共查询到12条相似文献,搜索用时 0 毫秒
1.
《Geomechanics and Geoengineering》2013,8(2):115-121
The study presents a rational analytical approach to obtain the seismic passive response of an inclined retaining wall backfilled with horizontal c-Φ soil. Pseudo-dynamic analysis is carried out to obtain the seismic passive response. Here in this analysis, the critical wedge angle is a single one irrespective of weight, surcharge and cohesion and this fact satisfies the field situation in a more realistic manner. A planer failure surface is considered in the analysis. The effect of soil and wall friction angle, wall inclination, horizontal and vertical earthquake acceleration on the passive resistance and the variation of passive earth pressure along the height of the wall have been explored. A comparison to pseudo-static and other available methods have been made to highlight the non-linearity of seismic passive earth pressure distribution. 相似文献
2.
An extension of slip line theory to unsaturated soils is presented and applied to the problem of a rigid retaining wall rotating about its toe into unsaturated soils. Suction is introduced using the effective stress concept. Soil–wall interface friction is defined carefully. The influence of suction on limiting passive earth pressures is analysed for two soils under steady state evaporation and infiltration. Suction increases the limiting passive stress at the soil–wall interface, with a dependence on the steady state flow type. The displacement of the retained soil is studied assuming the wall undergoes a rotation increment. The results show a clear difference in the displacement for evaporation and infiltration. 相似文献
3.
《Journal of African Earth Sciences》2008,50(2-4):120-132
Published literature argues that the Limpopo Belt can be subdivided into three zones, each with a distinctive geological character and tectono-metamorphic fingerprint. There are currently two contrasting schools of thought regarding the tectono-metamorphic evolution of the CZ. One camp argues that geochronological, structural and prograde pressure–temperature (P–T) evidence collectively indicate that the CZ underwent tectono-metamorphism at ca. 2.0 Ga which followed a clockwise P–T evolution during a transpressive orogeny that was initiated by the collision of the Kaapvaal and Zimbabwe cratons. Deformation and metamorphism consistent with this scenario are observed in the southern part of the NMZ but are curiously absent from the whole of the SMZ. The opposing view argues that the peak metamorphism associated with the collision of the Kaapvaal and Zimbabwe cratons occurred at ca. 2.6 Ga and the later metamorphic event is an overprint associated with reactivation along Archean shear zones. Post-peak-metamorphic conditions, which at present cannot be convincingly related to either a ca. 2.6 or 2.0 Ga event in the CZ reveal contrasting retrograde paths implying either near-isothermal decompression and isobaric cooling associated with a ‘pop-up’ style of exhumation or steady decompression–cooling linked to exhumation controlled by erosion. Recent data argue that the prograde evolution of the ca. 2.0 Ga event is characterised by isobaric heating prior to decompression–cooling. Contrasting P–T paths indicate that either different units exist within the CZ that underwent different P–T evolutions or that some P–T work is erroneous due to the application of equilibrium thermobarometry to mineral assemblages that are not in equilibrium. The morphology of the P–T path(s) for the ca. 2.6–2.52 Ga event are also a matter of dispute. Some workers have postulated an anticlockwise P–T evolution during this period whilst others regard this metamorphic event as following a clockwise evolution. Granitoid magmatism is broadly contemporaneous in all three zones at ca. 2.7–2.5 suggesting a possible causal geodynamic link. P–T contrasts between and within the respective zones prevent, at present, the construction of a coherent and inter-related tectonic model that can account for all of the available evidence. Detailed and fully-integrated petrological and geochronological studies are required to produce reliable P–T–t paths that may resolve some of these pertinent issues. 相似文献
4.
A multiphase model, developed in the context of elastoplasticity, is applied to the simulation and design of reinforced earth retaining structures. The main feature of this model is to combine the advantage of a homogenization approach, as regards its computational efficiency, with the ability to account for a specific failure condition at the interface between the soil and the reinforcing strips, which may have a decisive influence on the behavior of the structure. A particular emphasis is put on the stability analysis of this kind of reinforced soil structures, formulated within the framework of the yield design theory. Making use of a generalized rigid block failure mechanism, the stability of a reinforced earth retaining wall is investigated by means of the kinematic approach, leading to upper bound estimates for the stability factor of the structure, which are then favorably compared with the results of an elastoplastic analysis. Special attention is paid to assessing in a quantitative way how a specific soil–strip failure condition affects the stability of the reinforced earth structure as a whole. 相似文献
5.
A cavity expansion–based solution is proposed in this paper for the interpretation of CPTu data under a partially drained condition. Variations of the normalized cone tip resistance, cone factor, and undrained-drained resistance ratio are examined with different initial specific volume and overconsolidation ratio, based on the exact solutions of both undrained and drained cavity expansion in CASM, which is a unified state parameter model for clay and sand. A drainage index is proposed to represent the partially drained condition, and the critical state after expansion and stress paths of cavity expansion are therefore predicted by estimating a virtual plastic region and assuming a drainage-index–based mapping technique. The stress paths and distributions of stresses and specific volume are investigated for different values of drainage index, which are also related to the penetration velocity with comparisons of experimental data and numerical results. The subsequent consolidation after penetration is thus predicted with the assumption of constant deviatoric stress during dissipation of the excess pore pressure. Both spherical and cylindrical consolidations are compared for dissipation around the cone tip and the probe shaft, respectively. The effects of overconsolidation ratio on the stress paths and the distributions of excess pore pressure and specific volume are then thoroughly investigated. The proposed solution and the findings would contribute to the interpretation of CPTu tests under a random drained condition, as well as the analysis of pile installation and the subsequent consolidation. 相似文献
6.
7.
James G. Brophy 《Contributions to Mineralogy and Petrology》2008,156(3):337-357
The origin of felsic magmas (>63% SiO2) in intra-oceanic arc settings is still a matter of debate. Two very different processes are currently invoked to explain
their origin. These include fractional crystallization of basaltic magma and partial melting of lower crustal amphibolite.
Because both fractionation and melting can lead to similar major element, trace element and isotopic characteristics in felsic
magmas, such lines of evidence have been generally unsuccessful in discriminating between the two processes. A commonly under-appreciated
aspect of rare earth element (REE) solid–liquid partitioning behavior is that D
REE for most common igneous minerals (especially hornblende) increase significantly with increasing liquid SiO2 contents. For some minerals (e.g., hornblende and augite), REE partitioning can change from incomptatible (D < 1) at low liquid SiO2 to compatible (D > 1) at high liquid SiO2. When this behavior is incorporated into carefully constrained mass-balance models for mafic (basaltic) amphibolite melting,
intermediate (andesitic) amphibolite melting, lower or mid to upper crustal hornblende-present basalt fractionation, and mid
to upper crustal hornblende-absent basalt fractionation the following general predictions emerge for felsic magmas (e.g.,
∼63 to 76% SiO2). Partial melting of either mafic or intermediate amphibolite should, regardless of the type of melting (equilibrium, fractional,
accumulated fractional) yield REE abundances that remain essentially constant and then decrease, or steadily decrease with
increasing liquid SiO2 content. At high liquid SiO2 contents LREE abundances should be slightly enriched to slightly depleted (i.e., C
l/C
o ∼ 2 to 0.2) while HREE abundances should be slightly depleted (C
l/C
o ∼ 1 to 0.2). Lower crustal hornblende-bearing basalt fractionation should yield roughly constant REE abundances with increasing
liquid SiO2 and exhibit only slight enrichment (C
l/C
o ∼ 1.2). Mid to upper crustal hornblende-bearing basalt fractionation should yield steadily increasing LREE abundances but
constant and then decreasing HREE abundances. At high liquid SiO2 contents LREE abundances may range from non-enriched to highly enriched (C
l/C
o ∼ 1 to 5) while HREE abundances are generally non-enriched to only slightly enriched (C
l/C
o ∼ 1 to 2). Hornblende-absent basalt fractionation should yield steadily increasing REE abundances with increasing liquid
SiO2 contents. At high SiO2 contents both LREE and HREE are highly enriched (C
l/C
o ∼ 3 to 4). It is proposed that these model predictions constitute a viable test for determining a fractionation or amphibolite
melting origin for felsic magmas in intra-oceanic arc environments where continental crust is absent.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.
相似文献
James G. BrophyEmail: |
8.
While there are numerous thick loess–palaeosol sequences preserved across the Carpathian Basin, well dated sites that provide terrestrial palaeoenvironmental records extending beyond last glacial–interglacial cycle are scarce. Robust chronologies are essential for correlations of loess with other long-term Quaternary records and to further understanding of the palaeoenvironment and climate of this important region beyond the last 125 ka. Here a new geochronology based on 13 post-infrared infrared stimulated luminescence ages focused on the lower part of the loess–palaeosol sequence at Erdut is presented. The results show that the lower part of the Erdut profile spans the penultimate glacial cycle (MIS 7 to MIS 5). The considerable sediments overlaying the investigated part of the profile suggest that this section spans two glacial cycles, rather than the previously suggested one. The most likely source of the discrepancy is the use of uncorrected infrared stimulated luminescence signal, which can cause age underestimation if not accounted for. This study demonstrates the need to revisit sites such as Erdut, re-date them using updated measurement protocols, and update existing palaeoenvironmental interpretations. 相似文献
9.
10.
Ana Luisa Outa Mori Paulo Alves de Souza Juliana Charão Marques Ricardo da Cunha Lopes 《Gondwana Research》2012,21(2-3):654-669
Index species useful for correlations with the International Stratigraphical Column are rare or absent in the Pennsylvanian–Permian strata of the Paraná Basin in Brazil, preventing accuracy in geochronologic assignments. Besides, absolute datings are very scarce in comparison with other Gondwana basins. This paper presents palynological data from an outcrop on the surroundings of the Candiota coal mine, southmost Brazil, from several levels of the Rio Bonito and Palermo formations. The presence of certain index species of spore–pollen allowed the recognition of two Permian palynozones: the Vittatina costabilis and the Lueckisporites virkkiae zones. Furthermore, U–Pb in zircons from a volcaniclastic level interbedded in the coal strata of the former unit was analyzed through LA-MC-ICP-MS method, providing a new absolute age dating of 281.4 ± 3.4 Ma (Cisuralian, Early Permian). This dating is assumed as the oldest occurrence of the L. virkkiae Zone in Paraná Basin, which contains index species that are widespread in other Gondwana basins. A well distributed surface boundary occurs in this section also, allowing local and regional correlations. These new biostratigraphical and geochronological data are integrated, in order to offer a deep analysis on the stratigraphical significance for correlations across the Occidental Gondwana. 相似文献
11.
In the Eastern Dharwar craton, among the many shear zone-hosted lode gold deposits, those at Ramagiri and Penakacherla are located near the western margin of the craton. Mineralized quartz (± sulfide ± carbonate) veins are hosted by the schistose (metavolcanic and carbonaceous metasedimentary) rocks, in close spatial association with granitoids having quartz and quartzofeldspathic veins representing hydrothermal activities associated with them. Mineralized quartz veins from the ore zones (in Ramagiri and Penakacherla regions) and quartz (or pegmatitic) veins from the surrounding granitic terrane were chosen for δ18O analysis. Samples from the schistose and granitic domains show δ18Oquartz values in the range of 10.4–14.9 and 9.3–10.9‰ respectively. The ore-zone fluids from the Ramagiri and Penakacherla regions give δ18O values of 7.9 ± 1.5 and 5.1 ± 0.8‰, calculated at pressure-corrected temperatures obtained from fluid inclusion microthermometry. The late-magmatic fluid is relatively 18O-poor with δ18O values estimated at 4.5 ± 0.7‰ and the value is closer to what is obtained for the ore zones. Based on the δ18O values reported and a possible magmatic contribution to ore fluid deciphered from fluid inclusion characteristics, a genetic relationship between granitic magmatism and gold mineralization is surmised. The observed increase in the 18O/16O ratio from the magmatic fluid to ore fluid in the shear zone is attributed to interaction of the magmatic fluid with host metasediments, that agrees well with the variation in the CO2/CH4 ratio of carbonic component in such fluids. 相似文献
12.
Jia-Nan Fu Franco Pirajno Fan Yang Espine Shivute Yi-Zhan Sun Ning Ai Kun-Feng Qiu 《地学前缘(英文版)》2021,12(2):573-585
Radiogenic isotopic dating and Lu–Hf isotopic composition using laser ablation-inductively coupled plasma-mass spectrometry(LA-ICP-MS)of the Wude basalt in Yunnan province from the Emeishan large igneous province(ELIP)yielded timing of formation and post-eruption tectonothermal event.Holistic lithogeochemistry and elements mapping of basaltic rocks were further reevaluated to provide insights into crustal contamination and formation of the ELIP.A zircon U–Pb age of 251.3±2.0 Ma of the Wude basalt recorded the youngest volcanic eruption event and was consistent with the age span of 251-263 Ma for the emplacement of the ELIP.Such zircons hadεHf(t)values ranging from7.3 to+2.2,identical to those of magmatic zircons from the intrusive rocks of the ELIP,suggesting that crust-mantle interaction occurred during magmatic emplacement,or crust-mantle mixing existed in the deep source region prior to deep melting.The apatite U–Pb age at 53.6±3.4 Ma recorded an early Eocene magmatic superimposition of a regional tectonothermal event,corresponding to the Indian–Eurasian plate collision.Negative Nb,Ta,Ti and P anomalies of the Emeishan basalt may reflect crustal contamination.The uneven Nb/La and Th/Ta values distribution throughout the ELIP supported a mantle plume model origin.Therefore,the ELIP was formed as a result of a mantle plume which was later superimposed by a regional tectonothermal event attributed to the Indian–Eurasian plate collision during early Eocene. 相似文献