首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
西天山高压变质岩呈不连续岩块、凸镜体、条带、薄层或夹层岩片产于绿片岩相围岩中。蓝片岩和榴辉石的原岩有 N- MORB、E- MORB、OIB、辉长岩、基性火山碎屑岩、硬砂岩等类型。变质作用和常量、微量、稀土元素地球化学研究表明高压变质岩形成于塔里木板块和伊犁中天山板块间的早古生代南天山洋北缘的 B型俯冲带  相似文献   

2.
B. Mocek   《Lithos》2001,57(4):263-289
Blueschists, eclogites, chlorite–actinolite rocks and jadeite-gneisses of the blueschist unit of Siphnos have been investigated for their geochemical composition. Their protolith nature is characterised and a geodynamic model for the pre-metamorphic evolution of these metavolcanic rocks is proposed on the basis of immobile elements, especially trace elements and rare earth elements (REE).

The protoliths of the eclogites are characterised as calc-alkaline basalts, andesites and Fe-rich tholeiites evolving in an island-arc setting. Trace element data indicate that subducted marine sediments were assimilated in the magma chamber, enriching the protoliths in LILE and Pb. Produced in the early stage of back-arc basin opening, a protolith with affinities to both island-arc and MORB formed the precursor of the chlorite–actinolite rocks. They were created by low degrees of partial melting of very primitive magmas, akin to spinel-peridotites and have affinities to boninites, probably through melting of the peridotitic mantle wedge. Tholeiitic basalts and andesites with N-MORB affinity, especially in their REE-patterns, were then produced by partial melting, possibly in an embryonic back-arc basin. These rocks were the protoliths of the blueschists of Siphnos. Their enrichment in some LILE and Pb indicates a N-MORB source contaminated by marine sediments, probably shales or other Pb-rich sediments. Because the jadeite-gneisses show affinities to MOR-granites and volcanic arc granites, intrusion of their protoliths in a back-arc environment is likely. The protoliths of the quartz-jadeite gneisses are rhyodacites/dacites and rhyolites, those of the glaucophane-jadeite gneisses were andesites.

The proposed geodynamic model, solely based on geochemical data, is consistent with geochemical data from neighbouring islands, though those rock units show much higher chemical variability. Consistent with geotectonic models, which are based on structural and geophysical data, the volcanic protoliths of the Siphnos blueschist unit reflect the transition from subduction to spreading environment and record in detail: subduction, formation of an island-arc, and the evolution of a back-arc basin.  相似文献   


3.
Abstract Regional metamorphic rocks that form Late Palaeozoic subduction complexes in central Queensland, Australia, are products of two metamorphic episodes. Synaccretion metamorphism (M1) gave rise to prehnite-pumpellyite and greenschist facies rocks, whereas a subsequent episode (M2) at about 250 Ma formed upper greenschist to upper amphibolite facies rocks of both intermediate- and low-pressure type, probably in a compressive arc or back-arc setting. A similar pattern can be recognized for 1000 km along the New England Fold Belt, although at several localities, where higher grade rocks are exposed, metamorphism was essentially continuous over the M1-M2 interval, with a rapid rise in geothermal gradient at the end of accretion. Where out-stepping of tectonic elements has occurred at long-lived convergent margins elsewhere, similar overprinting of high- by lower-pressure facies series is anticipated, complicating the tectonic interpretation of metamorphism. The discrete character of metamorphic events may be blurred where conditions giving rise to a major episode of accretion and out-stepping are followed by the subduction of a major heat source.  相似文献   

4.
Low‐T, intermediate to high‐P assemblages indicative of the prehnite–pumpellyite, greenschist and blueschist facies are preserved in mélange zones and slivers of oceanic crust within two major fault zones of the turbidite‐dominated Lachlan Orogen. In one of these fault zones (Governor Fault Zone), blueschists occur as Franciscan‐like blocks in a serpentinite/talc matrix that is interleaved with phyllites and slates, and structurally overlain by a fault slice or duplex of predominantly pillow basalt, chert, and turbidite. The blueschist metavolcanics are interpreted to have formed at < 450 °C and at a depth of approximately 21–27 km. The presence of blue amphibole in the blocks, rinds and matrix indicate that the metavolcanics were emplaced in the matrix prior to blueschist metamorphism. Blocks and matrix were partially exhumed, interleaved with tectonic slices of phyllite and slate, and subsequently folded at about 10–12 km depth, inferred from bo values of the dominant mica fabric in the phyllites and slates. Metamorphic P–T is highest in the structurally lowest slice (mélange zone) and lowest in the overlying ophiolitic fault slice, suggestive of an accretionary burial metamorphic pattern formed by underplating of the mélange. In the other fault zone (Heathcote Fault Zone), blueschists transitional to greenschist facies are interpreted to have formed at < 450 °C and at a depth of approximately 15–21 km. They occur as blocks in serpentinite/talc‐matrix mélange and are also associated with fault slices of oceanic crust. Textural and mineralogical evidence suggests that the protoliths for the blueschists in both fault zones were boninitic pillow lavas. The metamorphic facies and patterns, and the structural and lithological associations, can be interpreted in terms of disruption of oceanic crust and overlying sediments during subduction, and formation of serpentinite‐matrix mélange overprinted by blueschist metamorphism either prior to or during underplating of the mélange and duplex formation. The presence of blueschist metavolcanics indicate that these processes occurred at considerable depth. These interpretations have implications for the evolution of large‐scale fault zones in noncollisional, convergent oceanic settings.  相似文献   

5.
1.IntroductionFromexperimefltalphaseequilibrium,stableisotOPe,andthermo-barometricstudies,ProgradebineschistdineralparageneseshavebeenproducedexclusivelyatrelativelyhighPadratios(DeRoever,1956;Miyashiro,1961;DobretsovandSobolev,1984;Emst,1973,1988;Maruyamaetal.,1996).InthelastthreedeCades,withtheadvanceofplatetectonics,manygeologistssuggestedthatblueschists,representinghigh-Pressurelow-tCmperamre~rphism,areformedbysubductionofoceanicplate(Emst,1973).Blueschistshavealsobeenregardedasoneof…  相似文献   

6.
柴北缘鱼卡地区达肯大坂岩群的地质特征与构造环境   总被引:4,自引:0,他引:4  
柴达木北缘鱼卡河地区的达肯大坂岩群可划分为斜长角闪岩岩组和片岩岩组。斜长角闪岩岩组主要由变质基性火山岩和碎屑岩组成,火山岩的地球化学特征指示为岛弧环境构造;片岩岩组分布在柴达木山西南侧,为一套陆源碎屑岩建造。该岩群遭受了三幕构造变形,前两幕褶皱变形是造山作用的产物,具有近似的北西-南东向或北北西向的褶皱枢纽,近共轴褶皱叠加的构造样式指示了北东-南西向挤压收缩的动力学背景。达肯大坂岩群遭受中压高绿片岩相-角闪岩相的变质,变质程度往北东方向递减,可与其南柴达木盆地一侧的高压-超高压变质带构成双变质带。结合最近从达肯大坂岩群中获得的锆石年龄,推断该岩群形成于大陆边缘的弧后盆地,时代为新元古代晚期-早古生代,是柴北缘早古生代造山带的重要组成部分。  相似文献   

7.
Sub-ophiolite metamorphic rocks from NW Anatolia, Turkey   总被引:4,自引:0,他引:4  
The metamorphic rocks from near Kütahya in north-west Anatolia record different stages in the history of closure of the Neo-Tethyan İzmir–Ankara–Erzincan ocean. Sub-ophiolite metamorphic rocks within the Tavşanlı zone are a tectonically composite sequence of quartz–mica schists, amphibole schists, amphibolites and garnet amphibolites. They show increasing metamorphic grade towards the base of the ophiolite. A first metamorphic event, typical of sub-ophiolite metamorphic sole rocks, was characterized by high-grade assemblages, and followed by retrograde metamorphism. A second event was marked by a medium-to high-pressure overprint of the first-stage metamorphic assemblages with assemblages indicating a transition between the blueschist and greenschist facies. The chemistry of the sub-ophiolite metamorphic rocks indicates an ocean island basalt origin, and Ar–Ar dating indicates a high temperature metamorphic event at 93±2 Ma. Counter-clockwise P–T–t paths recorded by the sub-ophiolite metamorphic rocks are interpreted to result from intra-oceanic thrusting during the closure of the İzmir– Ankara–Erzincan ocean, initiating subduction, which formed the high-temperature assemblages. Further subduction then produced the widespread blueschists of the Tavşanlı zone during the Late Cretaceous. Later cold thrusting obducted the ophiolite (with the metamorphic sole welded to its base), ophiolitic melanges and blueschists onto the Anatolide passive margin in the latest Cretaceous. All these events pre-date the final Anatolide–Pontide continent–continent collision.  相似文献   

8.
西昆仑库地蛇绿岩地质、地球化学及其成因研究   总被引:16,自引:0,他引:16       下载免费PDF全文
西昆仑库地蛇绿混杂岩由方辉橄榄岩和纯橄榄岩等地幔变质橄榄岩、豆荚状铬铁矿、堆晶橄榄岩、堆晶辉石岩和辉长岩、辉绿岩墙、块状和枕状玄武岩等组成。强亏损方辉橄榄岩为主的地幔岩组合,二辉石的低Al含量和铬尖晶石的高Cr#,以及岩石的富Mg、Ni和贫Al、Ca特征一致表明地幔橄榄岩类是经较高程度部分熔融后的地幔残余,与消减带之上蛇绿岩中的同类岩石相近。岩石富Rb、Ba、U、Th、LREE,说明地幔残余岩石受到了来自消减带的洋壳重熔组分的混染。堆晶岩以辉石岩和辉长岩为主,可能属PPG系列,指示岩浆是在消减带环境和含水条件下熔融的。辉长岩为低Ti蛇绿岩型,代表洋内弧后盆地早期环境或弧前环境。辉绿岩和玄武岩为洋中脊拉斑玄武岩和岛弧拉斑玄武岩的过渡类型;玄武岩和辉绿岩相比富Ba、Th、LREE,贫Ta,指示玄武岩较辉绿岩更多地受到来自消减带洋壳重熔组分的影响。库地蛇绿岩形成时的古构造环境是消减带之上的弧间或弧后盆地。  相似文献   

9.
雀莫错一带那益雄组火山岩是由玄武岩组成的基性熔岩,岩石化学表现为低TiO2(<1%)和Al2O3,Na2O>K2O,属钙碱性系列。地球化学特征表现为轻稀土富集,Eu平坦或轻微负异常,富集大离子亲石元素(Rb,Sr,Ba,K)和高强场元素Th,亏损高强场元素Nb和Ta,反映了岛弧构造环境。上二叠统那益雄组岛弧型火山岩的发现,说明长江源地区晚古生代有岛弧存在,且该岛弧应为晚古生代特提斯洋向东俯冲在中北段形成的多岛-弧盆系统的一部分。  相似文献   

10.
The geochemical composition of metavolcanics (metabasalts and metaandesites) of the Tunka terrane is considered. They are differently enriched in incompatible elements relative to N-MORB. The geochemical features of the basalts (LILE and LREE enrichment, Zr and Hf negative anomalies) point to the suprasubductional nature of synsedimentary volcanism; at the same time, the rocks lack negative Nb, Ta, and Ti anomalies. Comparison of the Tunka metavolcanics with those of modern geodynamic settings shows their analogy to back-arc basin basalts.  相似文献   

11.
北秦岭松树沟榴辉岩的确定及其地质意义   总被引:9,自引:8,他引:1  
陈丹玲  任云飞  宫相宽  刘良  高胜 《岩石学报》2015,31(7):1841-1854
松树沟石榴石角闪岩(榴闪岩)呈透镜状产于松树沟超镁铁岩旁侧的斜长角闪岩中,一直以来被认为是形成于接触交代变质或麻粒岩相变质过程。详细岩相学及矿物元素分析,在榴闪岩的基质矿物、石榴石幔部及锆石包体中发现残留的绿辉石,而且石榴石也保存了明显的进变质主、微量元素成分环带,表明松树沟榴闪岩为榴辉岩退变质的产物,至少经历了从角闪岩相到榴辉岩相再到角闪岩相的三阶段顺时针PT演化过程。锆石定年结果得到榴辉岩的变质年龄为500±8Ma,原岩结晶时代为796±16Ma,与秦岭岩群北侧官坡超高压榴辉岩的变质年龄和原岩年龄完全一致,也与北秦岭区域高压-超高压变质时代和原岩的结晶时代一致。表明松树沟榴辉岩与北秦岭造山带已发现的高压-超高压变质岩石一起都应是古生代大陆深俯冲作用的结果,而松树沟超镁铁岩可能是俯冲的大陆板片在折返过程中携带的俯冲隧道中的交代地幔岩。  相似文献   

12.
The north Qilian high‐pressure (HP)/low‐temperature (LT) metamorphic belt is composed mainly of blueschists, eclogites and greenschist facies rocks. It formed within an Early Palaeozoic accretionary wedge associated with the subduction of the oceanic crust and is considered to be one of the best preserved HP/LT metamorphic belts in China. Here we report new lawsonite‐bearing eclogites and eclogitic rocks enclosed within epidote blueschists in the North Qilian Mountains. Five samples contain unaltered lawsonite coexisting with omphacite and phengite as inclusions in garnet, indicating eclogite facies garnet growth and lawsonite pseudomorphs were observed in garnet from an additional 11 eclogites and eclogitic rocks. Peak pressure conditions estimated from lawsonite omphacite‐phengite‐garnet assemblages were 2.1–2.4 GPa at temperatures of 420–510 °C, in or near the stability field of lawsonite eclogite, and implying formation under an apparent geothermal gradient of 6–8 °C km?1, consistent with metamorphism in a cold subduction zone. SHRIMP U‐Pb dating of zircon from two lawsonite‐bearing eclogitic metabasites yields ages of 489 ± 7 Ma and 477 ± 16 Ma, respectively. CL images and mineral inclusions in zircon grains indicate that these ages reflect an eclogite facies metamorphism. An age of 502 ± 16 Ma is recorded in igneous cores of zircon grains from one lawsonite pseudomorph‐bearing eclogite, which is in agreement with the formation age of Early Ordovician for some ophiolite sequences in the North Qilian Mountains, and may be associated with a period of oceanic crust formation. The petrological and chronological data demonstrate the existence of a cold Early Palaeozoic subduction zone in the North Qilian Mountains.  相似文献   

13.
The Altınekin Complex in south central Turkey forms part of the south‐easterly extension of the Tavşanlı Zone, a Cretaceous subduction complex formed during the closure of the Neo‐Tethys ocean. The protoliths of metamorphic rocks within the Altınekin Complex include peridotites, chromitites, basalts, ferruginous cherts and flysch‐facies impure carbonate sediments. Structurally, the complex consists of a stack of thrust slices, with massive ophiolite tectonically overlying a Cretaceous sediment‐hosted ophiolitic mélange, in turn overlying a sequence of Mesozoic sediments. Rocks within the two lower structural units have undergone blueschist–facies metamorphism. Petrographic, mineral–chemical and thermobarometric studies were undertaken on selected samples of metasedimentary and metabasic rock in order to establish the time relations of deformation and metamorphism and to constrain metamorphic conditions. Microstructures record two phases of plastic deformation, one predating the metamorphic peak, and one postdating it. Estimated peak metamorphic pressures mostly fall in the range 9–11 kbar, corresponding to burial depths of 31–38 km, equivalent to the base of a continental crust of normal thickness. Best‐fit peak metamorphic temperatures range from 375 to 450°C. Metamorphic fluids had high H2O:CO2 ratios. Peak metamorphic temperature/depth ratios (T/d values) were low (c. 10–14°C/km), consistent with metamorphism in a subduction zone. Lawsonite‐bearing rocks in the southern part of the ophiolitic mélange record lower peak temperatures and T/d values than epidote blueschists elsewhere in the unit, hinting that the latter may consist of two or more thrust slices with different metamorphic histories. Differences in peak metamorphic conditions also exist between the ophiolitic mélange and the underlying metasediments. Rocks of the Altınekin Complex were subducted to much shallower depths, and experienced higher geothermal gradients, than those of the NW Tavşanlı Zone, possibly indicating dramatic lateral variation in subduction style. Retrograde PT paths in the Altınekin Complex were strongly decompressive, resulting in localized overprinting of epidote blueschists by greenschist–facies assemblages, and of lawsonite blueschists by pumpellyite–facies assemblages. The observation that the second deformation was associated with decompression is consistent with, but not proof of, exhumation by a process that involved deformation of the hanging‐wall wedge, such as gravitational spreading, corner flow or buoyancy‐driven shallowing of the subduction zone. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
《International Geology Review》2012,54(10):1253-1277
ABSTRACT

Seafloor subduction and subduction-zone metamorphism (SZM) are understood to be the very cause of both subduction-zone magmatism and mantle compositional heterogeneity. In this article, we compile geochemical data for blueschist and eclogite facies rocks from global palaeo-subduction-zones in the literature, including those from the Chinese Western Tianshan ultrahigh pressure (UHP) metamorphic belt. We synthesize our up-to-date understanding on how chemical elements behave and their controls during subduction-zone metamorphism. Although the compositional heterogeneity of metamorphic minerals from subducted rocks has been recently reported, we emphasize that the mineral compositional heterogeneity is controlled by elemental availability during mineral growth, which is affected by the protolith composition, the inherited composition of precursor minerals, and the competition with neighbouring growing minerals. In addition, given the likely effects of varying protolith compositions and metamorphic conditions on elemental behaviours, we classify meta-mafic rocks from global palaeo-subduction-zones with varying metamorphic conditions into groups in terms of their protolith compositions (i.e. ocean island basalt (OIB)-like, enriched mid-ocean ridge basalt (MORB)-like, normal [N]-MORB-like), and discuss geochemical behaviours of chemical elements within these co-genetic groups rather than simply accepting the conclusions in the literature. We also discuss the geochemical consequences of SZM with implications for chemical geodynamics, and propose with emphasis that: (1) the traditionally accepted ‘fluid flux induced-melting’ model for arc magmatism requires revision; and (2) the residual subducted ocean crust cannot be the major source material for OIB, although it can contribute to the deep mantle compositional heterogeneity. We also highlight some important questions and problems that need further investigations, e.g. complex subduction-zone geochemical processes, different contributions of seafloor subduction and resultant subduction of continental materials, and the representativeness of studied HP–UHP metamorphic rocks.  相似文献   

15.
A low‐grade metamorphic “Coloured Mélange” in North Makran (SE Iran) contains lenses and a large klippe of low temperature, lawsonite‐bearing blueschists formed during the Cretaceous closure of the Tethys Ocean. The largest blueschist outcrop is a >1,000 m thick coherent unit with metagabbros overlain by interlayered metabasalts and metavolcanoclastic rocks. Blueschist metamorphism is only incipient in coarse‐grained rocks, whereas finer grained, foliated samples show thorough metamorphic recrystallization. The low‐variance blueschist peak assemblage is glaucophane, lawsonite, titanite, jadeite±phengitic mica. Investigated phase diagram sections of three blueschists with different protoliths yield peak conditions of ~300–380°C at 9–14 kbar. Magnesio‐hornblende and rutile cores indicate early amphibolite facies metamorphism at >460°C and 2–4 kbar. Later conditions at slightly higher pressures of 6–9 kbar at 350–450°C are recorded by barroisite, omphacite and rutile assemblages before entering into the blueschist facies and finally following a retrograde path through the pumpellyite–actinolite facies across the lawsonite stability field. Assuming that metamorphic pressure is lithostatic pressure, the corresponding counterclockwise P–T path is explained by burial along a warm geothermal gradient (~15°C/km) in a young subduction system, followed by exhumation along a cold gradient (~8°C/km); a specific setting that allows preservation of fresh undecomposed lawsonite in glaucophane‐bearing rocks.  相似文献   

16.
滇东南建水地区位于师宗-弥勒构造带的南段,区内出露一套玄武岩–安山岩–英安岩–流纹岩组合。研究这套火山岩的形成时间和形成环境对认识滇东南构造格局有着重要意义。本文首次对建水火山岩进行LA-ICP-MS锆石U-Pb测年,获得两个样品的年龄分别为261.9±2.2 Ma(MSWD=0.80)、264.8±1.7 Ma(MSWD=1.12),属中二叠世晚期,代表建水火山岩的形成时间。建水玄武岩与安山岩具有低TiO_2含量(0.50%~0.88%)、高Mg~#(52.0~64.5)、弱富集LREE((La/Yb)_N=1.42~3.44)、富集LILE(Rb,Th,U,Pb)、轻微亏损HFSE(Nb,Ta,Ti)的特点,具典型岛弧玄武岩的特征;英安岩和流纹岩高ΣREE含量(139.5×10~(–6)~313.6×10~(–6))、富集LREE((La/Yb)N=4.16~9.78)和LILE(Rb,Ba,Th,U)、亏损HFSE(Nb,Ta)、强亏损Sr、Ti、Y等元素的特点与典型的岛弧流纹岩相似,但高钾(K_2O含量平均7.73%)、钙碱性(δ=0.93~2.94)、强过铝质(A/CNK=1.13~2.10)的特点使之区别于一般岛弧酸性火山岩,而具有一些上地壳部分熔融形成的S型花岗岩的特点。综合建水火山岩岩石组合、地球化学和区域地质背景,认为建水火山岩形成于活动大陆边缘的弧后盆地伸展环境,是地幔部分熔融形成的玄武质岩浆结晶分异与上地壳混染作用的共同结果,与滇桂交界处岛弧火山岩、两广交界处岛弧玄武岩等同为哀牢山洋向北俯冲的产物。  相似文献   

17.
兴蒙造山带东段晚古生代构造演化存在争议,基性岩浆作用是构造演化过程中的良好地质记录. 对贺根山缝合带东段内蒙古科右中旗构造混杂岩带内的杜尔基基性岩和甲哈达基性岩进行了系统的地质特征、岩相学、年代学和地球化学研究. 杜尔基基性岩岩性为枕状玄武岩和辉绿岩,辉绿岩锆石LA-ICP-MS U-Pb年龄为348.3±2.6 Ma,为低钾拉斑玄武系列,相对富集LILE,亏损Nb、Ta等高场强元素. 甲哈达基性岩岩性主要为玄武岩,锆石U-Pb年龄为317.6±3.0 Ma,为钙碱性系列,同样具有HFSE亏损和LILE富集的特点,与杜尔基基性岩相比更加富集LILE和LREE. 结合贺根山缝合带早石炭世蛇绿岩及洋内俯冲作用的研究成果,认为从杜尔基基性岩到甲哈达基性岩的演化,可能指示了古亚洲洋东段早-晚石炭世洋内俯冲的渐进过程,洋内弧从不成熟向逐渐成熟演化.   相似文献   

18.
Basic and intermediate-acidic igneous rocks were developed during the late Hercynian in North Tarim basin.The geochemistry characteristics of the rocks show that basic volcanic rock has K2O/Na2O = 0.18-0.61 < 1 and falls into a category of basalt of sodium system.The rocks contain enriched large-ion lithophile elements (LILE) (K,Rb,Ba,Th) and high-field strength elements (HFSE) (Nb,Ta,Ti,Zr,P),with the magmatic material from the upper mantle.The intermediate-acidic volcanic rocks have σ = 1.91-2.96 < 3.3,K2O/Na2O =1.25-1.59 > 1,as well as the enriched LILE and depleted HFSE (Nb,Ta,Ti,P),presenting the same trace element compositions and characteristics as in the granitic rocks of South Tianshan Mt.; they are either shoshonitic igneous rocks or high-K calc-alkaline igneous rocks,with a distinct crust-derived component feature.The comprehensive analyses on the characteristics of the trace elements,the graphic tectonic discrimination,and the distribution features of the two types of igneous rocks show that they were formed under different tectonic settings and geodynamic environments:the basalt was formed in the active rifting period when the active mantle upwelling caused the thinning of lithosphere; the intermediateacidic volcanic-intrusive rock was formed in the island arc area of the active continental margin in North Tarim; the formation is associated with the plate subduction during the course of South Tianshan Ocean closure-the subduction of Middle Tianshan Mountain toward the Tarim plate.The basic and intermediate-acidic igneous rocks reveal a tectonic regime of extension-extrusion transition,which is significant in determining the key tectonic revolution period of North Tarim basin.  相似文献   

19.
The late Paleozoic Wudaogou Group, one of the oldest metamorphic units in the eastern Yanbian area, has important tectonic and metallogenic significance. Here, we provide new insights into their protoliths, tectonic setting of the metamorphic rocks and their relationships with the gold and tungsten mineralization, using new petrographic and whole‐rock geochemical data for various lithologies within the Wudaogou Group. The protolith of the metamorphic rocks of the Wudaogou Group was intermediate–basic volcanic rocks (e.g. basaltic andesite, trachyandesite, and basalt) and sedimentary rocks including argillaceous rocks, quartz sandstone, arkose and clayish greywacke, as well as pyroclastic sedimentary rock, covering tuffaceous sandstone. Before undergoing late Paleozoic epidote–amphibolite facies regional metamorphism, these protoliths were formed during the middle–late Permian in an island arc setting within a continental margin collage zone. Combined with the regional tectonic evolution, it can be speculated that the formation and the subsequent metamorphism of the protoliths of the metamorphic rocks from the Wudaogou Group were influenced by the change from subduction to collision of the Paleo‐Asian Ocean. Similarities of the rare earth element (REE) patterns and parameters among the metamorphic rocks within the Wudaogou Group, auriferous ores from the Xiaoxi'nancha gold (copper) deposit, and scheelites from the Yangjingou tungsten deposit, together with the favorable metallogenic element contents within the metamorphic rock series, imply that the Wudaogou Group could provide parts of metallic material for the gold and tungsten mineralization in the eastern Yanbian area, as exemplified by the Yangjingou deposit and Xiaoxi'nancha deposit, respectively. Further, the metamorphic sedimentary rocks, especially the metamorphic sandstones, quartz schists and quartz mica schists within the Wudaogou Group, have closer genetic relationships with the Yangjingou tungsten mineralization. However, the specific lithologies within this group which control the gold mineralization are still uncertain, and need further research.  相似文献   

20.
Whole rock trace element and isotopic compositions of different HP–LT metamorphic rocks of the Ile de Groix were analysed to characterise geochemical fingerprints during subduction and exhumation in a late Palaeozoic HP metamorphic terrain. Massive metabasites of hydrothermally altered enriched mid-ocean ridge basalt (E-MORB) origin are in association with banded metabasic rocks of volcano-sedimentary origin and metapelites. Fluid-rock interactions that likely occurred during seafloor hydrothermal alteration and early subduction metasomatism increased δ18O values, as well as K2O, Na2O, MgO, and LILE contents and decreased CaO contents of metabasites. Most metabasites have retained their early-subduction and pre-HP trace element and isotopic composition, even for rocks metamorphosed to lower eclogite-facies P–T conditions. Micaschists also preserved apparent pelitic protolith trace element values and oxygen isotopic compositions. During retrograde metamorphism related to the exhumation, metabasites were rehydrated by fluids in equilibrium with the host rock compositions, which were likely derived from the basic rocks. This style of fluid–rock interaction formed a greenschist facies mineral assemblage. Metabasites that underwent pervasive alteration by seafloor hydrothermal and metasomatism processes prior to peak metamorphism, show greater effects of retrogression and albitisation, probably because they were richer in H2O and Na2O. The variety of metamorphic assemblages on the Ile de Groix is thus directly related to the pre-HP rock composition. The extent of retrogression in the western part of the Ile de Groix primarily reflects stronger metasomatic intensities than in the eastern part.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号