首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a changing climate, the common assumption of stationarity of climate extremes has been increasingly challenged, raising the need to incorporate non-stationarity in extreme value modeling. In this study, quantile regression is used to identify the trends of annual temperature extremes and their correlations with two large climate patterns, the western Pacific subtropical high (WPSH) and the Arctic Oscillation (AO) at 357 stations in China. Statistical significant positive trends and correlations between warm (or cold) temperature extremes and WPSH (or AO) have been detected at most stations. The influence of WPSH on warm extremes is significant in southern China, while the AO mainly affects the cold extremes in northern and eastern China. Then, annual temperature extremes are fitted to generalized extreme value (GEV) distributions with time-varying parameters. The summer (or winter) mean daily maximum (or minimum) temperatures and two climate indices, the WPSH index and the AO index, are chosen as covariates. In total, 16 candidate GEV distribution models are constructed, and the best fitting model with the lowest Bayesian information criterion (BIC) is selected. The 20-year return levels of annual warm (or cold) extremes in the period 1961–1980 and 1991–2010 are computed and compared. The changes of 20-year return levels of annual warm and cold extremes are jointly determined by trend and distributional changes of annual temperature extremes. Analysis of large scale atmospheric circulation changes indicate that a strengthening anticyclonic circulation and increasing geopotential height in recent decades may have contributed to the changes in temperature extremes in China.  相似文献   

2.
In this research, the regional extreme‐dry‐spell frequency in the middle reaches of the Yellow River Basin (YRB) is studied by the L‐moments method. The research area has been divided into three subregions (regions 1, 2 and 3), which have been identified as homogenous regions. The results of a goodness‐of‐fit test indicate that a generalized normal distribution is the optimal regional model for regions 1 and 2 whereas a generalized Pareto distribution is the optimal regional model for region 3. The return period analysis figures out that the maximum length‐of‐dry‐spell (MxDS) values increase from south to north in the southern part and increase from northeast to southwest in the northern part of the middle reaches of the YRB under different return periods. The increments of quantiles of dry spell under different return levels indicate that drought risk in region 1 is higher than that in regions 2 and 3. The analysis of the occurrence day of MxDS shows that MxDS mostly occurred during winter of 1998 and spring of 1999 in most stations during the considered period. By comparing summer MxDS events, it can be found that mean MxDS values have slightly increased in regions 1 and 2 during the last five decades. The maximum mean MxDS values appeared in the 2000s for regions 1 and 2 and in the 1990s for region 3. The atmospheric circulation shows that the positive anomaly centre in the west of North China, negative anomaly centre in the east of North China and the strong western Pacific subtropical high led to the decrease of precipitation in North China during the summer of 1997. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
The recent (1970–1999) and future (2070–2099) climates under the SRES A1B scenario, simulated by the regional climate model RegCM4.0 driven with lateral boundary conditions from the ECHAM5 general circulation model, are utilized to force a large-scale hydrological model for assessing the hydrological response to climate changes in the Yangtze River Basin, China. The variable infiltration capacity model (VIC) is utilized to simulate various hydrological components for examining the changes in streamflow at various locations throughout the Yangtze River Basin. In the end of the twenty-first century, most of the Yangtze River Basin stands out as “hotspots” of climate change in China, with an annual temperature increase of approximately 3.5 °C, an increase of annual precipitation in North and a decrease in South. Runoff in the upper reach of Yangtze River is projected to increase throughout the year in the future, especially in spring when the increase will be approximately 30 %. Runoff from the catchments in the northern part of Yangtze River will increase by approximately 10 %, whereas that in the southern part will decrease, especially in the dry season, following precipitation changes. The frequency of extreme floods at three mainstream stations (Cuntan, Yichang, and Datong) is projected to increase significantly. The original extreme floods with return periods of 50, 20, and 10 years will change into floods with return periods of no more than 20, 10, and 5 years. The projected increase in extreme floods will have significant impacts on water resources management and flood control systems in the Yangtze River Basin.  相似文献   

4.
Land use effects on climate in China as simulated by a regional climate model   总被引:17,自引:0,他引:17  
A regional climate model (RegCM3) nested within ERA40 re-analyzed data is used to investigate the climate effects of land use change over China. Two 15-year simulations (1987―2001), one with current land use and the other with potential vegetation cover without human intervention, are conducted for a domain encompassing China. The climate impacts of land use change are assessed from the difference between the two simulations. Results show that the current land use (modified by anthropogenic ac- tivities) influences local climate as simulated by the model through the reinforcement of the monsoon circulation in both the winter and summer seasons and through changes of the surface energy budget. In winter, land use change leads to reduced precipitation and decreased surface air temperature south of the Yangtze River, and increased precipitation north of the Yangtze River. Land use change signifi- cantly affects summer climate in southern China, yielding increased precipitation over the region, de- creased temperature along the Yangtze River and increased temperature in the South China area (south-end of China). In summer, a reduction of precipitation over northern China and a temperature rise over Northwest China are also simulated. Both daily maximum and minimum temperatures are affected in the simulations. In general, the current land use in China leads to enhanced mean annual precipitation and decreased annual temperature over south China along with decreased precipitation over North China.  相似文献   

5.
华北地区降水事件变化和暴雨事件减少原因分析   总被引:4,自引:0,他引:4       下载免费PDF全文
使用北京、天津、河北、山西的37个气象观测站的1961~2008年逐日降水资料和NCEP、EC环流资料,对华北降水事件和暴雨事件减少原因进行分析.结果表明,华北地区盛夏暴雨事件对夏季降水量和全年降水量变化有重要影响,近50年盛夏暴雨事件呈显著线性减少趋势,这与东亚夏季风减弱使得从南边界进入华北的水汽通量大量减少以及副热...  相似文献   

6.
Investigation of the precipitation phenomenon as one of the most important meteorological factors directly affecting access to water resources is of paramount importance. In this study, the precipitation concentration index (PCI) was calculated using annual precipitation data from 34 synoptic stations of Iran over a 50-year period (1961–2010). The trend of precipitation and the PCI index were analyzed using the Mann–Kendall test after removing the effect of autocorrelation coefficients in annual and seasonal time scales. The results of zoning the studied index at annual time scale revealed that precipitation concentration follows a similar trend within two 25-year subscales. Furthermore, the PCI index in central and southern regions of the country, including the stations of Kerman, Bandarabbas, Yazd, Zahedan, Shahrekord, Birjand, Bushehr, Ahwaz, and Esfahan indicates a strong irregularity and high concentration in atmospheric precipitations. In annual time scale, none of the studied stations, had shown regular concentration (PCI < 10). Analyzing the trend of PCI index during the period of 1961–2010 witnessed an insignificant increasing (decreasing) trend in 16 (15) stations for winter season, respectively, while it faced a significant negative trend in Dezful, Saghez, and Hamedan stations. Similarly, in spring, Kerman and Ramsar stations exhibited a significant increasing trend in the PCI index, implying significant development of precipitation concentration irregularities in these two stations. In summer, Gorgan station showed a strong and significant irregularity for the PCI index and in autumn, Tabriz and Zahedan (Babolsar) stations experienced a significant increasing (decreasing) trend in the PCI index. At the annual time scale, 50 % of stations experienced an increasing trend in the PCI index. Investigating the changes in the precipitation trend also revealed that in annual time scale, about 58 % of the stations had a decreasing trend. In winter, which is the rainiest season in Iran, about 64 % of stations experienced a decreasing trend in precipitation that caused an increasing trend in PCI index. Comparing the spatial distribution of PCI index within two 25 years sub-periods indicated that the PCI index of the second sub-period increased in the spring time scale that means irregularity of precipitation distribution has been increased. But in the other seasons any significant variations were not observed. Also in the annual time scale the PCI index increased in the second sub-period because of the increasing trend of precipitation.  相似文献   

7.
H. Moradkhani 《水文研究》2014,28(26):6292-6308
In this study the impact of climate change on runoff extremes is investigated over the Pacific Northwest (PNW). This paper aims to address the question of how the runoff extremes change in the future compared to the historical time period, investigate the different behaviors of the regional climate models (RCMs) regarding the runoff extremes and assess the seasonal variations of runoff extremes. Hydrologic modeling is performed by the variable infiltration capacity (VIC) model at a 1/8° resolution and the model is driven by climate scenarios provided by the North American Regional Climate Change Assessment Program (NARCCAP) including nine regional climate model (RCM) simulations. Analysis is performed for both the historical (1971–2000) and future (2041–2070) time periods. Downscaling of the climate variables including precipitation, maximum and minimum temperature and wind speed is done using the quantile‐mapping (QM) approach. A spatial hierarchical Bayesian model is then developed to analyse the annual maximum runoff in different seasons for both historical and future time periods. The estimated spatial changes in extreme runoffs over the future period vary depending on the RCM driving the hydrologic model. The hierarchical Bayesian model characterizes the spatial variations in the marginal distributions of the General Extreme Value (GEV) parameters and the corresponding 100‐year return level runoffs. Results show an increase in the 100‐year return level runoffs for most regions in particular over the high elevation areas during winter. The Canadian portions of the study region reflect higher increases during spring. However, reduction of extreme events in several regions is projected during summer. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Temporal and spatial patterns of precipitation are essential to the understanding of soil moisture status which is vital for vegetation regeneration in the arid ecosystems. The purposes of this study are (1) to understand the temporal and spatial variations of precipitation in Sudan during 1948–2005 by using high quality global precipitation data known as Precipitation REConstruction (PREC), which has been constructed at the National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center, and (2) to discuss the relationship between precipitation variability and moisture flux based on the NCEP/NCAR reanalysis data in order to ascertain the potential causes of the spatial and temporal variations of precipitation in the region. Results showed that (1) annual and monthly precipitation in Sudan had great spatial variability, and mean annual precipitation varied from almost nil in the North to about 1500 mm in the extreme Southwest; (2) precipitation of the main rain season, i.e., July, August and September, and annual total precipitation in the central part of Sudan decreased significantly during 1948–2005; (3) abrupt change points were found in the annual, July, August and September in the late 1960s, when precipitation decreased more rapidly than in other periods; and (4) the decreasing precipitation was associated with the weakening African summer monsoon. The summer moisture flux over Sudan tended to be decreasing after the late 1960s which decreased the northward propagation of moisture flux in North Africa. This study provides a complementary view to the previous studies that attempted to explain the Sahel persistent drought and possible causes.  相似文献   

9.
Daily rain series from southern Sweden with records dating back to the 1870s have been analysed to investigate the trends of daily and multi‐day precipitation of different return periods with emphasis on the extremes. Probabilities of extreme storms were determined as continuously changing values based on 25 years of data. An extra set of data was used to investigate changes in Skåne, the southernmost peninsula of Sweden. Another 30‐year data set of more than 200 stations of a dense gauge network in Skåne was used to investigate the relation between very large daily rainfall and annual precipitation. The annual precipitation has increased significantly all over southern Sweden due to increased winter precipitation. There is a trend of increasing maximum annual daily precipitation at only one station, where the annual maximum often occurs in winter. The number of events with a short return period is increasing, but the number of more extreme events has not increased. Daily and multi‐daily design storms of long return periods determined from extreme value analysis with updating year by year are not higher today than during the last 100 years. The largest daily storms are not related to stations with annual rainfall but seem to occur randomly. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Analyses of the spatio-temporal variability of precipitation extremes defined by eleven extreme precipitation indices in Shandong were conducted by utilizing the methods of linear regression, ensemble empirical mode decomposition (EEMD) and Mann–Kendall test. The results revealed that statistically significant decreasing trends existed for almost all extreme precipitation indices except for the consecutive dry days (CDD) and simple daily intensity index. A periodicity of 10–15 years for precipitation extremes is detected by EEMD analysis. Greatest 5-day total rainfall (RX5day), very wet days (R95p) and annual total wet-day precipitation (PRCPTOT) experienced decreasing trends in the region stretching from the southeast coast to the west, while the spatial distribution of the decreasing trends for other indices was more complicated. Moreover, the frequency of occurrence in precipitation extremes at Changdao station, surrounded by the sea in the northeast region, increased in contrast to surrounding stations. This may suggest a possible effect from the local marine environment on extreme precipitation. In addition, the stations with statistically significant positive trends for CDD were mainly located in mid-west Shandong and along the southeast coast, where the extreme precipitation and total rainfall were, on the contrary, characterized by decreasing trends. These results indicate that drought or severe drought events have become more frequent in those regions. Analysis of large-scale atmospheric circulation changes indicates that a strengthening anticyclonic circulation and increasing geopotential height as well as decreasing strength of monsoonal flow in recent decades may have contributed to the variations in extreme precipitation in Shandong.  相似文献   

11.
Multi-scale variability and trends of precipitation in North China   总被引:3,自引:0,他引:3  
The issue of water shortage and related eco-environmental degradation in North China is one of the major emerging problems in China. Precipitation is the most key factor for water resources. Based on the historical flood/dryness grade dataset during the period of 1470–2000 obtained from 25 gauging stations in North China, the multi-scale variability and trends are analyzed by means of power spectral and continuous wavelet transform. It is found that the precipitation is characterized by obvious seasonal changes, quasi biennial oscillations, inter-annual 4–7 year component and inter-decadal 19-year periodicity. The MK test results showe that step changes occurred around 1914 and 1964 in the annual precipitation. As for the historical flood/dryness grade time series, it is characterized by 4∼5 year ENSO mode inter-annual oscillation, quasi-10 year inter-decadal variability, quasi-24 year component and 50–80 year centurial periodicity. However, the scales of these variations have decreased significantly since the 1970s. The trend for precipitation change in North China has been negative for last 30 years. Further research shows that North China will continue to become dryer until 2015 and may change to a wetter regime after 2020. These findings should be helpful for future decision-making to ensure sustainable water resource management in North China.  相似文献   

12.
Abstract

The aim of this paper is to quantify meteorological droughts and assign return periods to these droughts. Moreover, the relation between meteorological and hydrological droughts is explored. This has been done for the River Meuse basin in Western Europe at different spatial and temporal scales to enable comparison between different data sources (e.g. stations and climate models). Meteorological drought is assessed in two ways: using annual minimum precipitation amounts as a function of return period, and using troughs under threshold as a function of return period. The Weibull extreme value type 3 distribution has been fitted to both sources of information. Results show that the trough-under-threshold precipitation is larger than the annual minimum precipitation for a specific return period. Annual minimum precipitation values increase with spatial scale, being most pronounced for small temporal scales. The uncertainty in annual minimum point precipitation varies between 68% for the 30-day precipitation with a return period of 100 years, and 8% for the 120-day precipitation with a return period of 10 years. For spatially-averaged values, these numbers are slightly lower. The annual discharge deficit is significantly related to the annual minimum precipitation.

Citation Booij, M. J. & de Wit, M. J. M. (2010) Extreme value statistics for annual minimum and trough-under-threshold precipitation at different spatio-temporal scales. Hydrol. Sci. J. 55(8), 1289–1301.  相似文献   

13.
Using a nonstationary flood frequency model, this study investigates the impact of trends on the estimation of flood frequencies and flood magnification factors. Analysis of annual peak streamflow data from 28 hydrological stations across the Pearl River basin, China, shows that: (1) northeast parts of the West and the North River basins are dominated by increasing annual peak streamflow, whereas decreasing trends of annual peak streamflow are prevailing in other regions of the Pearl River basin; (2) trends significantly impact the estimation of flood frequencies. The changing frequency of the same flood magnitude is related to the changing magnitude or significance/insignificance of trends, larger increasing frequency can be detected for stations with significant increasing trends of annual peak streamflow and vice versa, and smaller increasing magnitude for stations with not significant increasing annual peak streamflow, pointing to the critical impact of trends on estimation of flood frequencies; (3) larger‐than‐1 flood magnification factors are observed mainly in the northeast parts of the West River basin and in the North River basin, implying magnifying flood processes in these regions and a higher flood risk in comparison with design flood‐control standards; and (4) changes in hydrological extremes result from the integrated influence of human activities and climate change. Generally, magnifying flood regimes in the northeast Pearl River basin and in the North River basin are mainly the result of intensifying precipitation regime; smaller‐than‐1 flood magnification factors along the mainstream of the West River basin and also in the East River basin are the result of hydrological regulations of water reservoirs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
《水文科学杂志》2013,58(1):236-252
Abstract

Suspended sediments are a natural component of aquatic ecosystems, but when present in high concentrations they can become a threat to aquatic life and can carry large amounts of pollutants. Suspended sediment concentration (SSC) is therefore an important abiotic variable used to quantify water quality and habitat availability for some species of fish and invertebrates. This study is an attempt to quantify and predict annual extreme events of SSC using frequency analysis methods. Time series of daily suspended sediment concentrations in 208 rivers in North America were analysed to provide a large-scale frequency analysis study of annual maximum concentrations. Seasonality and the correlation of discharges and annual peak of suspended sediment concentration were also analysed. Peak concentrations usually occur in spring and summer. A significant correlation between extreme SSC and associated discharge was detected only in half of the stations. Probability distributions were fitted to station data recorded at the stations to estimate the return period for a specific concentration, or the concentration for a given return period. Selection criteria such as the Akaike and Bayesian information criterion were used to select the best statistical distribution in each case. For each selected distribution, the most appropriate parameter estimation method was used. The most commonly used distributions were exponential, lognormal, Weibull and Gamma. These four distributions were used for 90% of stations.  相似文献   

15.
The magnitude and frequency of regional extreme precipitation events may have variability under climate change. This study investigates the time–space variability and statistical probability characteristics of extreme precipitation under climate change in the Haihe River Basin. Hydrological alteration diagnosis methods are implemented to detect the occurrence time, style and degree of alteration such as trend and jump in the extreme precipitation series, and stationarity and serial independence are tested prior to frequency analysis. Then, the historical extreme precipitation frequency and spatio‐temporal variations analyses are conducted via generalized extreme value and generalized Pareto distributions. Furthermore, the occurrence frequency of extreme precipitation events in future is analysed on the basis of the Fourth Assessment Report of the Intergovermental Panel on Climate Change multi‐mode climate models under different greenhouse gases emission scenarios (SRES‐A2, A1B and B1). Results indicate that (1) in the past, alteration of extreme precipitation mainly occurred in the area north of 38°N. Decreasing trends of extreme precipitation are detected at most stations, whereas jump alteration is not obvious at most stations. (2) Spatial variation of estimated extreme precipitation under different return periods shows similarity. Bounded by the Taihang Mountain–Yan Mountain, extreme rainfall in the Haihe River Basin gradually reduces from the southeast to the northwest, which is consistent with the geographical features of the Haihe River Basin. (3) In the future, extreme precipitation with return period 5–20 years accounts for a significant portion of the total occurrence times. The frequency of extreme precipitation events has an increase trend under A1B and A2 scenarios. The total occurrence times of extreme precipitation under A1B senario are not more than that under B1 senario until the 2030s. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Extreme wet and dry years (± 1 standard deviation, respectively), as well as the top 95 percentile (P95) of daily precipitation events, derived from tropical cyclone (TC) and nontropical cyclone (NTC) rainfall, were analyzed in coastal river basins in Southern Oaxaca, Mexico (Río Verde, Río Tehuantepec, and the Southern Coast). The study is based on daily precipitation records from 47 quality-controlled stations for the 1961 to 1990 period and TC data for the Eastern Tropical Pacific (EPAC). The aim of this study was to evaluate extreme (dry and wet) trends in the annual contribution of daily P95 precipitation events and to determine the relationship of summer precipitation with El Niño Southern Oscillation (ENSO) and the Pacifical Decadal Oscillation (PDO). A regionalization based on a rotated principal component analysis (PCA) was used to produce four precipitation regions in the coastal river basins. A significant negative correlation (significance at the 95% level) was only found with ONI in rainfall Region 3, nearest to the Gulf of Tehuantepec. Wet years, mainly linked to TC-derived P95 precipitation events, were associated with SST anomalies (≥?0.6°C) similar to weak La Niña and Neutral cool conditions, while dry years were associated with SST positive anomalies similar to Neutral warm conditions (≤?0.5°C). The largest contribution of extreme P95 precipitation derived from TCs to the annual precipitation was observed in Region 3. A significant upward trend in the contribution of TC-derived precipitation to the annual precipitation was found only in Region 1, low Río Verde.  相似文献   

17.
长江流域降水变化及其趋势演变   总被引:1,自引:0,他引:1  
本文对中国长江流域降水趋势进行了分析.指出对月降水量而言,20世纪后50年不同区域出现1不胃的降水趋势变化特征.趋势插补法研究表明中国降水时空分布趋势十分明显.对长江流域长期降水资料分析研究指出夏季月份降水时间更集中,而对年降水而言在一些站则表现出明显的周期变化.  相似文献   

18.
Heilongjiang Province is a major grain production base in China, and its agricultural development plays an important role in China’s social economy. Drought and flood events are the primary disasters in Heilongjiang Province and have considerable impacts on agriculture. In this study, relatively complete monthly precipitation data from 26 meteorological stations in Heilongjiang Province during the period of 1958–2013 were analyzed using the standardized precipitation index (SPI) combined with principal component analysis, Mann–Kendall trend analysis and Morlet wavelet analysis to determine the spatial and temporal distributions of drought and flood events in this province. The results were as follows: (1) the whole of Heilongjiang exhibited an aridity trend. In northern Heilongjiang, spring and summer experienced a wetting trend, and autumn and winter experienced an aridity trend. (2) The SPI3 exhibited 8- and 16-year periodic variation characteristics in spring, 10- and 22-year periodic variation characteristics in summer, and 10- and 32-year periodic variation characteristics in autumn. In addition to the 10-year periodic variation characteristics in winter, other periodic variation characteristics were observed. (3) The increasing trend in the percentage of stations affected by flood was more obvious than that affected by drought. Therefore, Heilongjiang Province is more vulnerable to flooding. (4) The influence of drought and flood disasters in Heilongjiang Province showed a growth trend, but the flood effect was more remarkable. (5) The agricultural area affected by drought and flood disasters in Heilongjiang Province showed an increasing trend. Although there was a greater increase in flood disaster area, the main types of disasters were drought-dominated.  相似文献   

19.
Estimates of extreme sea levels and return periods have been based mainly on hourly sampling rates. Technological development has enabled the sampling rates to increase and sampling rates of 5–10 min are becoming increasingly common. In this paper we explore the relationship between extreme sea levels and estimated return periods based on hourly and shorter sampling periods in three tide-gauges one at the Atlantic coasts of Spain (Coruña), one in the western Mediterranean (Malaga) and one in the N. Adriatic (Trieste). Significant differences of several centimetres are found in the hourly and 5 min extremes. These reflect in significant underestimation of the 50-year return levels which in Trieste reach 38 cm. A theoretical relationship between the high and the low sampling rate of extremes is also tested. Thus updated 50-year return levels for the Mediterranean and the coasts of the Iberian peninsula are produced assuming that the differences identified in the various stations generalise to other tide-gauge (hourly) records for which hourly values have been analysed earlier.  相似文献   

20.
本文利用Hadley气候预测与研究中心的区域气候模式系统PRECIS进行中国区域气候基准时段(1961~1990年)和SRES B2情景下2071~2100年(2080s)最高、最低气温及日较差变化响应的分析.气候基准时段的模拟结果与观测资料的对比分析表明:PRECIS具有对中国区域最高、最低气温及日较差的模拟能力,能够模拟出中国区域最高、最低气温及日较差的局地分布特征.对SRES B2情景下相对于气候基准时段的最高、最低气温及日较差变化响应分析表明:中国区域2080s时段年、冬季和夏季平均最高、最低气温变化均呈一致增加的趋势,北方地区增温幅度普遍大于南方地区.夏季东北地区极端高温事件发生的频率将会增加,而冬季华北地区极端冷害事件发生频率将会减少.未来中国区域年平均日较差将出现北方地区减小而南方地区增加的趋势.冬季长江中下游以南地区日较差呈增加趋势,而夏季华东地区、西北地区及内蒙古中部日较差将呈减小趋势,其中在青藏高原北部地区存在一个较强的低值中心.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号