共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
本文以传统机器学习算法XGBoost和深度学习算法CU-Net为基础,针对北京快速更新无缝隙融合与集成预报系统(RISE系统)预报的北京冬奥会延庆及张家口赛区100米分辨率的冬季近地面10 m风速数据,进行每日逐小时起报的未来逐6小时间隔的冬奥高山站点及其周边地区风速预报偏差订正方法研究和对比分析。对于站点订正,首先将RISE系统预测的10 m风速插值到对应的自动气象站站点,然后根据风速等级表归类,针对每个分类单独构建XGBoost模型,每个区间模型合并后形成L-XGBoost,使用均方根误差和预报准确率作为评分标准,结果表明风速归类的L-XGBoost算法订正效果比不归类的原始XGBoost模型有一定提升,说明在传统机器学习中加入归类方法有助于改善复杂山地站点风速预报技巧。对于站点及其周边地区风速订正,本文在CUNet模型基础上,通过引入不同深度的CU-Net子网络,构建了新的算法模型CU-Net++,并考虑了预报日变化误差和复杂地形对10 m风速的影响,以自动气象站为中心构建空间小区域样本数据,对RISE系统风速预报偏差进行订正。试验结果表明,CU-Net和CU-Net++均可以充... 相似文献
3.
使用TIGGE (the THORPEX interactive grand global ensemble)资料集下欧洲中期天气预报中心(the European Centre for Medium-Range Weather Forecasts, ECMWF)逐日起报的预报时效为24~168 h的日降水量集合预报资料,集合预报共包括51个成员,利用左删失的非齐次Logistic回归方法(left-Censored Non-homogeneous Logistic Regression, CNLR)和标准化的模式后处理方法(Standardized Anomaly Model Output Statistics, SAMOS)对具有复杂地形的中国东南部地区降水预报进行统计后处理。结果表明:采用CNLR方法能够有效改进原始集合预报的平均绝对误差(Mean Absolute Error, MAE)和连续分级概率评分(Continuous Ranked Probability Score, CRPS),提升了降水的定量预报和概率预报的预报技巧。而使用SAMOS方法对数据进行预处理,考虑地形... 相似文献
4.
为了提高GRAPES_3 km(Global/Regional Assimilation and Prediction System)模式在2018年平昌冬奥会气象服务中的预报能力,采用一阶自适应的卡尔曼滤波方法对GRAPES_3 km模式的2 m气温、2 m相对湿度和10 m风开展偏差订正。结果表明:偏差订正方法明显提高了地面要素的预报效果,其中2 m气温的均方根误差整体减小到2℃左右,站点订正改善率为10%~60%;10 m风速的均方根误差减小到2 m·s-1左右,站点订正改善率为10%~45%;2 m相对湿度减小到20%以下,站点订正改善率为0~20%。与韩国气象厅LDAPS(Local Data Assimilation and Prediction System)及美国宇航局NU-WRF(NASA-Unified WRF)模式相比,GRAPES_3 km模式的风速预报表现更为优异,各站点整体预报效果明显优于LDAPS和NU-WRF模式。偏差订正方法可有效改善模式在复杂地形条件下的预报能力,是提高精细化预报准确率的重要手段。 相似文献
5.
尝试将计算流体力学软件FLUENT用于复杂地形风场的精细模拟研究,进行的一系列数值模拟试验表明:由于采用了中尺度模式较少采用的计算机辅助建模、非结构化网格和有限体积法等技术,FLUENT可以实现复杂地形乃至极度陡峭地形上的风场模拟,完成普通中尺度模式难以完成的任务。相比于普通中尺度模式,FLUENT可以更为精确地描述下垫面的复杂地形特征,因而能够在小尺度范围内得到分辨率更高、且更为准确的复杂地形上的近地层风场模拟结果。 相似文献
6.
7.
利用四川省158个气象站2016-2019年逐小时2 m气温、相对湿度、地面气压、能见度等观测数据,通过SMARTS模式计算并积分得到逐月晴天太阳总辐射,建立晴天太阳总辐射随海拔高度的变化关系,将该关系应用到1990-2019年太阳总辐射空间插值订正中,并对订正效果进行验证,结果表明:晴天太阳总辐射随海拔高度呈对数增加... 相似文献
8.
利用地面自动站降水资料、ERA5再分析资料、广西壮族自治区气象台降水落区和ECMWF模式预报数据对1415号台风"海鸥"在广西暴雨预报偏差进行了分析,并开展了地形降水订正研究.结果 表明,对"海鸥"强降水落区预报准确,但大暴雨以上量级降水明显偏弱,大暴雨和特大暴雨漏报严重.降水经地形订正后,大暴雨以上降水TS(BS)评分由0.19(0.27)大幅度提升到0.35(0.53)且暴雨及以下量级降水评分无明显改变,但地形降水订正方法对特大暴雨仍无明显订正技巧;偏南风、东北风及偏东风在广西复杂地形下均会产生地形降水,实际业务预报中应加以考虑,有助于提升对强降水开始时间的预报效果. 相似文献
9.
10.
根据IASI(Infrared Atmospheric Sounding Interferometer)的资料特征和GRAPES(Global/Regional Assimilation and Prediction System)同化系统的具体情况,建立了适用于业务使用的关于IASI辐射率资料的偏差订正方案,该方案包括扫描偏差订正和气团偏差订正。统计表明,IASI资料的扫描偏差不像微波资料一样具有明显的纬度依赖性,但在2x2的像元内存在某种特殊的扫描偏差,临边测量相对于星下点的扫描偏差可以用"扫描角"作为自变量而消除,而2x2的像元内的偏差只能通过稀疏化来规避;气团偏差主要根据当时的天气条件进行订正,利用模式背景场作为预报因子定量给出天气条件,采用1 000~300 h Pa的厚度、200~50 h Pa的厚度、50~20 h Pa的厚度以及模式地表温度作为预报因子。订正方案的试验结果显示,偏差能够长时间维持在比较低的稳定水平,订正结果显著。 相似文献
11.
利用新源县风电场周边气象站及测风塔观测资料、ERA5-Land再分析资料和数值模拟结果,分析新源县风电场的风场结构特征。结果表明:(1)风电场周边气象站的逐小时10m风速均呈现出早、晚偏低,中午偏高的变化规律。喀拉布拉镇站和公安农场站的风向主要以东风和南风为主,肖尔布拉克沟站的风向则以南风为主。测风塔4302的风速随着高度变化不明显。测风塔4301-4306均存在南风和北风,但各风向占比有一定差异。随高度升高,测风塔南风风向呈现出东南转西南的趋势。(2)ERA5-Land资料不能很好地再现研究区域风场变化。(3)数值模拟的风场变化具有一定山谷风特征。夜间的风向以东南风为主,白天则低海拔河谷地带风吹向山顶,北部谷风逐渐主导东北风向。20时,风电场区域主要以西北风为主。 相似文献
12.
典型复杂地形风能预报的精细化研究 总被引:1,自引:0,他引:1
选取江苏和内蒙古分别作为中国沿海滩涂与内陆复杂高原山地的典型地形代表,通过中尺度模式WRF V3.3.1两种不同边界层参数化方案(YSU/MRF)的对比检验,选择WRF/Noah/YSU作为典型地形的风场预报系统,并利用该预报系统对2010年研究区域分别进行了1 km水平分辨率、10 min时间分辨率的48 h风场滚动预报,进一步通过功率谱检验、风向风速玫瑰图检验、季节变化检验,以及日变化检验表明,WRF/Noah/YSU的风场预报方案能够较准确地预报出测风塔的风场特征和风场的能量频谱分布,风场的日变化与季节变化的预报特征基本与测风塔观测结果一致。预报系统对春、秋季的预报效果优于夏季,日变化的预报效果因地形而异,无统一变化规律。 相似文献
13.
采用四重嵌套的WRF-LES,针对2022年北京冬奥会张家口崇礼赛区开展局地风场模拟试验,基于地面自动气象站和激光雷达观测资料,对一次晴空高压系统控制下的具有明显局地风环流特征的天气个例模拟结果进行检验评估。文中引入了STRM1 30 m地形数据、glc2015 27 m土地利用数据和CL‐DAS的土壤湿度数据用以提高模拟结果的准确性,并设计了敏感性试验来探讨不同资料对模拟结果的影响。结果表明:(1)WRF-LES能够呈现出复杂地形下局地风场的时空变化特征,各站风向绝对误差在10°~60°,风速绝对误差在0.5~2 m·s-1。在山谷和山沟区域,模拟风场和观测风场都表现出明显的日变化特征,海拔较高站点的误差比海拔相对较低站点的误差更小。海拔较低站点在山谷风或上下坡风发展稳定时段风向误差较小,风向转换时段误差较大。(2)更新地形、土地利用以及CLDAS土壤湿度初始场对模拟结果都有一定程度改善。其中更新CLDAS土壤湿度初始场对风向和2 m气温的改善效果最为明显,风向绝对误差减小4.26°,2 m气温绝对误差减小0.84℃。更新土地利用对风速的改善效果最明显,风速绝对... 相似文献
14.
利用2016年1月1日—2018年12月31日吉林省381个站的逐日最高气温、最低气温和定时气温的观测数据,对ECMWF高分辨率模式的2 m最高、最低气温和定时气温预报进行检验分析.结果表明,ECMWF模式对吉林省的气温预报与实况存在一定偏差;从空间上看,自西向东气温预报准确率逐渐递减,预报误差逐渐增大;从时间上看,随预报时效的增长,预报准确率逐渐下降.对ECMWF的气温预报进行高度差订正后,模式最高气温24 h、48 h、72 h的预报准确率分别从52%、51%、50%提高至58%、56%、54%;最低气温准确率分别从58%、56%、54%提高至64%、62%、59%;定时气温准确率分别从63%、60%、58%,提高至67%、63%、61%.高度差订正的方法有效提高了模式气温预报的准确率,减小了模式预报误差,提高了模式预报释用能力,订正后的气温预报TS评分得到明显的提高.该方法已应用在吉林省客观预报的订正算法中. 相似文献
15.
为提升北京冬(残)奥会气象服务保障能力,利用2018—2021年1月1日—3月28日欧洲中期天气预报中心(ECMWF)模式预报产品以及冬奥延庆赛区8个自动气象站的2 m气温实况,通过基于地形修正的模式偏差订正和支持向量机算法,构建赛区不同海拔高度站点72 h预报时效内逐3 h的2 m气温集成订正方法。2022年北京冬(残)奥会前夕及赛事期间应用评估表明:集成订正方法对延庆赛区2 m气温的预报准确率为0.856,平均绝对偏差为1.08℃,订正效果较单一订正方法更优,尤其针对海拔高度高出模式地形高度的站点订正性能更为突出,同时,对超阈值及关键过程的气温订正效果也表现较好。对于延庆赛区大多数站点而言,该方法订正的72 h预报时效内逐3 h的2 m气温平均绝对偏差总体上表现出一定的日变化特征,且0~24 h,24~48 h,48~72 h预报时效之间偏差变化相对平稳,但不同站点的日变化趋势存在差异。随着预报时效增加,该方法订正的2 m气温平均绝对偏差的变化趋势表现出海拔依赖性。 相似文献
16.
利用模式三维预报变量,结合地面要素预报产品,采用2 m温度三维插值方法进行地形订正,以确保预报与观测三维空间上的一致性,在地形订正基础上,利用历史月均预报误差作为参考误差,剔除模式系统性误差,获取具备日变化特征的预报产品。基于陕西地区复杂地形条件下的典型观测站点,利用2016年8月28日48 h预报个例进行对比分析发现,三维插值方法有效改善了地形差异引起的评估误导问题,但无法改进模式预报的日变化趋势,进一步采用系统性误差订正后,日变化特征明显改善,特别是前24 h预报效果体现出与实况良好的一致性及更佳的预报技巧。通过2016年夏季统计评估表明,误差订正后的2 m温度预报产品有效改善了周期性误差振荡,均方根误差稳定在2 K左右,显示出明显的改进优势。 相似文献
17.
18.
下垫面的复杂性一直是数值模拟所面对的主要难题之一,尤其当复杂地形和建筑物同时存在时,问题变得极其困难,几乎已有的任何单一模式都难以很好模拟出复杂地形上建筑物周边的风场精细结构。为解决这一问题,提出利用中尺度模式RAMS与CFD模式FLUENT耦合的方法,利用RAMS的模拟结果驱动FLUENT进行复杂地形上建筑物周边风环境的精细模拟。数值模拟试验以“鹦鹉”台风登陆期间的香港国际机场为研究对象,模拟了强风条件下机场周边的风场精细结构。将模拟结果与南北两侧跑道边的6个自动站观测数据进行对比,发现风速与风向都较为一致,并较好地描述了由于建筑物所导致的机场南侧着陆航道上的横向风切变,解释了台风期间南侧跑道两架飞机着陆困难的原因。 相似文献
19.
偏差订正技术是卫星辐射率资料同化的关键技术,目前全球GRAPES变分同化系统采用基于Harris和Kelly考虑扫描角和气团的静态偏差订正方案;但是该方案并没有考虑偏差属性的变化(比如仪器老化、观测数据漂移等问题)。因此,本文基于Harris和Kelly的TOVS辐射偏差订正方案以及国外在数值天气预报系统中对卫星数据提出的偏差订正动态更新概念的基础上,结合GRAPES分析预报系统和国家卫星气象中心的卫星预处理系统的特点以及仪器特征,提出了GRAPES偏差订正动态更新方案,来解决数据的漂移等问题。偏差订正动态更新技术是动态方法的一种,采用变分方法对偏差订正预报因子的系数进行调整。为了检验新方案的效果,设计了试验方案。为期两个月的同化试验结果显示,动态更新方案可以自动、迅速地优化已经退化的偏差订正方程,保持偏差订正的效果,运行稳定,结果令人鼓舞。 相似文献
20.
采用一元线性方法建立南海台风模式CMA-TRAMS地形高度偏差和地面气温预报误差的回归关系,分别开展不分级、高度偏差分级和地面气温误差分级的三种订正方法的研究,并进行订正效果评估。结果表明,模式地面气温预报误差与地形高度偏差总体呈负的线性相关关系,地面气温预报绝对误差随地形高度偏差绝对值增大而增大(对模式地形高度偏低站点尤为明显),但不同时刻地面气温预报误差特征表现不同,模式对地形高度偏高(即模式地形高于测站高度)和地形高度偏差小于50 m的站点,06时地面气温(世界时,下同)预报总体偏低,对地形高度偏低大于50 m的站点(即模式地形低于测站高度),06时地面气温预报总体偏高;而无论站点地形高度偏差如何,模式对18时地面气温预报总体偏高。三种订正方法中地面气温误差分级法能有效地减小地面气温预报误差,该方法订正后的分析场准确率可达96%~99%,12~48小时时效预报场准确率总体可提升至90%以上,该方法具有回归关系稳定、效果显著、适用性广、简单易行等特点。 相似文献