首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
The Bragg-type, flat ADP crystal spectrometer, launched on board the INTERCOSMOS 16 satellite has been used for measurements of the X-ray spectra emitted from solar active region plasmas. During the period of the instrument operation (August–September, 1976) only a few active regions were present on the Sun (minimum of the solar activity). About 60 spectra have been registered. In the present paper using a spectrum averaged over 20 scans, we measured the wavelengths corresponding to the statistically significant spectral features seen in this spectrum in the wavelength range 9.14–9.33 Å. By comparison with the calculated line wavelengths and intensities predicted in the framework of the thermal model of the average active region, we performed the identification of these features. Besides rather prominent resonance, intercombination, and forbidden lines of the He-like ion Mg xi, it was possible to identify the satellite lines which correspond to 1s 2 nl - 1s2p nl transitions from the states with n = 2, 3, and 4. The present paper is the first in a series dealing with the INTERCOSMOS 16 Mg xi spectra.  相似文献   

2.
Results are presented of an investigation of solar flare X-ray spectra in the region 1.70–1.95 Å, obtained aboard the Intercosmos-4 satellite during the maximum of solar activity (October–November, 1970). With the use of 6 high resolution spectra in the region 1.85–1.87 Å the identification of lines due to 18 transitions of 2p 1s type, consisting of the resonance, intercombination and forbidden Fe xxv ion lines and the satellite Fe xxiv lines has been performed. With the use of the recent laboratory data the averaged wavelengths of the lines were obtained confirming the theoretically calculated ones with an accuracy about ± 0.0004 Å. A variable Doppler shift of the Fe xxv resonance lines was observed for the flare of November 16, 1970, which points to hot plasma motions with velocities up to 400 km s-1.  相似文献   

3.
New observations of solar flare and active region X-ray spectra obtained with the Columbia University instrument on OSO-8 are presented and discussed. The high sensitivity of the graphite crystal panel has allowed both line and continuum spectra to be observed with moderate spectral resolution. Observations with higher spectral resolution have been made with a panel of pentaerythritol crystals. Twenty-nine lines between 1.5 and 7.0 Å have been resolved and identified, including several dielectronic recombination satellite lines to Si xiv and Si xiii lines which have been observed for the first time. It has been found that thermal continuum models specified by single values of temperature and emission measure have fitted the data adequately, there being good agreement with the values of these parameters derived from line intensity ratios.  相似文献   

4.
Oscillations in the emission in the ultraviolet lines of Cii, Oiv, and Mg x, detected by the Harvard College Observatory EUV spectroheliometer on Skylab are observed on August 7, 1973, during a loop brightening. The intensity of the EUV lines varies with a period of 141 s during the time of enhanced intensity of the coronal loop, lasting 10 min. The periodic oscillation is not only localized in the loop region but extends over a larger area of the active region, maintaining the same phase. We suggest that the intensity fluctuation of the EUV lines is caused by small-amplitude waves, propagating in the plasma confined in the magnetic loop and that size of the loop might be important in determining its perferential heating in the active region.On leave from the University of Torino, Italy.  相似文献   

5.
Recent atomic data have been used to analyze a solar flare spectrum obtained with the Goddard Space Flight Center's grating spectrometer on the OSO-5 satellite. There exist in the wavelength region 90–200 Å strong lines from each of the ions Fe xviii-Fe xxiv. The Fe xxi lines can be used as an electron density diagnostic for the 107 K plasma. From our analysis of a particular flare, we find a steep positive slope in the emission measure between 106.5 and 107.2 K and an electron density of 4 × 1011 cm–3 at 107 K. We emphasise the need for high spectral and spatial resolution observations of solar flares in this wavelength region, which has to date been largely neglected.  相似文献   

6.
A list of emission lines in the spectra of solar flares between 6 Å and 25 Å has been compiled using data obtained with a KAP crystal spectrometer on the OSO-5 satellite. The emission lines have been classified according to their sensitivity to flare activity. This classification provides a method for discriminating between iron in high stages of ionization (Fe xx-Fe xxv) and lower stages (Fe xvii- Fe xix), the lines of which are both present in the same spectral region during flares. Identifications consistent with these classifications are proposed. Anomalous intensities in the spectra of Fe xvii and Fe xx are pointed out, and implications of the observations for models of the X-ray emitting regions are discussed.  相似文献   

7.
Observations of solar X-ray line emission using crystal spectrometers during a large chromospheric flare have provided a list of wavelengths with a precision of 0.003 Å in first order of diffraction and correspondingly better in higher orders. In addition to the resonance, intersystem (1 1 S 0-2 3 P 1) and forbidden (1 1 S 0-2 3 S 1) transitions of ions of the Hei isoelectronic sequence, we have recorded satellite lines arising from ions in the Lii, Bei and Bi isoelectronic sequences. These satellite features are most prominent in the iron spectrum. Apparent decreases in the ratio of forbidden and intersystem line intensities of Mgxi and Sixiii during the flare are used to derive electron densities possibly as high as 1 × 1013 cm–3 in the Mgxi emitting region and 1 × 1014 cm–3 in the Sixiii region during the event. A search for satellite lines on the long-wavelength side of the Lyman-alpha line of Hi-like ions has yielded no positive identifications.  相似文献   

8.
Analysis of He i 10 830 Å spectral observations of a large, quiescent filament reveals a pronounced oscillatory behaviour of the vertical mass motion. The filament is situated in a quiet region more than 15° away from the nearest active region.It is concluded that the magnetic field of the quiescent filament, which occurs in the form of long thin flux ropes, moves with the gas and that there is no net mass flow perpendicular to the most frequently observed horizontal field lines. The oscillatory motion is accompanied by phase dependent variation of the He i line intensity which could possibly imply wave induced compression of the plasma.  相似文献   

9.
The 1.4–22.4 Å range of the soft X-ray spectrum includes a multitude of emission lines which are important for the diagnosis of plasmas in the 1.5–50 million degree temperature range. In particular, the hydrogen and helium-like ions of all abundant solar elements with Z > 7 have their primary transitions in this region and these are especially useful for solar flare and active region studies. The soft X-ray polychromator (XRP) is a high resolution experiment working in this spectral region. The XRP consists of two instruments with a common control, data handling and power system. The bent crystal spectrometer is designed for high time resolution studies in lines of Fe i-Fe xxvi and Ca xix. The flat crystal scanning spectrometer provides for 7 channel polychromatic mapping of flares and active regions in the resonance lines of O viii, Ne ix, Mg xi, Si xiii, S xv, Ca xix, and Fe xxv with 14 spatial resolution. In its spectral scanning mode it covers essentially the entire 1.4–22.5 Å region.This paper summarizes the scientific objectives of the XRP experiment and describes the characteristics and capabilities of the two instruments. Sufficient technical information for experiment feasibility studies is included and the resources and procedures planned for the use of the XRP within the context of the Solar Maximum Mission is briefly discussed.  相似文献   

10.
The OSO-8 satellite enabled us to study various characteristics of the profiles of Si ii, Si iv, C iv, and O vi lines above active areas of the Sun, as well as above quiet areas, and to derive some physical properties of the transition region between chromosphere and corona (CCT): (i) The study of the lines shows a general tendency for the microvelocity fields on the average to be nearly constant for the heights corresponding to T > 105 K; however they seem to slightly increase with height in quiet areas, and decrease in active areas. (ii) A multicomponent model of the CCT is however quite necessary, and its geometry is far from being a set of plane-parallel columns. It is similar to an association of moving knots within the non-moving principal component of the matter. (iii) The proportion of mass, in the knots relative to that in the non-moving component, is several times larger in active regions than in quiet regions. (iv) In the knots, the non-thermal microvelocity fields are smaller in active regions and seem to decrease for T increasing above 105 K, contrary to what happens in the steady principal component. Of course, we consider that microturbulence and Doppler shift are two aspects of the same distribution of velocity.  相似文献   

11.
Scanning spectrometer measurements in the range 1310–270 Å, observed from the satellite OSO 3, are reported for the solar flare of 2114 UT March 27, 1967. This flare was a long lasting sequence of bursts with EUV spectra consisting of enhanced lines and recombination continua normally emitted from the chromosphere and chromosphere-corona transition region, with unusually small increases in lines normally emited from the corona. An EUV flare spectrum is presented and suggested as one example for interpreting broadband observations of EUV bursts. Any broadband continuum other than known recombination continua contributed less than 6 % of the meassured line and hydrogen recombination continua in the range 270–1310 Å. The ratio of photon flux of Ciii 1176 Å to that of Ciii 977 Å was 0.86, which suggests an ambient density in the region of emission greater than 1012 cm-3 at temperatures near 60000 K.  相似文献   

12.
We studied the morphology and spatial distribution of loops in an active region, using coordinated observations obtained with both the S082A XUV spectroheliograph and the S056 grazingincidence X-ray telescope on Skylab. The active region loops in the temperature range 5 × 105 –3 × 106 K fall basically into two distinctive groups: the hot loops with temperatures 2–3 × 106 K as observed in coronal lines and X-rays, and the relatively cool loops with temperature 5 × 105 –1 × 106 K as observed in transition-zone lines (Ne vii, Mg ix). The brightest hot coronal loops in the active region are mostly low-lying, compact, closely-packed, and show greater stability than the transition-zone loops, which are fewer in number, large, and slender. The observed aspect ratio of the hot coronal loops is in the range of 0.1 and 0.2, which are almost two orders of magnitude larger than those for the Ne vii loops. Brief discussion of the MHD stability of the loops in terms of the aspect ratio is presented.  相似文献   

13.
In this paper we study the main features of the far UV spectrum of the binary star AX Mon, observed with the IUE satellite at phase 0.568.Ions indicating a large range of ionization stages, going fromCi,Oi,Ni toSiv,Civ,Nv are present.The spectrum is dominated by shell absorption lines of Feii, Feiii, Siiii,Cii, Alii, Mgii and Niii.Two satellite components are clearly indicated in all these lines except for Niii which presents only one. Their mean velocities are +10±5 km s–1, –75±10 km s–1, and –260±15 km s–1.Red emission wings are observed in the Mgii resonant doublet at 2800 Å, which shows a P Cygni profile. Each of the absorption lines of the Mgii doublet is formed by a narrow component, which is blended with the Mgii interstellar line and a broad component, which shows a complex structure.Broad and asymmetrical profiles are observed for the Siiv,Civ, andNv resonance lines with blue edge velocities about –700±30 km s–1.  相似文献   

14.
We report some results of a rocket experiment flown on 29 April, 1971. A survey of the solar corona was carried out with a pair of collimated Bragg spectrometers to study the resonance, intersystem and forbidden line emission from the helium-like ions O vii (22 Å) and Ne ix (13 Å). In the direction of dispersion the collimator provided a field of view of 1.7. Also, the continuum radiation near 3 Å was monitored by a collimated proportional counter within a view angle of 4.2. The observed X-ray emission came from the general corona, seven plage regions, and one dynamic feature- the late stage of a small flare. From the intensity of the O vii and Ne ix resonance lines the electron temperature and emission measure of the individual emitting regions are derived on the basis of two models, one (a) in which the region is assumed to be isothermal and another (b) in which the emission measure decreases exponentially with increasing temperature. The latter model, which is the most adequate of the two, yields for the electron temperature of the time-varying feature 2–3 × 106 K, for the other active regions 1.5–2.5 × 106 K, and for the general corona 1.3–1.7 × 106 K. The Ne ix emitting regions are about 1.5 times as hot as the O vii regions. The emission measure ranges from 0.4–2.3 × 1048 cm–3 for all active regions and is about 2 × 1049 cm–3 for one hemisphere of the general corona above 106 K. From an analysis of the ratio, R, of the forbidden and intersystem lines of O vii we conclude that none of the regions producing these lines at the time of the rocket flight had electron densities exceeding about 3 × 109 cm–3. Our data demonstrate a dependence of R upon temperature in agreement with the theory of Blumenthal et al. (1971). The wavelengths for the intersystem, the 1s 22s 2 S e–1s2p2s 2 P 0 satellite, and the forbidden transition show in the case of Ne ix improved agreement with predictions. The observed strength of the satellite lines for both O vii and Ne ix agrees with the predictions of Gabriel's (1972) theory, which attributes their formation to dielectronic recombination.We are saddened to report the death of A. J. Meyerott on 13 November, 1971.  相似文献   

15.
The EUV emission spectra in the wavelength range 110–1900 Å of the 5 September 1973 flare observed with the NRL slit spectrograph on Skylab are studied. The results are: (1) The chromospheric and transition-zone lines are greatly enhanced during the flare. In particular, the allowed lines are enhanced more than the intersystem lines. The Ni ii and P ii lines show the greatest enhancement with a factor of 800 increase in intensity. Other lines such as O i, C i, Si iii, S iii, S iv, O iv, O v, and N v show increases in intensity 10–100 times during the flare. (2) The chromospheric lines, although greatly enhanced during the flare, maintain their sharp and gaussian profiles and are not appreciably broadened. The transition zone lines, on the other hand, show a red-shifted component during the initial phase of the flare. The deduced downward velocity in the transition zone is 50 km s–1. In addition, there are large turbulent mass motions. The downward mass motion is probably caused by the pressure imbalance between the flare hot plasma at 13 × 106 K and the cooler plasma at 105 K. (3) The density of the 105 K flare plasma, as deduced from density-sensitive lines, is greater than 1012 cm-3. The depth of the 105 K plasma in the flare transition zone is only of the order of 0.1 km, giving a steep temperature gradient. Consideration of the energy balance between the conductive flux and the radiative energy losses shows that, indeed, the high density in the transition zone requires that its thickness be very small. This is a consequence of the maximum radiative efficiency at the temperature around 105 K in the solar plasma.Ball Brothers Research Corporation.  相似文献   

16.
Observations of the Be star HD 50138 have been extended to the photographic infrared region up to 9500 Å. The main features noted in this wavelength range are strong lines of Oi (8446 Å), Hi (from P 9 to P 20), the Caii infrared triplet and the 8629 line attributed to Ni. The 7772 multiplet of Oi is shown to undergo important changes during the period of observations (1959–1971). Higher Balmer lines do not exhibit any emission component, but their profiles are variable and indicate the presence of satellite absorption, as already mentioned by some authors.Les observations ont été obtenues aux télescopes de 120 et 193 cm de l'observatoire de Haute-Provence (CNRS).  相似文献   

17.
Periodicity in the 13–14 day range for full-disk UV fluxes comes mainly from episodes of solar activity with two peaks per rotation, produced by the solar rotational modulation from two groups of active regions roughly 180° apart in solar longitude. Thirteen-day periodicity is quite strong relative to the 27-day periodicity for the solar UV flux at most wavelengths in the 1750–2900 Å range, because the rapid decrease in UV plage emission on average with increasing solar central angle shapes the UV variations for two peaks per rotation into nearly a 13-day sinusoid, with deep minima when the main groups of active regions are near the limb. Chromospheric EUV lines and ground-based chromospheric indices have moderate 13-day periodicity, where the slightly greater emission of regions near the limbs causes a lower strength relative to the 27-day variations than in the above UV case. The lack of 13-day periodicity in the solar 10.7 cm flux is caused by its broad central angle dependence that averages out the 13-day variations and produces nearly sinusoidal 27-day variations. Optically thin full-disk soft X-rays can have 13-day periodicity out of phase with that of the UV flux because the X-ray emission peaks when both groups of active regions are within view, one group at each limb, when the optically thick UV flux is at a rotational minimum. The lack of 13-day periodicity in the strong coronal lines of Fexv at 284 Å and Fexvi at 335 Å during episodes of 13-day periodicity in UV and soft X-ray fluxes shows that the active region emission in these strong lines is not optically thin; resonant scattering is suggested to cause an effective optical depth near unity in these hot coronal lines for active regions near the limb.  相似文献   

18.
Ionization equilibrium is a useful assumption which allows temperatures and other plasma properties to be deduced from spectral observations. Inherent to this assumption is the premise that the ion stage densities are determined solely by atomic processes which are local functions of the plasma temperature and electron density. However, if the time scale of plasma flow through a temperature gradient is less than the characteristic time scale for an important atomic process, deviations from the ionization stage densities expected for equilibrium will occur which could introduce serious errors into subsequent analyses. In the past few years, significant flow velocities in the upper solar atmosphere have been inferred from observations of emission lines originaing in the transition region (about 104–106 K) and corona. In this paper, three models of the solar atmosphere (quiet Sun, coronal hole, and a network model) are examined to determine if the emission expected from these model atmospheres could be produced from equilibrium ion populations when steady flows of several kilometers per second are assumed. If the flows are quasi-periodic instead of steady, spatial and temporal averaging inherent in the observations may allow for the construction of satisfactory models based on the assumption of ionization equilibrium. Representative emission lines are analysed for the following ions: C iii, iv, O iv, v, vi, Ne vii, viii, Mg ix, x, Si xii, and Fe ix–xiv. Two principle conclusions are drawn. First, only the iron ions are generally in equilibrium for steady flows of 20 km s–1. For carbon and oxygen, ionization equilibrium is not a valid assumption for steady flows as small as 1 km s–1. Second, the three models representing different solar conditions behave in a qualitatively similar manner, implying that these results are not particularly model dependent over the range of temperature gradients and electron densities thus far inferred for the Sun. In view of the flow velocities which have been reported for the Sun, our results strongly suggest caution in using the assumption of ionization equilibrium for interpreting spectral lines produced in the transition region.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

19.
The observation of extreme ultraviolet (EUV) emission lines of Fe ix through Fe xvi made by Orbiting Solar Observatory-1 are discussed and applied to a study of the solar corona above active regions. Ultraviolet and radio emission are determined and compared for several levels of activity classified according to the type of sunspot group associated with the active region. Both radio emission and line radiation from Fe xvi, the highest stage of ionization of Fe observed, are observed to increase rapidly with the onset of activity and are most intense over an E-spot group early in the lifetime of the active region. As activity diminishes, radiation from Fe xv and Fe xvi becomes relatively more prominent. The observations imply that the coronal temperature reaches a maximum during the period of highest activity, as indicated by sunspot-group complexity and the occurrence of chromospheric flares. A maximum coronal electron temperature of 4.0 × 106 °K is estimated when taking into account the mechanism of dielectronic recombination. Concurrently, the average coronal electron density increases by a factor of 10–12. Both electron temperature and density decrease as activity subsides. The coronal temperature above the remaining Ca ii plage is estimated to be 2.5–3.0 × 106 °K after flare activity has ceased and sunspots have disappeared.  相似文献   

20.
Spectra from 2678-2931 Å were obtained of an active region during the 19 June 1974, flight of the University of Hawaii rocket-borne echelle spectrograph. We report behavior of the Mg i and ii resonance line cores in quiet Sun, plage, sunspot, and filament structures. Among the interesting variations in these lines we discern a strong suppression of the red Mg ii emission peaks and possible rapid changes in the Mg i core in the spatially partially resolved sunspot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号