共查询到20条相似文献,搜索用时 15 毫秒
1.
Rotational shear is the type of loading path where samples are subjected to cyclic rotation of principal stress directions while the magnitudes of principal stresses are maintained constant. This paper presents results from an experimental investigation on the drained deformation behaviour of saturated sand in rotational shear conducted in a hollow cylinder apparatus. Two types of granular materials, Leighton Buzzard sand and glass beads are tested. A range of influential factors are investigated including the material density, the deviatoric stress level, and the intermediate principal stress. It is observed that the volumetric strain during rotational shear is mainly contractive and most of strains are generated during the first 20 cycles. The mechanical behaviour of sand under rotational shear is generally non-coaxial, i.e., there is no coincidence between the principal axes of stress and incremental strain, and the variation of the non-coaxiality shows a periodic trend during the tests. The stress ratio has a significant effect on soil response in rotational shear. The larger the stress ratio, the more contractive behaviour and the lower degree of non-coaxiality are induced. The test also demonstrates that the effect of the intermediate principal stress, material density and particle shape on the results is pronounced. 相似文献
2.
为了研究粒状材料的各向异性力学行为与细观组构演化之间的关系,采用自主研发的双轴压缩试验系统,以圆形和椭圆形截面的金属棒状材料组成的二维堆积体为试验对象,对不同大主应力方向角?(沉积面与大主应力作用面的夹角)的试样进行了各向等压、常侧向压力、等p剪切3种应力路径试验,并通过分析试样在不同变形阶段的数字照片得到了其细观组构演化规律。发现对于椭圆形截面的试样存在一个卓越剪切方向,随剪应变增大,颗粒长轴呈现出向该方向偏转的趋势,并且在大变形条件下沿该方向形成剪切带;卓越剪切方向与沉积面方向关系不大,而与大主应力作用面方向夹角约为45°+ /2, 为残余内摩擦角;随卓越剪切方向与沉降方向夹角的不同,颗粒偏转程度的不同是导致剪胀特性和峰值强度各向异性的主要原因 相似文献
3.
Acta Geotechnica - Gauging the mechanical effect of partial saturation in granular materials is experimentally challenging due to the very low suctions resulting from large pores. To this end, a... 相似文献
4.
Within the framework of the second‐order work theory, the onset of instabilities is explored numerically in loose granular materials through three‐dimensional DEM simulations. Stress controlled directional analysis are performed in Rendulic's plane, and a particular attention is paid to transient evolutions at the microscale. Thanks to a micromechanical analysis, the onset and development of transient mechanical instabilities is explored. It is shown that these instabilities result from the unjamming and bending of a few force chains associated with a local burst of kinetic energy. This burst of kinetic energy propagates to the whole sample and provokes a generalized unjamming of force chains. As force chains buckle, a phase transition from a quasi‐static to an inertial regime is observed. At the macroscopic scale, this results in a transient softening and a loss of controllability. After the collapse of existing force chains, the development of plastic strain is eventually stopped as new stable force chains are built. 相似文献
5.
This paper is concerned with diffuse and other ensuing failure modes in geomaterials when tested under homogeneous states of shearing in various loading programs and drainage conditions. Material instability is indeed the basic property that accounts for the instability of an initially homogeneous deformation field leading to diffuse failure and strain localization in geomaterials. The former is normally characterized by a runaway type of failure accompanied with a sudden and violent collapse of the material in the absence of any localization phenomena. Against this backdrop, we present a brief overview of material instability in elastoplastic solids where one finds a rich source of theoretical concepts including bifurcation, strain localization, diffuse failure and second‐order work, as well as a considerable body of experiments. Some compelling laboratory experimental studies of material instability with focus to diffuse failure are then presented and interpreted based on the second‐order work. Finally, various material instability analyses using an elastoplastic constitutive and a general finite element analysis of the above‐mentioned laboratory experimental tests are presented as a boundary value problem. It is shown that instability can be captured from otherwise uniform stress, density and hydraulic states, whereas uniform deviatoric loads are being applied on the external boundaries of a specimen. Although the numerical simulations reproduce well the laboratory experimental results, they also highlight the hierarchy of failure modes where localization phenomena emerge in the post‐bifurcation regime as a result of a degradation of homogeneity starting from a diffuse mode signalled by a zero second‐order work. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
6.
The theory of fractional calculus has been successfully applied to model the triaxial behaviour of soils under static loading conditions. However, limited work has been carried out in using the fractional calculus to describe the cyclic behaviour of granular soils. In this paper, a fractional order constitutive model for granular soils under drained cyclic loading is proposed by incorporating the concept of fractional rate for strain accumulation. The fractional rate for strain accumulation is obtained from the analysis of the experimental data by utilizing the fractional calculus. Comparison between the test results and model predictions is presented. The key feature of the proposed model is that it can reasonably characterise the cyclic deformation of granular soils under both low and high loading cycles. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
7.
The local pore spaces in granular materials tend to be aligned parallel to the major principal stress direction upon particle mobilization. Manifestation of this response has been numerically validated in our previous studies with the aid of discrete element method modeling and image processing techniques during creep and shearing. We now extend the modeling of pore geometry, constructed with spherical particles, to assemblies of particle clumps. Two-dimensional simulations are performed for both loose and dense assemblies of spherical particles and particle clumps. Each particle packing is bound by rigid or flexible walls and subjected to biaxial compression and the particle mobilization effect on the evolution of pore orientation is explored. Randomly shaped pores surrounded by adjacent particles are geometrically quantified by Delaunay tessellation and fitted with ellipses. Results show that localization is apparent in dense assemblies, in particular for clumped particle packing, while loose assemblies exhibit diffusive failure. Small pores within well-defined shear bands tend to align either parallel to the direction of the shear band or perpendicular to the major principal stress. On the other hand, small pores within the blocks and large pores have a tendency to become elongate towards the major principal stress direction. This study reveals for the first time that pore orientation is dependent upon particle shape, pore size, and assembly conditions on the pore and global scales. 相似文献
8.
针对无黏性颗粒材料,开展了柔性边界双轴压缩数值试验,分析了不同围压下力链的数量、方向概率等随轴向应变的变化。研究结果表明:不断加载使得游离的高应力颗粒有所减少,荷载更多的被力链承担;统计意义上,力链最大长度为9个颗粒。轴向±30o范围内力链概率随应变的发展与偏应力一致,而与其邻接的[40o,60o]和[120o,140o]两个方向上的力链概率随应变的发展与偏应力相反;双轴试样剪切破坏时有单剪切带和双剪切带两种模式,当[40o,60o]和[120o,140o]两个角度区间的力链概率有较大差异时,剪切带出现在力链较少的角度区间;当这两个角度区间力链概率接近时,试样中将出现两个剪切带。 相似文献
9.
The paper presents the development of algorithms that have been implemented in a computer program used to simulate the performance of idealized granular systems composed of elliptical-shaped particles. The work is an extension of numerical simulation methods which have been successfully used in micromechanics research on disk-shaped or polygon-shaped particles by the authors and others. The simulation of elliptical-shaped particles offers the possibility to explore the influence of particle shape on the micromechanical behaviour of plane assemblies of particles and the stress-strain behaviour of these systems at the macro scale. Typical results of simulation runs are presented to illustrate the importance of particle shape on the macroscopic stress-strain response of plane systems. 相似文献
10.
A pore-scale numerical model is employed to simulate the primary drainage of a deformable assembly of spherical grains. The model combines the discrete element method and a pore-scale method, respectively, for the solid phase and the fluid phases. The evolution of strain along the simulated drainage in oedometer conditions is reported. The combined actions of phase pressures and surface tension lead the solid skeleton to first shrink and then to swell at the approach of residual saturation. The effective stress is examined through the Bishop’s coefficient \(\chi\), obtained by a back analysis of the simulated strain. It is found that \(\chi\) is relatively close to the degree of saturation, with an exception at very low saturation. Further, a contact stress obtained by averaging micromechanical quantities is found nearly exactly equal to the effective stress deduced directly from the strain, in contrast to previous findings. A detailed analysis of the heterogeneous fields of effective stress, saturation and pressure is offered, suggesting a unique relationship between \(\chi\) and saturation at a mesoscale. 相似文献
11.
The study presents a review of modifications to the design of true triaxial test apparatuses and described a new mixed boundary apparatus to study the stress-strain behavior of coarse-grained soil under true triaxial compression conditions. It was shown that the deviatoric component plays an important role in affecting the volumetric compression of coarse-grained soil. The study analyzed the influence of different stress-strain characteristics on the development of lateral earth pressure. 相似文献
12.
A mathematical model is proposed to simulate isotropic compression test results obtained for specimens of silty sand mixed with different cement contents and cured at different void ratios. The ability of the model to represent the isotropic test results of specimens with different cement contents cured at high and low void ratios under high confining stresses was successfully checked. The physical meanings of the parameters established by the model were also evaluated. Finally, the applicability of the model to other artificially cemented soils was demonstrated. 相似文献
13.
以中国锦屏地下实验室工程T_(2b)大理岩为研究对象,开展了等向压缩(σ_1=σ_2=σ_3)试验及不同围压下的三轴偏压(σ_1-σ_3)加载试验,分析讨论了大理岩等向压缩体积变形特点、围压对峰后变形行为及峰前渐进性变形破坏过程的影响。试验结果表明:大理岩的等向压缩体积变形在不同围压范围内经历了一个线性-非线性-线性的变化过程。等向压缩体变曲线上存在一个拐点(敏感应力),该点的围压能在一定程度上反映其应力历史。偏压加载时峰后变形表现为脆性-半脆性-延性转化特征,峰值强度随围压变化与等向压缩体变曲线斜率发生变化的转换围压是一致的。围压对渐进性破坏过程各个阶段均会产生一定影响,除偏差闭合应力阈值外,其余各特征偏应力阈值均随围压近似呈线性增加关系。在等向压缩和偏压加载时出现了2次裂隙闭合过程。试验成果对进一步研究硬岩的变形破坏机制、防治深部地下工程灾害具有一定参考价值。 相似文献
14.
由地下水引起的静力液化可能是边坡失稳的隐含机制之一,松砂在不排水剪切条件下可能发生静力液化,密实的颗粒集合体在特定的应变路径下也会出现相似的现象,即试样整体发生急剧的失稳,应力状态尚处于峰值强度线以内。该种失稳模式称为分散性失稳,是为了强调失稳模式中没有出现应变局部化或者剪切带。采用连续-离散耦合分析方法,研究由不规则形状颗粒组成的密实集合体在等比例应变加载路径下的力学特性。根据Hill的材料失稳理论,当试样的应力增量 和应变增量 对应的2阶功 为负时,试样即发生不可逆的整体失稳破坏。以根据不同等比例应变路径得到 曲线为界,在 平面内将试样的应力状态分为剪缩区、剪胀-稳定区和剪胀-非稳定区,连接不同围压下试样发生分散性失稳时的应力状态形成失稳线发现,峰值强度线高于临界状态线,临界状态线高于失稳线。 相似文献
15.
In order to isolate the effect of grain size and cementation on the mechanical behaviour of poorly consolidated granular rock, we prepared synthetic rock samples in which these two parameters were varied independently. Various proportions of sand, Portland cement and water were mixed and cast in a mold. The mixture was left pressure-free during curing, thus ensuring that the final material was poorly consolidated. We used two natural well-sorted sands with grain sizes of 0.22 and 0.8 mm. The samples were mechanically tested in a uniaxial press. Static Young's modulus was measured during the tests by performing small stress excursions at discrete intervals along the stress–strain curves. All the samples exhibited nonlinear elasticity, i.e., Young's modulus increased with stress. As expected, we found that the uniaxial compressive strength increased with increasing cement content. Furthermore, we observed a transition from grain size sensitivity of strength at cement content less than 20–30% to grain size independence above this value. The measured values of Young's modulus are well explained by models based on rigid inclusions embedded in a soft matrix, at high cement content, and on cemented grain-to-grain contacts, at low cement content. Both models predict grain size independence in well-sorted cemented sands. The observed grain size sensitivity at low cement content is probably due to microstructural differences between fine- and coarse-grained materials caused by small differences in grain sorting quality. 相似文献
16.
The fundamental understanding of the behavior of granular materials by the effect of vibration is necessary to properly address a number of engineering issues, such as long-term settlement of high-speed railway, vibratory pile driving in sandy stratum, and earthquake-induced geotechnical disaster. Triaxial compression tests of dry Pingtan sand were carried out by a modified triaxial apparatus, where axial high-frequency vibration was super-imposed on the specimen at pre-peak, peak, and post-peak stress states during monotonic shearing. The influences of vibration conditions, confining pressure, and the initial relative density on the vibration-induced responses of Pingtan sand are mainly considered. It is shown that the super-imposed vibration leads to significant deviatoric stress reduction and vibro-induced additional axial strain. This owes to the fact that the static inter-particle friction turns to dynamic friction, and consequently, the frictional resistance has a considerable reduction when vibration is applied to the sand specimen. The vibration-induced stress–strain behavior of sand specimen is characterized into three states by two thresholds concerning vibration intensity and confining pressure: (1) stable state, (2) vibro-compression state and (3) vibro-instability state. For the vibro-compression state, the deviatoric stress reduction has a positive linear correlation with the increase in vibration intensity, while the vibro-induced additional axial strain follows a power-law increase with vibration intensity. Given a vibration condition, the deviatoric stress reductions and the vibro-induced additional axial strains at pre-peak, peak, and post-peak stress state follow a descending order. Besides, the influences of vibration on shear strength and critical state were also discussed.
相似文献
17.
Acta Geotechnica - Filling of gangue formed in coal mining is an effective means to realize green mining in coal mine. The key of gangue filling mining is to accurately understand the breaking... 相似文献
18.
采用CT机配套的自制专用注水加载装置,对含裂隙水压的单裂纹试件进行了单轴压缩破坏的CT(Computerized Tomography)实时试验,对试件被压密→新损伤区产生→裂纹扩展的全过程进行了模拟,得到了各阶段清晰的CT图象及CT数。通过分析,提出了类节理岩体脆性材料的损伤演化率和损伤门槛值概念,并对水压的影响进行了探讨,从细观和三维上初步掌握了类节理岩体脆性材料的损伤演化特性。 相似文献
19.
In this study, a numerical simulation of true triaxial tests was conducted using the three-dimensional distinct element method (DEM) in order to examine how unsaturated granular materials collapse under general stress states. The collapse process was simulated by reducing the intergranular adhesive forces corresponding to the effect of the capillary suction during the isotropic compression and the shearing processes under general stress states. Based on the relationship between the void ratio and the mean principal stress after collapsing, it was found that the initially soaked compression line obtained with an inundation test may be used to predict the collapse of granular materials under a general stress state. From the analysis for the fabric tensor in the particle aggregate after collapsing, the skeleton structures became identical to those in which no intergranular adhesive force was applied. Furthermore, even though the collapse process was simulated under a plane strain condition, the shear band inside the sample did not occur clearly, and the slippage between particles was instead induced randomly during collapsing. 相似文献
20.
The main focus in this work is on the assessment of bearing capacity of a shallow foundation in an inherently anisotropic particulate medium. Both the experimental and numerical investigations are carried out using a crushed limestone with elongated angular‐shaped aggregates. The experimental study involves small‐scale model tests aimed at examining the variation of bearing capacity as a function of the angle of deposition of the material. In addition, the results of a series of triaxial and direct shear tests are presented and later employed to identify the material functions/parameters. The numerical part of this work is associated with the development and implementation of a constitutive framework that describes the mechanical response of transversely isotropic frictional materials. The framework is based on the elastoplasticity and accounts for the effects of strain localization and inherent anisotropy of both the deformation and strength characteristics. The results of numerical simulations are compared withthe experimental data. A parametric study is also carried out aimed at examining the influence of various simplifications in the mathematical framework on its predictive abilities. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
|