首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantification of building vulnerability to earthquake and tsunami hazards is a key component for the implementation of structural mitigation strategies fostering the essential shift from post-disaster crisis reaction to preventive measures. Facing accelerating urban sprawl and rapid structural change in modern urban agglomerations in areas of high seismic and tsunami risk, the synergetic use of remote sensing and civil engineering methods offers a great potential to assess building structures up-to-date and area-wide. This paper provides a new methodology contextualizing key components in quantifying building vulnerability with regard to sequenced effects of seismic and tsunami impact. The study was carried out in Cilacap, a coastal City in Central Java, Indonesia. Central is the identification of significant correlations between building characteristics, easily detectable by remote sensing techniques, and detailed in situ measurements stating precise building vulnerability information. As a result, potential vertical evacuation shelters in the study area are detected and a realistic vulnerability assessment of the exposed building stock is given. These findings obtained allow for prioritization of intervention measures such as awareness and preparedness strategies and can be implemented in local disaster management.  相似文献   

2.
Building seismic vulnerability assessment plays an important role in formulating pre-disaster mitigation strategies for developing countries. The occurrence of high-resolution satellite sensors has greatly motivated it by providing a promising approach to obtain building information. However, this also brings a big challenge to the accurate building extraction and its coherent integration with the assessment model. The main objective of this paper is to investigate how to extract building attributes from high-resolution remote sensing imagery using the object-based image analysis (OBIA) method, so as to accurately and conveniently assess building seismic vulnerability by the combination of in situ field data. A general framework for the assessment of building seismic vulnerability is presented, including (1) the extraction of building information using OBIA, (2) building height estimation, and (3) the support vector machine (SVM)-based building seismic vulnerability assessment. Particularly, an integrated solution is proposed that merges the strengths of multiple spatial contextual relationships and some typical image object measures, under the unified framework to improve building information extraction at different scale levels as well as for different interest objects. With the aid of 35 building samples from two powerful earthquakes in China, the cloud-free WorldView-2 images and some building structure parameters from field survey were used to quantity the grades of building seismic vulnerability in Wuhan Optics Valley, China. The results show that all 48 buildings among the study area have been well detected with an overall accuracy of 80.67 % and the mean error of heights estimated from building shadow is less than 2 m. This indicates that the integrated analysis strategy based on OBIA is suitable for extracting the building information from high-resolution remote sensing imagery. Additionally, the assessment results using SVM show that the building seismic vulnerability is statistically significantly related to structure types and building heights. Both the proposed OBIA method and its integration strategy with SVM are easily implemented and provide readily interpretable assessment results for building seismic vulnerability. This reveals that the proposed method has a great potential to assist urban planners for making local disaster mitigation planning through the prioritization of intervention measures, such as the reinforcement of walls and the dismantlement of endangered houses.  相似文献   

3.
This work addresses the use of remote sensing imagery to quantify the built environment and its spatial and temporal changes. It identifies building footprint map, building location map and built-up area map as information products that can be used to quantify physical exposure, one of the variables required in disaster risk assessments. The paper also reviews urban land use maps and urban classes in land cover maps as potential source for deriving exposure information. The paper focuses on the latest generation of satellite-borne remote sensing imaging systems that deliver high-resolution optical imagery able to resolve buildings and other three-dimensional man-made constructions. This work also reviews the semantics, the spatial unit used to define physical exposure, image processing procedures and change techniques.  相似文献   

4.
This paper discusses the potentials of very high-resolution (VHR) stereo imagery for automatic generation of digital surface models (DSM) and 3D information extraction on large metropolitan cities. Stereo images acquired by GeoEye-1 on Dakar (Senegal) and Guatemala City (Guatemala) and by WorldView-2 on Panama City (Panama), Constitucion (Chile), Kabul (Afghanistan), Teheran (Iran), Kathmandu (Nepal), and San Salvador (El Salvador) were processed following a rigorous photogrammetric approach. The work focuses on evaluating the quality of the DSMs in relation to the image and terrain characteristics. The size of the datasets, the variety of case studies, and the complexity of the scenarios allow to critically analyze the potentials of VHR stereo imagery for 3D landscape modeling for natural hazards assessment.  相似文献   

5.
Post-disaster very high resolution(VHR) satellite data are potential sources to provide detailed information on damage and geological changes for a large area in a short time.In this paper,we studied landslides triggered by the M_w 6.9 earthquake in Sikkim,India which occurred on 18 September 2011 using VHR data from Cartosat-1,GeoEye-1,QuickBird-2 and WorldView-2 satellites.Since the earthquake-affected area is located in mostly inaccessible Himalayan terrain,VHR data from these satellites provided a unique opportunity for quick and synoptic assessment of the damage.Using visual change analysis technique through comparison of pre- and post-earthquake images,we assessed the damage caused by the event.A total of 123 images acquired from eight satellites,covering an area of4105 km2 were analysed and 1196 new landslides triggered by the earthquake were mapped.Road blockages and severely affected villages were also identified.Geological assessment of the terrain highlighted linear disposition of landslides along existing fault scarps,suggesting a reactivation of fault.The landslide inventory map prepared from VHR images also showed a good correlation with the earthquake shake map.Results showed that several parts of north Sikkim,particularly Mangan and Chungthang,which are close to the epicentre,were severely affected by the earthquake,and that the event-based landslide inventory map can be used in future earthquake-triggered landslide susceptibility assessment studies.  相似文献   

6.
Earthquakes and tsunamis along Morocco’s coasts have been reported since historical times. The threat posed by tsunamis must be included in coastal risk studies. This study focuses on the tsunami impact and vulnerability assessment of the Casablanca harbour and surrounding area using a combination of tsunami inundation numerical modelling, field survey data and geographic information system. The tsunami scenario used here is compatible with the 1755 Lisbon event that we considered to be the worst case tsunami scenario. Hydrodynamic modelling was performed with an adapted version of the Cornell Multigrid Coupled Tsunami Model from Cornell University. The simulation covers the eastern domain of the Azores-Gibraltar fracture zone corresponding to the largest tsunamigenic area in the North Atlantic. The proposed vulnerability model attempts to provide an insight into the tsunami vulnerability of building stock. Results in the form of a vulnerability map will be useful for decision makers and local authorities in preventing the community resiliency for tsunami hazards.  相似文献   

7.
This work focuses on the exploitation of very high-resolution (VHR) satellite imagery coupled with multi-criteria analysis (MCA) to produce flood hazard maps. The methodology was tested over a portion of the Yialias river watershed basin (Nicosia, Cyprus). The MCA methodology was performed selecting five flood-conditioning factors: slope, distance to channels, drainage texture, geology and land cover. Among MCA methods, the analytic hierarchy process technique was chosen to derive the weight of each criterion in the computation of the flood hazard index (FHI). The required information layers were obtained by processing a VHR GeoEye-1 image and a digital elevation model. The satellite image was classified using an object-based technique to extract land use/cover data, while GIS geoprocessing of the DEM provided slope, stream network and drainage texture data. Using the FHI, the study area was finally classified into seven hazard categories ranging from very low to very high in order to generate an easily readable map. The hazard seems to be severe, in particular, in some urban areas, where extensive anthropogenic interventions can be observed. This work confirms the benefits of using remote sensing data coupled with MCA approach to provide fast and cost-effective information concerning the hazard assessment, especially when reliable data are not available.  相似文献   

8.
A DRASTIC-model method based on a geographic information system (GIS) was used to study groundwater vulnerability in Egirdir Lake basin (Isparta, Turkey), an alluvial area that has suffered agricultural pollution. ‘Lineament’ and ‘land use’ were added to the DRASTIC parameters, and an analytic hierarchy process (AHP) method determined the rating coefficients of each parameter. The effect of lineament and land-use parameters on the resulting vulnerability maps was determined with a single-parameter sensitivity analysis. Of the DRASTIC parameters, land use affects the aquifer vulnerability map most and lineament affects it least, after topography. A simple linear regression analysis assessed the statistical relation between groundwater nitrate concentration and the aquifer vulnerability areas; the highest R 2 value was obtained with the modified-DRASTIC-AHP method. The DRASTIC vulnerability map shows that only the shoreline of Egirdir Lake and the alluvium units have high contamination potential. In this respect, the modified DRASTIC vulnerability map is quite similar. According to the modified-DRASTIC-AHP method, the lakeshore areas of Senirkent-Uluborlu and Hoyran plains, and all of the Yalvaç-Gelendost plain, have high contamination potential. Analyses confirm that groundwater nitrate content is high in these areas. By comparison, the modified-DRASTIC-AHP method has provided more valid results.  相似文献   

9.
城市泥石流风险评价探讨   总被引:5,自引:1,他引:5       下载免费PDF全文
唐川  朱静 《水科学进展》2006,17(3):383-388
探讨了城市泥石流风险评价的系统方法,该方法包括泥石流扇形地危险区划、城市易损性分析和城市泥石流风险评价三个主要内容。泥石流堆积扇危险区划是基于数值模拟计算出的泥深和流速分布图进行叠合完成的。以美国高分辨率的“快鸟”卫星影像为数据源,完成了研究区的城市土地覆盖类型遥感解译,在此基础上完成了城市泥石流易损性分析,应用地理信息系统提供的统计和分析工具,完成了研究区泥石流风险评价。该风险区划图可用于指导对泥石流易泛区的不同风险地带的土地利用进行规划和决策,从而达到规避和减轻灾害的目的,也为生活在泥石流危险区的城市居民提供有关灾害风险信息,以作避难和灾害防治的依据。  相似文献   

10.
Iuliana Arma? 《Natural Hazards》2012,63(2):1129-1156
The expansive infrastructure, along with the high population density, makes cities highly vulnerable to the severe impacts of natural hazards. In the context of an explosive increase in value of the damage caused by natural disasters, the need for evaluating and visualizing the vulnerability of urban areas becomes a necessity in helping practitioners and stakeholders in their decision-making processes. The paper presented is a piece of exploratory research. The overall aim is to develop a spatial vulnerability approach to address earthquake risk, using a semi-quantitative model. The model uses the analytical framework of a spatial GIS-based multi-criteria analysis. For this approach, we have chosen Bucharest, the capital city of Romania, based on its high vulnerability to earthquakes due to a rapid urban growth and the advanced state of decay of the buildings (most of the building stock were built between 1940 and 1977). The spatial result reveals a circular pattern, pinpointing as hot spots the Bucharest historic centre (located on a meadow and river terrace, and with aged building stock) and peripheral areas (isolated from the emergency centers and defined by precarious social and economic conditions). In a sustainable development perspective, the example of Bucharest shows how spatial patterns shape the ??vulnerability profile?? of the city, based on which decision makers could develop proper prediction and mitigation strategies and enhance the resilience of cities against the risks resulting from the earthquake hazard.  相似文献   

11.
Coal mining safety has been compromised with water inrushes from aquifers either overlying or underlying the coal seams. Detailed studies of the associated hydrogeological conditions in China have led to different approaches to mitigate the water inrush risks from these two types of aquifers—the ‘three diagram method’ for overlying-aquifer water inrushes and the ‘vulnerability index method’ for underlying-aquifer water inrushes. The ‘three diagram method’ consists of: (1) aquifer water-abundance distribution charts derived from a geographic information system and analytic hierarchy process based water-abundance index model; (2) a fracture height map showing mining-induced fractures above the coal seam, established with stratified numerical simulations; and (3) a comprehensive partition map identifying the overlying-aquifer water inrush risk. The ‘vulnerability index method’ uses site-specific data to establish thematic maps for major factors that affect the underlying-aquifer water inrushes, whereas the weight of each control factor is determined by the analytic hierarchy process. The calculated vulnerability index is indicative of water inrush risks. The effectiveness of these methods is illustrated with a case study at the Pingshuo No. 1 underground coal mine, Shanxi Province, China.  相似文献   

12.
ABSTRACT

The concept of seismic vulnerability is a yard-stick of damage estimation from a probable earthquake considering physical cum social dimension and enables a basis for decision-makers to develop preparedness and mitigation strategies. We aim at vulnerability assessment of the typical urban system of capital city Shillong situated on hilly terrain. High-resolution satellite imagery of Shillong facilitates analysis of building footprints, communication network, and open ground. Different building typologies are identified taking into account the building’s structural configuration assessed through a rapid visual survey of more than 15% of total residential households. Slope map demarcates the landslide-prone area through discrete elevation modelling. A methodology incorporating several parameters e.g. building typology, slope angle, shear wave velocity characteristics, geomorphology, and the number of occupants in correlation with a physical measurement of vulnerability is presented and is applied to estimate the dimension of vulnerability. Additionally, MASW survey indicates lithology up to 30?m deep along with the existence of stiff soil and rocks at different depths whereas resonant frequency is identified to be in the range of 6–8?Hz through H/V ratio. Integrating all, it is observed that more than 60% of Shillong city falls under moderate to higher vulnerability and the rest is less vulnerable.  相似文献   

13.
Building vulnerability to debris flows in Taiwan: a preliminary study   总被引:3,自引:2,他引:1  
In quantitative risk analyses for natural hazards, vulnerability can be expressed as the ratio of reconstruction, replacement or reproduction expenses due to a damage caused by a certain process intensity and the original value of the element at risk exposed. To discuss the building vulnerability under debris flow events, the ratio is mostly related to debris flow inundation height, building materials and building values. Different types of buildings would resist to the impact of debris flows differently, resulting in different damage levels even under the same inundation height. After debris flow events, the damages to a building include the content loss and the structure loss, which is also variable due to the individual building conditions. This study proposes a flowchart to establish building vulnerability curves through estimating the damages to buildings after debris flow hazards. The losses of content and structure are firstly calculated separately to obtain the loss ratios with respect to original buildings. Secondly, by combining the content and structure loss ratio, the building vulnerability function is derived. In this paper, the original building content value was obtained from governmental statistic records and was based on the market price, and the structure value was received from a regional architecture office. The losses resulting from debris flow impacts were synthetically derived following field surveys. To combine the content and structure losses, a unit building with a floor area of 60?m2 was assumed. The result shows that due to a higher percentage of content value compared with the total building value, the loss ratio resulting from debris flows in Taiwan is higher compared with European studies, in particular with respect to high-frequency but low-magnitude events. The concept of obtaining building vulnerability is particularly suitable for regions where well-documented building loss records are unavailable.  相似文献   

14.
The Nubian Sandstone Aquifer (NSSA) is the main groundwater resource of the El-Bahariya Oasis, which is located in the middle of the Western Desert of Egypt. This aquifer is composed mainly of continental clastic sediments of sandstone with shale and clay intercalations of saturated thickness ranging between 100 and 1500 m. Vulnerability assessment to delineate areas that are more susceptible to contamination from anthropogenic sources has become an important element for sustainable resources management and land use planning. Accordingly, this research aims to estimate the vulnerability of NSSA by applying the DRASTIC model as well as utilising sensitivity analyses to evaluate the relative importance of the model parameters for aquifer vulnerability in the study area. The main objective is to demonstrate the combined use of the DRASTIC and the GIS techniques as an effective method for groundwater pollution risk assessment, and mapping the areas that are prone to deterioration of groundwater quality and quantity. Based on DRASTIC index (DI) values, a groundwater vulnerability map was produced using the GIS. The aquifer analysis in the study area highlighted the following key points: the northeastern and western parts of the NSSA were dominated by ‘High’ vulnerability classes while the northwestern and southeastern parts were characterised by ‘Medium’ vulnerability classes. The elevated central part of the study area displayed ‘Low’ aquifer vulnerability. The vulnerability map shows a relatively greater risk imposed on the northeastern part of the NSSA due to the larger pollution potential of intensive vegetable cultivation. Depth-to-water, topography and hydraulic conductivity parameters were found to be more effective in assessing aquifer vulnerability.  相似文献   

15.
A detailed hydrogeological and hydrochemical study was carried out in Yamuna-Krishni sub-basin which is a part of the vast central Ganga plain. Groundwater is the major source of water supply for agricultural, domestic and industrial uses. The excess use of groundwater has resulted in depletion of water levels. The groundwater quality, too, has deteriorated in areas dominated by industrial activity. This has led to the preparation of a groundwater vulnerability map in relation to contamination. Groundwater vulnerability maps are valuable derivative maps that show, quantitatively or qualitatively, certain characteristics of the sub-surface environment that determine vulnerability of groundwater to contamination. The modified DRASTIC method was used to prepare vulnerability map. The parameters like depth to water, net recharge, aquifer media, soil media, impact of vadose zone, hydraulic conductivity and land use pattern, owing to its bearing on groundwater regime, were considered to prepare vulnerability map. The vulnerability index is computed as the sum of the products of weight and rating assigned to each of the input considered as above. The vulnerability index ranges from 140 to 180, and is classified into four classes i.e. 140–150, 150–160, 160–170 and 170–180 corresponding to low, medium, high and very high vulnerability zones respectively. Using this index, a groundwater vulnerability potential map was generated which shows that 7%, 40% and 53% of the study area falls in low, medium and high to very high vulnerability zones respectively. The map, thus generated, can be used as a tool for protection and management of aquifers from contamination.  相似文献   

16.
以受山洪灾害影响突出的云南文山城区为研究区,从承灾体属性特征和社会承灾能力二个方面探讨了城市山洪灾害易损性分析的方法;利用高分辨率遥感卫星影像为数据源完成城市土地覆盖类型解译,在此基础上应用GIS定量分析城市山洪灾害易损性。对承灾体属性特征定量分析结果表明,文山城区50年一遇山洪淹没范围内的承灾体中城市房屋建筑的易损性最大。对易损性要素中的社会承灾能力分析认为,由于文山城区段防洪河道行洪能力低,蓄滞洪能力弱。山洪灾害的易损性仍然较高,山洪对文山城威胁形势严峻。  相似文献   

17.
High alpine karst plateaus are recharge areas for major drinking water resources in the Alps and many other regions. Well-established methods for the vulnerability mapping of groundwater to contamination have not been applied to such areas yet. The paper characterises this karst type and shows that two common vulnerability assessment methods (COP and PI) classify most of the areas with high vulnerability classes. In the test site on the Hochschwab plateau (Northern Calcareous Alps, Austria), overlying layers are mostly absent, not protective or even enhance point recharge, where they have aquiclude character. The COP method classifies 82% of the area as highly or extremely vulnerable. The resulting maps are reasonable, but do not differentiate vulnerabilities to the extent that the results can be used for protective measures. An extension for the upper end of the vulnerability scale is presented that allows identifying ultra vulnerable areas. The proposed enhancement of the conventional approach points out that infiltration conditions are of key importance for vulnerability. The method accounts for karst genetical and hydrologic processes using qualitative and quantitative properties of karst depressions and sinking streams including parameters calculated from digital elevations models. The method is tested on the Hochschwab plateau where 1.7% of the area is delineated as ultra vulnerable. This differentiation could not be reached by the COP and PI methods. The resulting vulnerability map highlights spots of maximum vulnerability and the combination with a hazard map enables protective measures for a manageable area and number of sites.  相似文献   

18.
论述了遥感影像提取震害的研究进展 ,提出了基于GIS和数字图像处理技术的震害遥感快速提取与损失评估的技术途径。在此基础上 ,介绍了巴楚—伽师地震的航空与卫星遥感资料的获取、图像数字处理与震害提取过程 ;描述了地震造成的建筑物震害与地质灾害的遥感图像特征 ;根据以往震害遥感影像统计经验与本次地震震害遥感特征 ,提出了遥感震害分级分类标准和地震烈度划分标准 ,进而得到基于震害遥感影像的伽师地震等震线图。文中对所得到的地震烈度与地面实际调查结果进行了比较。通过遥感信息源空间分辨率要求与信息获取与处理的时效性分析 ,认为我国利用航空遥感与卫星遥感资料获取地震灾情信息已进入实用阶段  相似文献   

19.
This research paper assesses the vulnerability of landslide for the Bodi-Bodimettu Ghat section, Theni district, Tamil Nadu, India, using remotely sensed data and geographic information system (GIS). Landslide database was generated using IRS-1C satellite LISS III data and aerial photographs accompanied by field investigations using differential global positioning system to generate a landslide inventory map. Topographical, spatial, and field data were processed to construct the spatial thematic layers using image processing and GIS environment. Twelve landslide-inducing factors were used for landslide vulnerability analysis: elevation, slope, aspect, plan curvature, profile curvature, proximity to road, drainage and lineament, land use/land cover, geology, geomorphology, and run-off. The first five factors were derived from digital elevation model, and other thematic layers were prepared from spatial database. Frequency ratio of each factor was computed using the above thematic factors with past landslide locations. Landslide vulnerability map was produced using raster analysis. The landslide vulnerability map was classified into five zones: very low, low, moderate, high, and very high. The model is validated using the relative landslide density index (R-index method). The consistency of R-index indicates good performance of the vulnerability map.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号