共查询到20条相似文献,搜索用时 0 毫秒
1.
Sea ice thickness measurement and its underside morphology analysis using radar penetration in the Arctic Ocean 总被引:5,自引:0,他引:5
Sea ice, as an important component of the Arctic climate system, has drawn significant sci-entific interest. Sea ice thickness and its morphology have dramatic impacts on ocean-atmos- phere-ice interactions[1—4], which directly affect the exchange proces… 相似文献
2.
The magnitude and spatial distribution of snow on sea ice are both integral components of the ocean–sea‐ice–atmosphere system. Although there exists a number of algorithms to estimate the snow water equivalent (SWE) on terrestrial surfaces, to date there is no precise method to estimate SWE on sea ice. Physical snow properties and in situ microwave radiometry at 19, 37 and 85 GHz, V and H polarization were collected for a 10‐day period over 20 first‐year sea ice sites. We present and compare the in situ physical, electrical and microwave emission properties of snow over smooth Arctic first‐year sea ice for 19 of the 20 sites sampled. Physical processes creating the observed vertical patterns in the physical and electrical properties are discussed. An algorithm is then developed from the relationship between the SWE and the brightness temperature measured at 37 GHz (55°) H polarization and the air temperature. The multiple regression between these variables is able to account for over 90% of the variability in the measured SWE. This algorithm is validated with a small in situ data set collected during the 1999 field experiment. We then compare our data against the NASA snow thickness algorithm, designed as part of the NASA Earth Enterprise Program. The results indicated a lack of agreement between the NASA algorithm and the algorithm developed here. This lack of agreement is attributed to differences in scale between the Special Sensor Microwave/Imager and surface radiometers and to differences in the Antarctic versus Arctic snow physical and electrical properties. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
3.
Thermokarst lakes cover > 20% of the landscape throughout much of the Alaskan Arctic Coastal Plain (ACP) with shallow lakes freezing solid (grounded ice) and deeper lakes maintaining perennial liquid water (floating ice). Thus, lake depth relative to maximum ice thickness (1·5–2·0 m) represents an important threshold that impacts permafrost, aquatic habitat, and potentially geomorphic and hydrologic behaviour. We studied coupled hydrogeomorphic processes of 13 lakes representing a depth gradient across this threshold of maximum ice thickness by analysing remotely sensed, water quality, and climatic data over a 35‐year period. Shoreline erosion rates due to permafrost degradation ranged from < 0·2 m/year in very shallow lakes (0·4 m) up to 1·8 m/year in the deepest lakes (2·6 m). This pattern of thermokarst expansion masked detection of lake hydrologic change using remotely sensed imagery except for the shallowest lakes with stable shorelines. Changes in the surface area of these shallow lakes tracked interannual variation in precipitation minus evaporation (P ? EL) with periods of full and nearly dry basins. Shorter‐term (2004–2008) specific conductance data indicated a drying pattern across lakes of all depths consistent with the long‐term record for only shallow lakes. Our analysis suggests that grounded‐ice lakes are ice‐free on average 37 days longer than floating‐ice lakes resulting in a longer period of evaporative loss and more frequent negative P ? EL. These results suggest divergent hydrogeomorphic responses to a changing Arctic climate depending on the threshold created by water depth relative to maximum ice thickness in ACP lakes. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
4.
The effects of small water bodies or lakes on the surface sensible and latent heat fluxes and the transport of heat and water vapour in the atmospheric boundary layer (ABL) over the Mackenzie River Basin (MRB) are studied from two cases, which occurred on 2 and 8 June 1999 during the warm season. The synoptic condition for the cases is representative of about 33% of the synoptic situation over the MRB. The two events are simulated using the Canadian mesoscale compressible community (MC2) model. A one‐way nesting grid approach is employed with the highest resolution of 100 m over a domain of 100 km2. Experiments were conducted with (LAKE) and without (NOLAKE) the presence of small water bodies, whose size distribution is obtained through an inversion algorithm using information of their linear dimension determined from aircraft measurement of surface temperature during MAGS (the Mackenzie GEWEX (Global Energy and Water Cycle Experiment) Study) in 1999. The water bodies are assumed to be distributed randomly in space with a fractional area coverage of 10% over the MRB. The results show that, in the presence of lakes, the domain‐averaged surface sensible heat flux on 2 June 1999 (8 June 1999) decreases by 9·3% (6·6%). The surface latent heat flux is enhanced by 18·2% (81·5%). Low‐level temperature advection and the lake surface temperature affect the air–land/lake temperature contrast, which in turn controls the sensible heat flux. In the absence of lakes the surface wind speed impacts the latent heat flux, but in the presence of lakes the moisture availability and the atmospheric surface layer stability control the latent heat flux. The enhancement is smaller on 2 June 1999 as a result of a stable surface layer caused by the presence of colder lake temperatures. The domain‐averaged apparent heat source and moisture sink due to turbulent transports were also computed. The results show that, when lakes are present, heating and drying occur in the lowest 100 m from the surface. Above 100 m and within the ABL, there was apparent cooling. However, the apparent moistening profiles reveal that lakes tend to moisten the ABL through transfer of moisture from the lowest 50–100 m layer. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
5.
Investigations on distributions and fluxes of sea-air CO_2 of the expedition areas in the Arctic Ocean 总被引:4,自引:0,他引:4
揋reenhouse effect?causing global warming has been an important issue of studying climate change. In the latest 100 years, the earth surface temperature has been increased by about 0.4℃—0.8℃[1,2]. And this has been becoming a hotspot of the world[3,4] 相似文献
6.
应用1999年8月19~24日我国第1次北极考察资料对北极夏季近地层气象要素梯度特征和冰面热量收支问题进行了讨论.北极夏季近地层相对于冰面的相对湿度很大,经常接近于饱和状态,冰温具有明显的日变化,夜间冰面附近冰温梯度较大,白天很小.在冰温垂直分布中20cm冰层温度有时可出现极大值.冰面热量收支计算表明,夜间冰面辐射冷却损失热量主要由冰层向冰面热量输送来补偿.白天冰层的热量主要来源于穿透短波辐射,冰面和以下冰层间的热量交换很低.白天冰面冰雪融化热量是不可忽视的. 相似文献
7.
本文利用NCEP/NCAR等再分析资料和CAM3.1数值模式研究了夏季欧亚中高纬遥相关型年际变率与前期春季北极海冰变化的联系及其对我国夏季降水影响的可能机制.结果表明,夏季北大西洋-欧亚中高纬地区500 hPa位势高度场自然正交分解第二模态表现为"-+-+"遥相关波列,其中格陵兰岛-北大西洋和乌拉尔山地区为异常高空槽区所控制,而欧洲和贝加尔湖附近地区则为异常高压脊区,这种波列分布与欧亚中高纬EU型遥相关型十分类似.当遥相关波列为"-+-+"("+-+-")型分布时,前期春季巴伦支海北部和巴芬湾一带海冰偏少(多),同期夏季巴伦支海北部一带海冰亦持续偏少(多),同时在我国东北北部地区、长江和黄河之间地区降水明显偏少(多).深入分析发现,巴伦支海北部和巴芬湾一带海冰偏少后,由于该地区湍流热通量明显偏强,在动力过程影响方面会形成异常Rossby波源,准定常Rossby波活动通量将向东亚地区传播,使得夏季欧亚中高纬"-+-+"遥相关波列出现.另外,海冰异常偏少后,在热动力过程影响方面,4-5月欧亚中高纬乌拉尔山-贝加尔湖以北地区积雪会出现"西少东多"偶极子型异常分布,其通过影响后期土壤湿度及下垫面热通量异常,也有利于夏季欧亚中高纬遥相关波列的维持.伴随着欧亚中高纬"-+-+"遥相关波列的出现,乌山阻塞高压偏弱,东亚槽偏浅,且亚洲副热带急流随之加强,贝加尔湖以北的副极地地区出现西风异常,东亚副热带急流北侧出现东风异常,贝加尔湖以南地区为异常反气旋控制,南下冷空气活动减弱.受到上述环流形势影响,我国东北北部地区、黄河和长江之间地区降水明显偏少.当巴伦支海北部和巴芬湾区域海冰偏多时,结论则反之.最后,基于春季海冰指数和晚春偶极子型积雪指数,我们建立了江淮流域夏季降水的预测模型,回报结果表明其对江淮流域夏季降水的年际变率具有较高的预测技巧. 相似文献
8.
The results of modeling for M2 surface and internal tides in the White Sea are discussed. These results are obtained for the case when shore-fast and drifting ice covers are present concurrently. It is assumed that the interface between ice covers is of non-tidal origin (i.e., it is pre-assigned) and that ice rheology is viscous-elastic, representative of the low temperatures typical of winter conditions. Emphasis is placed on tidal energetics and, in particular, on the averaged (over a tidal cycle) values of the density and the dissipation rate of barotropic/baroclinic tidal energy. It is shown that in the White Sea, unlike in other marginal seas, the averaged (over a tidal cycle) and depth-integrated density of baroclinic tidal energy for the combined ice cover is much less than the same defined density of barotropic tidal energy. Similarly, the averaged and integrated (over the volume of the White Sea) rate of baroclinic tidal energy dissipation is much less than the same defined rate of barotropic tidal energy dissipation. The latter, in turn, is greater than for the shore-fast ice cover, but is smaller than for the drifting ice cover. 相似文献
9.
Distribution of ~(226)Ra in the Arctic Ocean and the Bering Sea and its hydrologic implications 总被引:4,自引:0,他引:4
The Arctic Ocean, the northernmost parts of the earth, covers the total surface area of 14.79 million square kilometers and amounts to only about 4% of global ocean surface area. Although its surface area is the smallest in the four major oceans, the Arct… 相似文献
10.
The aim of this work is to compare three remote sensing based models: two contextual and one physically-based single-pixel model for the estimation of daytime integrated latent heat flux without the use of any ground measurements over Indian ecosystems. Satellite datasets from the MODIS sensors aboard the Terra and the Aqua satellites were used. The latent heat flux estimated from the remote sensing models was compared with that estimated from Bowen ratio energy balance towers at five sites in India. The root mean square error (RMSE) of the latent heat flux estimated from the contextual and the physically-based models was found to be in the order of 40 and 70 W m?2, respectively. The relatively inferior performance of the more complex physically-based model in comparison with the contextual models was found to be largely due to inaccurate parameterizations estimated only from remote sensing datasets without any ground data. 相似文献
11.
New insights into the spatial variability of the surface water carbon dioxide in varying sea ice conditions in the Arctic Ocean 总被引:1,自引:0,他引:1
In the summer of 2005, continuous surface water measurements of fugacity of CO2 (fCO2sw), salinity and temperature were performed onboard the IB Oden along the Northwest Passage from Cape Farwell (South Greenland) to the Chukchi Sea. The aim was to investigate the importance of sea ice and river runoff on the spatial variability of fCO2 and the sea–air CO2 fluxes in the Arctic Ocean. Additional data was obtained from measurements of total alkalinity (AT) by discrete surface water and water column sampling in the Canadian Arctic Archipelago (CAA), on the Mackenzie shelf, and in the Bering Strait. The linear relationship between AT and salinity was used to evaluate and calculate the relative fractions of sea ice melt water and river runoff along the cruise track. High-frequency fCO2sw data showed rapid changes, due to variable sea ice conditions, freshwater addition, physical upwelling and biological processes. The fCO2sw varied between 102 and 678 μatm. Under the sea ice in the CAA and the northern Chukchi Sea, fCO2sw were largely CO2 undersaturated of approximately 100 μatm lower than the atmospheric level. This suggested CO2 uptake by biological production and limited sea–air CO2 gas exchange due to the ice cover. In open areas, such as the relatively fresh water of the Mackenzie shelf and the Bering Strait, the fCO2sw values were close to the atmospheric CO2 level. Upwelling of saline and relatively warm water at the Cape Bathurst caused a dramatic fCO2sw increase of about 100 μatm relative to the values in the CAA. At the southern part of the Chukchi Peninsula we found the highest fCO2sw values and the water was CO2 supersaturated, likely due to upwelling. In the study area, the calculated sea–air CO2 flux varied between an oceanic CO2 sink of 140 mmol m−2 d−1 and an oceanic source of 18 mmol m−2 d−1. However, in the CAA and the northern Chukchi Sea, the sea ice cover prevented gas exchange, and the CO2 fluxes were probably negligible at this time of the year. Assuming that the water was exposed to the atmosphere by total melting and gas exchange would be the only process, the CO2 undersaturated water in the ice-covered areas will not have the time to reach the atmospheric CO2 value, before the formation of new sea ice. This study highlights the value of using high-frequency measurements to gain increased insight into the variable and complex conditions, encountered on the shelves in the Arctic Ocean. 相似文献
12.
Experimental observation on the characteristics of the near-surface turbulence over the Antarctic ice sheets during the polar day period 总被引:1,自引:0,他引:1
Based on the ultrasonic anemometer/thermometer data in the East Antarctic coastal area ice sheets ob-tained first by Chinese
scientists, turbulent intensity, kinetic energy and sensible heat of turbulence, surface roughness height drag coefficient
and normalized variation were calculated and analysed using the eddy-correlation method. The results show that the values
of roughness height and drag coefficient are 4.3 X 10 m and 1.8x 10 -3, respectively. These turbulent parameters have apparent diurnal variations.
Project supported by the National Natural Science Foundation of China (Grant No. 49675252). 相似文献
13.
Characteristics of pCO_2 in surface water of the Bering Abyssal Plain and their effects on carbon cycle in the western Arctic Ocean 总被引:1,自引:0,他引:1
CHEN Liqi GAO Zhongyong WANG Weiqiang & YANG Xulin .Key Lab of Global Change Marine-Atmospheric Chemistry State Oceanic Administration Xiamen China .Chinese Arctic Antarctic Administration Beijing China .Third Institute of Oceanography State Oceanic Administration Xiamen China Correspondence should be addressed to Chen Liqi 《中国科学D辑(英文版)》2004,47(11)
The global warming has obviously been causingthe Arctic sea ice shrinking and thinning during thelast 30 years, which would increase free ice waters andenhance biological productivity. These changes willimpact the source and sink of carbon in the ArcticOcean and subarctic waters as well as a feedback tothe global change[1—3]. The Chukchi Sea is located in the southwest ofthe western Arctic Ocean and the Bering Sea in thenorthwest of the North Pacific Ocean. Both seas are 1997—2001) and… 相似文献
14.
Because it is located both on the Mid‐Atlantic Ridge and on a mantle plume, Iceland is a region of intense tectonics and volcanism. During the last glaciation, the island was covered by an ice sheet approximately 1000 m thick. A reconstruction of the ice flow lines, based on glacial directional features, shows that the ice sheet was partly drained through fast‐flowing streams. Fast flow of the ice streams has been recorded in megascale lineations and flutes visible on the currently deglaciated bedrock, and is confirmed by simple mass balance considerations. Locations of the major drainage routes correlate with locations of geothermal anomalies, suggesting that ice stream activity was favoured by lubrication of the bed by meltwater produced in regions of high geothermal heat flux. Similar control of ice flow by geothermal activity is expected in ice sheets currently covering tectonically and volcanically active area such as the West Antarctic ice sheet. Copyright © 2000 John Wiley & Sons, Ltd. 相似文献
15.
巢湖对冬季陆面辐射和热量过程的影响 总被引:2,自引:1,他引:2
从物理气候学的观点出发,分析了湖泊对水体和陆地辐射平衡和热量平衡各分量的影响。以巢湖地区冬季观测资料为例,揭示了在晴稳天气湖陆风环流对陆面显热输送的影响,以及在冷平流天气,湖泊对上下风方陆面显热输送的影响。 相似文献
16.
Catherine Lalande Jacqueline M. Grebmeier Paul Wassmann Lee W. Cooper Mikhail V. Flint Valentina M. Sergeeva 《Continental Shelf Research》2007
Drifting sediment traps were deployed at 9 stations in May-June (ice-covered conditions) and July-August (ice-free conditions) 2004 in the Chukchi Sea to investigate the variability in export fluxes of biogenic matter in the presence and absence of sea ice cover. Measurements of chlorophyll-a (Chl-a), particulate organic carbon (POC), particulate nitrogen (PN), phytoplankton, zooplankton fecal pellets, and the stable carbon isotope composition (δ13C) of the sinking material were performed along Barrow Canyon (BC) and a parallel shelf-to-basin transect from East Hanna Shoal (EHS) to the Canada Basin. POC export fluxes were similarly high in the presence (378±106 mg C m−2 d−1) and in the absence of ice cover (442±203 mg C m−2 d−1) at the BC stations, while fluxes were significantly higher in the absence (129±98 mg C m−2 d−1) than in the presence of ice cover (44±29 mg C m−2 d−1) at the EHS stations. The C/N ratios and δ13C values of sinking organic particles indicated that POC export fluxes on the Chukchi continental shelf were mostly composed of freshly produced labile material, except at the EHS stations under ice cover where the exported matter was mostly composed of refractory material probably advected into the EHS region. Chl-a fluxes were higher under ice cover than in ice-free water, however, relatively low daily loss rates of Chl-a and similar phytoplankton carbon fluxes in ice-covered and ice-free water suggest the retention of phytoplankton in the upper water column. An increase in fecal pellet carbon fluxes in ice-free water reflected higher grazing pressure in the absence of ice cover. Elevated daily loss rates of POC at the BC stations confirmed other indications that Barrow Canyon is an important area of carbon export to the basin and/or benthos. These results support the conclusion that there are large spatial and temporal variations in export fluxes of biogenic matter on the Chukchi continental shelf, although export fluxes may be similar in the presence and in the absence of ice cover in highly productive regions. 相似文献
17.
Groundwater circulation is known to be one of the agents responsible for the redistribution of geothermal energy by acting as a source or sink in the course of its movement through porous media. Heat transport in groundwater systems is considered to be a coupled process and the theory based on this was used to analyse temperature profiles of 30 thermally stable observation wells in a deep, semi-confined aquifer system in the Tokyo Metropolitan area. Vertical water fluxes in the semi-confined aquifers and the associated upward heat fluxes were estimated from a heat flux equation that describes convection and conduction processes of heat transport in one dimension. The vertical downward water fluxes in Shitamachi lowland, Musashino and Tachikawa terraces were 0.69.26.91 × 10?9, 1.46-70.92 × 10?9 and 2.61.2204 × 10?9 m/s, respectively. A vertical upward water flux of 1.80-33.60 × 10?9 m/s was estimated in Shitamachi lowland. The water flux generally decreased with increasing depth for observation wells which intercepted more than one semi-confining layer. The estimated upward heat fluxes for Shitamachi lowland, Musashino and Tachikawa terraces were 0.32-1.12, 0.49-1.21 and 1.00-11.62 W/m2, respectively. The heat flux was highest in Tachikawa terrace where a major fault, the Tachikawa fault, is located. Generally, the estimated heat flux was higher in the semi-confining layers than in the aquifers. Areas with heat sources and sinks as well as groundwater flow patterns in the semi-confined aquifers were revealed by heat flux and temperature distributions in the study area. 相似文献
18.
Radium-226 (226Ra) activities were measured in the surface water samples collected from the Arctic Ocean and the Bering Sea during the First
Chinese National Arctic Research Expedition. The results showed that 226Ra concentrations in the surface water ranged from 0.28 to 1.56 Bq/m3 with an average of 0.76 Bq/m3 in the Arctic Ocean, and from 0.25 to 1.26 Bq/m3 with an average of 0.71 Bq/m3 in the Bering Sea. The values were obviously lower than those from open oceans in middle and low latitudes, indicating that
the study area may be partly influenced by sea ice meltwater. In the Bering Sea, 226Ra in the surface water decreased northward, probably as a result of the exchange between the 226Ra-deficient sea ice meltwater and the 226Ra-rich Pacific water. In the Arctic Ocean, 226Ra in the surface water increased northward and eastward. This spatial distribution of 226Ra reflected the variation of the 226Ra-enriched river component in the water mass of the Arctic Ocean. The vertical profiles of 226Ra in the Canadian Basin showed a concentration maximum at 200 m, which could be attributed to the inputs of the Pacific water
or/and the bottom shelf water with high 226Ra concentration. This conclusion was consistent with the results from 2H, 18O tracers. 相似文献
19.
Melting seasonal ground ice (SGI) in western Boreal Plains (WBP) peatlands can reduce the available energy at the surface by reducing potential evapotranspiration (PET). PET often exceeds annual precipitation in the WBP. Including this effect in hydrological models may be important in assessing water deficits. However, SGI melt and the timing of ice-free conditions vary spatially, which suggests PET spatial variability could be influenced by SGI. Understanding this potential linkage can help improve site scale PET in peatland hydrological models. The objectives of this paper were (a) to quantify the effect of ice thickness and melt rate on peatland PET; (b) quantify the spatial variability of SGI thickness and melt rate across spatial scales; and (c) assess how/if spatial variability in SGI thickness/melt rate affects site scale PET. Results from the sensitivity analysis indicated that SGI thickness had a bigger impact on reducing PET compared with the melt rate. Two SGI thickness values were used that were observed on site: 0.32 m, which was measured in a more treed area, and 0.18 m, which was in a more open area. The 0.32 m had an average PET reduction of 14 mm (±0.7), over the month of May, compared with 9 mm (±1 mm) when there was 0.18 m of SGI, which are 13.7 and 8.8% reductions, respectively. SGI thickness and melt rate, both exhibited large- and small-scale spatial variability. At the large scale, spatial patterns in SGI thickness appeared to be influenced by extensive shading from the adjacent hillslopes. Small scale, SGI thickness may be a function of tree proximity and the snowpack. Finally, net radiation, rather than SGI, appeared to be the main driver behind PET spatial variability. This work enhances our conceptual understanding of the role of SGI in WBP peatlands. Future work can use the findings to better inform peatland hydrological models, allowing for better representation of peatlands in regional-scale models. 相似文献
20.
Groundwater ‐ the disregarded component in lake water and nutrient budgets. Part 1: effects of groundwater on hydrology 下载免费PDF全文
Lake eutrophication is a large and growing problem in many parts of the world, commonly due to anthropogenic sources of nutrients. Improved quantification of nutrient inputs is required to address this problem, including better determination of exchanges between groundwater and lakes. This first of a two‐part review provides a brief history of the evolution of the study of groundwater exchange with lakes, followed by a listing of the most commonly used methods for quantifying this exchange. Rates of exchange between lakes and groundwater compiled from the literature are statistically summarized for both exfiltration (flow from groundwater to a lake) and infiltration (flow from a lake to groundwater), including per cent contribution of groundwater to lake‐water budgets. Reported rates of exchange between groundwater and lakes span more than five orders of magnitude. Median exfiltration is 0.74 cm/day, and median infiltration is 0.60 cm/day. Exfiltration ranges from near 0% to 94% of input terms in lake‐water budgets, and infiltration ranges from near 0% to 91% of loss terms. Median values for exfiltration and infiltration as percentages of input and loss terms of lake‐water budgets are 25% and 35%, respectively. Quantification of the groundwater term is somewhat method dependent, indicating that calculating the groundwater component with multiple methods can provide a better understanding of the accuracy of estimates. The importance of exfiltration to a lake budget ranges widely for lakes less than about 100 ha in area but generally decreases with increasing lake area, particularly for lakes that exceed 100 ha in area. No such relation is evident for lakes where infiltration occurs, perhaps because of the smaller sample size. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献