶绿素a浓度的极少部分,两者具有良好的相关性。  相似文献   

13.
以2011年6月和8月在长江口邻近海域采集的沉积物和间隙水样品为研究对象,讨论了沉积物中生物硅(BSi)和间隙水中溶解硅(DSi)的分布情况和影响因素,并初步探讨了生物硅的循环和保存。结果表明,表层沉积物中BSi的含量较低,且均小于1%。柱状沉积物中BSi的含量范围为0.34%~0.52%。C3、D1站位柱状沉积物中BSi的记录主要是由早期成岩过程控制,33#站位的分布特征主要是由水动力等变化控制。沉积物间隙水中DSi的浓度范围为101.6~263.9 μmol/L,低于纯BSi的溶解度;间隙水的pH值越大,沉积物的含水率越低,还原性越强,间隙水中DSi的含量越高。3站位生物硅的埋藏效率均较高,表明长江口邻近海域是潜在的硅的汇。沉积通量的分布与沉积速率和埋藏效率的分布一致,均有近岸高于远海的趋势。  相似文献   

14.
刘慧  姚鹏  孟佳  王金鹏  赵彬 《海洋学报》2017,39(8):115-128
磷是一种重要的生源要素,在河口、边缘海的初级生产中发挥重要作用,了解沉积物中磷的形态分布和迁移转化有助于深入了解该区域生态系统动力学。于2013年3月在长江口及邻近海域采集了表层沉积物样品,利用水淘选方法对沉积物进行了分级,并采用化学连续提取法分析了未分级和分级沉积物样品中的6种磷形态含量:可交换态磷、活性有机磷、铁结合态磷、自生磷灰石磷、碎屑磷和难分解有机磷,讨论了该区域沉积物中磷的形态分布、选择性输运过程和迁移转化。沉积物中总磷含量在14.0~18.4 μmol/g,其中碎屑磷是其主要成分,占54.5%,其次是有机磷和难分解有机磷,分别占到15.1%和13.1%。不同粒级沉积物中磷形态含量不同,可交换态磷、活性有机磷、铁结合态磷、自生磷灰石磷和难分解有机磷随粒级增加含量逐渐降低,而碎屑磷主要集中在粗粒级(大于32 μm)沉积物中。基于各粒级磷形态的质量分布,发现小于32 μm粒级的沉积物中各磷形态含量从长江口向浙闽沿岸逐渐增加,向外海方向逐渐减小,而大于32 μm沉积物的变化趋势与此相反,体现了不同形态磷的选择性输运。随粒径增大,总有机碳对有机磷比值(TOC/Or-P)先降低后升高,在大粒级沉积物中,TOC/Or-P比值较高主要是因为陆源有机碳贡献较高,而在小粒级沉积物中,主要是由于有机磷的迁移和转化更为活跃,体现了细颗粒物中有机磷相对有机碳的优先分解。本研究表明,从分级的角度可以对河口、边缘海的磷循环有一个更全面的认识。  相似文献   

15.
Abstract. Dark respiration rates, dissolved inorganic nitrogen (DIN) fluxes and nitrification rates were measured at two sites in the microtidal Sacca di Goro lagoon in September 2000. DIN fluxes correlated with the biomass of the dominant macrofauna species (the amphipod Corophium spp. at station Giralda and the polychaete Neanthes spp. at station Faro). Respiration (> 6 mmol O2 m−2h−1) and ammonium fluxes (> 80μmol N m−2h−1) were higher at station Giralda despite the lower organic matter content (4.5 %) and lower macrofauna biomass (4 g AFDW m−2). At both sites ammonium fluxes were significantly correlated with the biomass of the benthic infauna, but Corophium stimulated ammonium NH4+ fluxes 3-fold compared to Neanthes. The amphipod also enhanced nitrification rates (> 300 μmol N m−2h−1) due to the high density of its burrows, the higher NH4+ regeneration rates and the enhanced oxygen supply to the bacteria.  相似文献   

16.
YANG Chen  LIU Ying 《海洋工程》2017,31(4):389-395
A two-dimensional depth-integrated numerical model is refined in this paper to simulate the hydrodynamics, graded sediment transport process and the fate of faecal bacteria in estuarine and coastal waters. The sediment mixture is divided into several fractions according to the grain size. A bed evolution model is adopted to simulate the processes of the bed elevation change and sediment grain size sorting. The faecal bacteria transport equation includes enhanced source and sink terms to represent bacterial kinetic transformation and disappearance or reappearance due to sediment deposition or re-suspension. A novel partition ratio and dynamic decay rates of faecal bacteria are adopted in the numerical model. The model has been applied to the turbid water environment in the Bristol Channel and Severn estuary, UK. The predictions by the present model are compared with field data and those by non-fractionated model.  相似文献   

17.
利用2002年9月“东方红2号”调查船调查中获得的沉积物样品,定量研究了长江、老黄河口以及东海陆架沉积物中正构烷烃和无环类异戊二烯烷烃(姥鲛烷和植烷)两种天然示踪物,结果表明:(1)各采样站位样品的碳数范围为n-C14~n-C34,主要可分为陆源单峰、双峰和石油污染等3种类型。(2)长江口东南软泥区和浙江沿岸软泥区沉积物样品中高碳正构烷烃n-C27、n-C29和n-C31含量较高,奇碳优势显著,表明其来源以陆源高等植物输入占优势;相反,“东海冷涡”泥质区和黄海中南陆架区沉积物样品中的低碳正构烷烃n-C17、n-C18和n-C19含量较高,奇偶优势不明显,表明其来源主要以浮游生物和细菌为主。冲绳海槽泥质区沉积物样品中高碳与低碳正构烷烃的含量几乎相当,表明其来源为海洋低等生物和陆地高等植物共同输入,其中陆源物质是从东海陆架经底流搬运而来的。(3)有机质的堆积受控于物质供应和沉积环境两大因素。东海中陆架区沉积物中正构烷烃总量和有机碳含量为最低,这是由于台湾暖流的顶托,使黄河和长江两大物质扩散系统对该区的物质供应量减少,沉积速率低,潮流冲刷作用强,沉积物保存有机碳的能力较差;表层沉积物中正构烷烃及有机碳的最高值分别出现在浙江沿岸软泥区(E 5站)和冲绳海槽泥质区(P 4站);“东海冷涡”泥质区沉积环境最为适宜,但是陆源有机质供应则相对较少。  相似文献   

18.
采用地图软件MapInfo 7.0对1842~2004年10多幅海图资料数字化,并结合相关海岛调查资料,分析了长兴岛、横沙岛的形成演变过程及其对南港、北港分流的影响。研究结果表明:长兴岛由鸭窝沙经过160多年演变,与上、下游小沙岛合并或人工堵汊而形成,岛屿东南低而宽,西北高而窄;其东是横沙岛,由横沙通道相隔;沙洲群大致呈NW-SE走向,与长江口南支主流方向基本一致。长兴沙岛南坍北涨,横沙岛是东南蚀退、西北淤涨,两岛面积不断增大,并逐渐向西北方向移动,横沙岛更为显著。长兴沙岛群把长江口南支分为南港、北港,西北端的小沙洲成为南港、北港的分流点,沙岛的迁移演变对南港、北港分流及分流点的稳定产生很大影响,两者相互制约。  相似文献   

19.
长江口南支涨潮槽新桥水道冲淤变化的定量计算   总被引:8,自引:3,他引:5  
根据1861~2002年100多年中的15幅海图资料,以GIS技术为支持,建立不同时期长江口水下数字高程模型(DEM),对长江河口南支涨潮槽新桥水道进行了冲淤变化的定量计算,并对比计算了多年来新桥水道0m岸线和5m等深线以及横断面的演变.计算结果显示在所研究的区域内自1861年以来新桥水道冲淤过程明显被分为三个阶段:1861~1926年的66a间新桥水道区域经过一段时间的冲刷后又重新产生淤积,总容积变化不大;1926~1958年的33a间新桥水道在不断的冲刷中总容积由2.603亿m3增长到5.076亿m3;1958年至今的45a时间里水道容积基本保持在平均5.02亿m3.1926年新桥水道10m等深线已经形成一定的格局.1947年5m等深线向上延伸,扁担沙已经不再与崇明岛相连;1958年上下扁担沙的5m等深线基本连成一体,可以认为此时新桥水道已经形成.从新桥水道的横断面变化来看,其主泓不断发生变化,主泓经历了向北移的过程,移动约为1.1~2.8km.  相似文献   

20.
长江口邻近海域溶解态铝的分布及季节变化   总被引:2,自引:0,他引:2  
基于2006年6、8、10月对长江口邻近海域的大面调查资料,分析了溶解态Al的分布及季节变化,讨论了水团混合、悬浮颗粒物及浮游植物水华对溶解态铝分布的影响。结果表明,3个航次溶解态铝的水平分布规律相似,都是近岸浓度最高,随着离岸距离的增加浓度降低,6、8、10月溶解态Al的平均浓度分别为(119±77)、(109±80)和(138±73)nmol/L,统计结果表明该海域的溶解态铝具有明显的季节变化。影响溶解态铝分布的主要因素有水团混合、底沉积物的再悬浮以及浮游植物的调节作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号