首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A black shale sample collected from the Chimiari site(Tarbela) was analyzed for elemental contents.Inductively coupled plasma-optical emission spectrometry(ICP-OES) was employed to determine major and trace elements in the digests.Precise analysis was accomplished for the black shales,which was better than 2.0%.Result shows that the shales are very rich in Ca(25439 μg·g-1),Fe(13933 μg·g-1),Ti(6932 μg·g-1),Al(5993 μg·g-1) and K(2730 μg·g-1).  相似文献   

2.
The provenance of low-calcic black shales   总被引:2,自引:0,他引:2  
The elemental concentration of sedimentary rocks depends on the varying reactivity of each element as it goes from the source through weathering, deposition, diagenesis, lithification, and even low rank metamorphism. However, non-reactive components of detrital particles ideally are characteristic of the original igneous source and thus are useful in provenance studies. To determine the source of detrital granitic and volcanic components of low-calcic (<1% CaCO3) marine black shales, the concentrations of apparently non-reactive (i.e. unaffected by diagenetic, redox and/or low-rank metamorphic processes) trace elements were examined using standard trace element discrimination diagrams developed for igneous rocks. The chemical data was obtained by neutron activation analyses of about 200 stratigraphically well-documented black shale samples from the Cambrian through the Jurassic. A La-Th-Sc ternary diagram distinguishes among contributions from the upper and bulk continental crust and the oceanic crust (Taylor and McLennan 1985). All the low-calcic black shales cluster within the region of the upper crust. Th-Hf-Co ternary diagrams also are commonly used to distinguish among the upper and bulk continental crust and the oceanic crust (Taylor and McLennan 1985). As Co is redox sensitive in black shale environments, it was necessary to substitute an immobile element (i.e. example Rb) in the diagram. With this substitution of black shales all cluster in the region of the upper continental crust. To determine the provenance of the granitic component (Pearce et al. 1984), plots of Ta vs Yb and Rb vs Yb + Ta shows a cluster at the junction of the boundaries separating the volcanic arc granite (VAG), syn-collision granite (syn-COLG), and within-plate granite (WPG) fields. The majority fall within the VAG field. There are no occurrences of ocean ridge granite (ORG). The minimal contribution of basalts to marine black shales is confirmed by the ternary Wood diagram Th-Hf/3-Ta (Wood et al. 1979). The black shales plot in a cluster in a high Th region outside the various basalt fields, which suggests contribution from the continental crust.  相似文献   

3.
Late Jurassic-early Cretaceous black shales and an overlying sequence of Albian-Campanian zeolitic claystones from the Falkland Plateau (DSDP/IPOD Leg 71, Site 511) were analyzed for tetrapyrrole pigment type and abundance. The “black shale” sequence was found to be rich in DPEP-series dominated free-base, nickel (Ni) and, to a lesser extent, vanadyl (V = 0) porphyrins. A low level of organic maturity (i.e. precatagenesis) is indicated for these strata as nickel chelation by free-base porphyrins is only 50–75% complete, proceeding down-hole to 627 meters sub-bottom. Electronic and mass spectral data reveal that the proposed benzo-DPEP (BD) and tetrahydrobenzo-DPEP (THBD) series are present in the free-base and Ni species, as well as the more usual occurrence in V = 0 porphyrin arrays. Highly reducing conditions are suggested by an abundance of the PAH perylene, substantial amounts of the THBD/BD series and a redox equilibrium between free-base DPEP and 7,8-dihydro-DPEP series, which exist in a 7:1 molar ratio. The Albian-Campanian claystone strata were found to be tetrapyrrolepoor, and those pigments present were typed as Cu/Ni highly dealkylated (C26 max.) etioporphyrins, thought to be derived via redeposition and oxidation of terrestrial organic matter (OM). Results from the present study are correlated to our past analyses of Jurassic-Cretaceous sediments from Atlantic margins in an effort to relate tetrapyrrole quality and quantity to basin evolution and OM sources in the proto-Atlantic.  相似文献   

4.
黑色页岩的资源功能和环境效应   总被引:13,自引:2,他引:13  
利用ICP—MS等分析技术对典型黑色页岩的微量元素及P、S等组分进行了分析,探讨了黑色页岩的化学特征、风化机制和微量元素富集特征,阐明了黑色页岩的资源功能和环境效应。结果表明,黑色页岩不但富含多种矿产资源,产有大型、超大型多金属矿床,而且可用作复合化肥以改良土壤。同时,黑色页岩因风化分解释放CO2、产生酸性矿排水、释出重金属元素等而可能对环境产生严重影响,引起环境问题。开发利用黑色页岩不但要充分认识其资源功能特征,拓宽其应用途径,而且要特别注意其可能引发的环境问题。  相似文献   

5.
6.
Geology of the Devonian black shales of the Appalachian Basin   总被引:1,自引:0,他引:1  
Black shales of Devonian age in the Appalachian Basin are a unique rock sequence. The high content of organic matter, which imparts the characteristic lithology, has for years attracted considerable interest in the shales as a possible source of energy. The recent energy shortage prompted the U.S. Department of Energy through the Eastern Gas Shales Project of the Morgantown Energy Technology Center to underwrite a research program to determine the geologic, geochemical, and structural characteristics of the Devonian black shales in order to enhance the recovery of gas from the shales. Geologic studies by Federal and State agencies and academic institutions produced a regional stratigraphic network that correlates the 15 ft black shale sequence in Tennessee with 3000 ft of interbedded black and gray shales in central New York. These studies correlate the classic Devonian black shale sequence in New York with the Ohio Shale of Ohio and Kentucky and the Chattanooga Shale of Tennessee and southwestern Virginia. Biostratigraphic and lithostratigraphic markers in conjunction with gamma-ray logs facilitated long-range correlations within the Appalachian Basin. Basinwide correlations, including the subsurface rocks, provided a basis for determining the areal distribution and thickness of the important black shale units. The organic carbon content of the dark shales generally increases from east to west across the basin and is sufficient to qualify as a hydrocarbon source rock. Significant structural features that involve the black shale and their hydrocarbon potential are the Rome trough, Kentucky River and Irvine-Paint Creek fault zone, and regional decollements and ramp zones.  相似文献   

7.
Ninety-seven Wealden black shale samples from three wells in the Lower Saxony Basin have been studied by organic geochemical and organic petrographical methods to determine their maturity, organic facies and depositional environment. The maturities of the three wells range from early mature (Ex-A), late to postmature (Ex-C) to overmature (Ex-B) as determined by vitrinite reflectance measurements, diamondoid ratios and other geochemical maturity parameters. Ex-C and Ex-B show distinct petrographic features related to oil generation and migration. In particular, the occurrence of dispersed solid bitumen replacing initial type I kerogen suggests a formerly active petroleum system. Structural and textural differences between early mature alginites and solid bitumen in postmature to overmature samples show an alteration of the pore system with increasing maturity. A freshwater depositional environment is indicated by widespread occurrence of botryococcus algae and other small alginite particles predominating in the immature well. These alginites are absent in the more mature gas shales of wells Ex-C and Ex-B. Geochemical evidence of algae and phytoplankton in general is provided by numerous biomarker parameters, while the occurrence of β-carotane in some samples indicates events of increased salinity, although no hypersaline conditions are inferred due to very low gammacerane indices. Increased amounts of vitrinite and inertinite in samples of Ex-B suggest locally significant terrigenous input of organic matter for some periods during Wealden Shale deposition. High sulfur/organic carbon ratios provide evidence for sulfate rich waters and (partly) anoxic bottom water conditions. While the lower mature lacustrine source rocks generate paraffinic/waxy oils, gas and condensates are produced at post-mature stages. Furthermore, maturity distribution maps from 3D numerical petroleum systems modeling reveal substantial differences in respect to petroleum generation.  相似文献   

8.
黑色页岩与大洋缺氧事件的Re-Os同位素示踪与定年研究   总被引:13,自引:0,他引:13  
地质历史中发育多次大规模的大洋缺氧事件并伴随有巨量的黑色页岩沉积, 对这些大洋缺氧事件发生时限及成因机制的研究已成为当前国际古海洋学研究的一个前沿领域。开展对大洋缺氧事件的研究,有助于了解古海洋演化、地球系统变化和地球其他圈层对生物圈的影响,以及金属成矿、油气形成及生烃环境。因此近年来人们从古海洋、古气候、古地理、古生物、大地构造和地质地球化学等学科,积极开展对大洋缺氧事件的研究。对大洋缺氧事件进行准确定年则是研究工作开展的首要任务之一;而如果用于定年的同位素体系能同时提供相关的环境变迁信息,则更加有利于我们对缺氧事件成因机制的认识。Re Os同位素作为近年来发展起来的一种新的同位素技术方法,恰好适用于对富有机质沉积岩和黑色页岩的定年,可以获得精确的地层沉积年龄,同时利用这些海洋沉积物的Os同位素比值还可获得古海水的Os同位素组成及随时间的演化规律。在中国华南地区新元古代—早古生代发育有多幕次的大洋缺氧事件和黑色页岩的巨厚沉积和广泛分布,利用Re Os同位素研究,不但可以精确厘定这些事件发生的时限,而且可以有效示踪当时的古海洋环境。  相似文献   

9.
The Ta Nang gold deposit is localized in Middle Jurassic black shales. The ore zone is a series of layer-by-layer crush zones and zones of hydrothermal rock alteration, < 10 m in thickness and > 2 km in length. It consists of quartz-sulfide veins, sulfidized black shales, and their hydrothermally altered varieties. Sulfide mineralization occurs as two assemblages: early pyrite-arsenopyrite and late chalcopyrite-sphalerite- galena. The pyrite-arsenopyrite assemblage is composed of different morphogenetic varieties. Coarse-crystalline arsenopyrite and pyrite aggregates and metacrystals of different orientations, 0.1 to 10 mm in size, are the most widespread. The chalcopyrite-sphalerite-galena assemblage is scarce. Along with the main ore minerals, it includes more rare minerals: pyrrhotite, lead sulfosalts (tsugaruite), and gold, which form a spatial assemblage with the main minerals or small inclusions in them. Gold occurs mainly as fine dissemination in cracks in pyrite, arsenopyrite, chalcopyrite, and quartz. Gold content in sulfidized carbonaceous shales is no more than tenths of ppm, averaging 0.38 ppm. This content in the quartz veins is considerably higher, averaging 3.92 ppm. Silver contents in the shales and quartz veins are similar and equal to 2.68 and 5.30 ppm, respectively. Also, the sulfidized rocks and veins have elevated contents of Fe, As, Pb, Zn, Cu, Cd, Ni, and Co; most of these elements (Fe, As, Pb, Zn, and Cu) make up their own sulfide minerals, and the others are trace elements. According to 39Ar/40Ar dating of sericite from the quartz-sulfide veins, their age is 129.3 ± 5.6 Ma, which is close to the age of the Cretaceous granite intrusions of the Deo Ca complex. These veins formed from moderately strong solutions (11.7-6.4 wt.% NaCl equiv) with the CH4 + N2 + CO2 gas phase at 340–130 °C. Judging from the S isotope composition (534S = 1.6-4.3%c), predominantly deep-seated endogenic sulfur participated in the formation of ore sulfide associations. Analysis of the distribution of gold shows that it was deposited together with sulfide minerals (galena, sphalerite, and chalcopyrite) at a later stage.  相似文献   

10.
The ore-forming role of black shales is discussed. Correlation of their distribution with high phosphorus and manganese concentrations is shown. Associations of black shales, phosphorites, and manganese ores are described. A mechanism is proposed for explaining their co-occurrence in natural environments. It is emphasized that back shales serve as not only ore-forming sequences, but also ore-generating formations for phosphorus and manganese deposits, as well as ore-concentrating rocks for chalcophile elements.  相似文献   

11.
The granular and polymer composite nature of kerogen-rich shale   总被引:2,自引:2,他引:0  
In the past decade, mechanical, physical, and chemical characterization of reservoir shale rocks, such as the Woodford shale, which is kerogen-rich shale (KRS), has moved toward micro- and nanoscale testing and analyses. Nanoindentation equipment is now widely used in many industrial and university laboratories to measure shale anisotropic Young’s moduli, kerogen stiffness, plastic yield parameters, and other isotropic and anisotropic poromechanical and viscoelastic properties. However, to date, failure analyses of KRS and the effects of organic components on the tensile strength have not been observed or measured at the micro- or nanoscales. In this study, preserved kerogen-rich Woodford shale samples manufactured in micro-beam and micro-pillar geometries were mechanically tested and brought to failure in tension and compression, respectively. These tests were conducted in situ using a nanoindenter inside a scanning electron microscope (SEM). The load versus displacement curves of prismatic micro-cantilever beams were analyzed in light of high-resolution images collected during tensile fracture initiation, propagation, and ultimately sample failure. The micro-pillar geometries were subjected to a uniaxial compressive load and were also brought to failure while capturing measurements of stress and strain. It was found that, within just a few hundred microns of the KRS micro-cantilever beams, both brittle and ductile failure modes were observed. In the ductile plastic domain, strain-softening and strain-hardening behaviors were identified and characterized. These were not due to confining stress variations, but due to the volume of the organic matter and the way it is interlaced with the shale minerals in and around the failure planes. The tensile strength characteristics and the large modulus of toughness of kerogen, which is a cross-linked polymer, definitely weigh heavily in our engineering field applications, such as hydraulic fracking, which is a Mode I tensile fracture opening and propagation phenomenon. This practice demands that, due to the complex composite nature of KRS, mechanical characterization be not only for unconfined compressive strength but also for unconfined tensile strength and moduli of ruptures. At the end of this study, the need for nanometer scale mechanical characterization of KRS will become apparent. These nano- and micro-scale shale failure tests reinforce our previous understanding of the heterogeneous composite nature of Woodford KRS and its complex behavior, as well as other source shale reservoir formations.  相似文献   

12.
13.
Spatiotemporal regularities of the sulfide mineralization distribution in shales of the Skorbeev Formation, as well as the results of its study, have been analyzed. Their genetic relation to distal facies of the fan turbidite system has been substantiated. Ore minerals are predominantly represented by pyrite formed at an early diagenesis stage in conditions of hydrogen sulfide-bacterial paleoecosystems and repeatedly altered in the process of subsequent sediment transformation.  相似文献   

14.
15.
The X-ray fluorescence and ICP methods were used to analyze 60 outcrop samples of black shale, of which 15 were collected from Belait, 15 from the Setap Shale, 15 from Temburong, and 15 from the Trusmadi formations. The average compositions of the shales from the study area are 64.62%, 63.95%, 62.32%, 63.84% SiO2, 1.84%, 2.14%, 2.04%, 1.99% MgO, 2.55%, 3.12%, 2.89%, 2.72% K2O, 0.32%, 0.30%, 0.32%, 0.53% CaO, 5.86%, 6.06%, 7.14%, 6.60% Fe2O3, 207×10^-6, 180×10^-6, 213×10^-6, 200×10^-6 Rb, and 56×10^-6, 49×10^-6, 50×10^-6, 32×10^-6 Sr for the Setap Shale, Temburong, Belait and Trusmadi samples, respectively. The high Rb/Sr ratios of 3.8, 3.7, 4.2, and 6.1 are attributed to the lowest contents of Sr due to reducing conditions prevailing. The high Rb/K ratio sug- gests either brackish marine or rapid deposition that prevented equilibrium between Rb and K in the shales and marine waters.  相似文献   

16.
We here report the discovery of unusual distributions of long-chain alkenones (C37-C42) in two Cretaceous black shales from the Blake-Bahama Basin, western North Atlantic. These sediments are Cenomanian (c. 95 Ma) and mid-Albian (c. 105 Ma) in age, thus significantly extending the geological range of these compounds. The precise source of these lipids is, as yet, unknown, although they may derive from an ancient ancestor of Emiliania huxleyi.  相似文献   

17.
Peculiarities of formation and ore potential of black shales of the Paleoproterozoic Udokan Group are considered. They are compared to the stratotype (Khokholma Formation, Sukhoi Log gold deposit). The black shales are confined to lower parts of the Paleoproterozoic sequence of the Udokan Group. They are observed in sections of the Chitkanda, Inyr, Ayan, and Ikab’ya formations. The black shale complex of the Udokan Group is divided into three levels of Au concentration. The first level with background Au contents is typical of barren shales; the second level is confined to sulfidized rocks; and the third level is related to sulfide-quartz veins in the black shales. The average Au content is 0.12 g/t in the sulfidized shales and 0.28 g/t in the sulfide-quartz veins. Black shales of the Udokan Group and Khokholma Formation were formed in a relatively deep shelf zone, while those of the Shaman Formation precipitated in a shallow zone. Protoliths of black shales of the Udokan Group contained graywackes, diorites, syenites, basic rocks, and tuffites. Protoliths of black shales of the Khokholma Formation were produced by the intense weathering of basic and ultrabasic rocks.  相似文献   

18.
19.
A stable crack extension is a precondition for fracture toughness tests using chevron-notched specimens. The paper analyses the stability problem for crack extension in two chevron-notched specimens suggested by ISRM. Stability factors are calculated with various compliances of testing machine under different loading conditions. It is pointed out that the loading manner, compliance of the testing machine, as well as the specimen configurations have great influence on crack growth stability.  相似文献   

20.
贵州金鼎山下寒武统黑色岩系的有机地球化学特征   总被引:2,自引:0,他引:2       下载免费PDF全文
对贵州遵义金鼎山下寒武统牛蹄塘组黑色岩系的氯仿沥青“A”及族组分做了成分检测,并进行了岩石氯仿抽提物中饱和烃气相色谱分析。结果表明,黑色岩系属生油岩,且为腐泥型和混合型生油岩,以腐泥型为主;黑色岩系有机质丰度高,有机质主要来源于海生低等菌、藻类生物;黑色岩系姥姣烷与植烷比值、岩性和生物特征指示其形成于一种缺氧还原沉积环境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号