首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The numerical modeling of the impacts of urban buildings in mesoscale meteorological models has gradually improved in recent years. Correctly representing the latent heat flux from urban surfaces is a key issue in urban land-atmosphere coupling studies but is a common weakness in current urban canopy models. Using the surface energy balance data at a height of 140 m from a 325 m meteorological tower in Beijing, we conducted a 1-year continuous off-line simulation by using a coupled land surface model and a single-layer urban canopy model and found that this model has a relatively large systematic error for simulated latent heat flux. To improve the numerical method for modeling latent heat flux from urban surfaces, we combined observational analysis and urban land surface model to derive an oasis effect coefficient for urban green areas; to develop a temporal variation formula for water availability in urban impervious surfaces; and to specify a diurnal profile and the maximum values of anthropogenic latent heat release for four seasons. These results are directly incorporated into the urban land surface model to improve model performance. In addition, this method serves as a reference for studies in other urban areas.  相似文献   

2.
基于遥感的鄱阳湖湖区蒸散特征及环境要素影响   总被引:1,自引:0,他引:1  
蒸散是湖泊湿地生态系统水循环的重要组成部分,研究湖区地表蒸散量的时空变化对了解鄱阳湖湖区水量平衡关系具有重要意义.本研究基于MODIS数据,应用地面温度-植被指数三角关系法反演2000-2009年鄱阳湖湖区的实际蒸散量,分析湖区蒸散的时空分布特征及主要气象因子对流域蒸散的影响.结果表明:2000-2009年鄱阳湖湖区年蒸散量在685~921 mm之间,平均年蒸散量为797 mm,最大蒸散量出现在2004年.2000-2009年多年平均水体蒸发量为1107 mm,高于湖区植被蒸散量(774 mm).湖区汇水区域中蒸散量占降水的平均比例为55%,是水量平衡的主要支出项,径流系数约为0.45.湖区蒸散主要受辐射和气温的影响,月蒸散量与气温呈显著的指数相关,2007年蒸散量对温度的关系最为敏感.降水量距平与蒸散量距平的关系除2007年呈显著负相关外,其他年份相关性不显著.鄱阳湖湿地蒸散与湖泊水域面积总体呈正相关,但在水文干旱严重的2006年,当水域面积<30%时,蒸散速率随水域面积增加而减小.  相似文献   

3.
It is of major scientific interests to determine the parameters of momentum, heat and vapor exchange in the planetary boundary layer in order to study the effects of ocean-ice-atmosphere interactions and their feedback mechanisms on global climate[1]. Lin…  相似文献   

4.
人为热源对城市边界层结构影响的数值模拟研究   总被引:30,自引:1,他引:30       下载免费PDF全文
用南京大学多尺度模式系统在不同区域进行了多种人为热源引入方案的研究,结果表明:考虑时空变化的人为热源按比例分别引入到地表能量平衡方程和大气热量守恒方程是将人为热源引入模式的最优方案.人为热通量密度变化的敏感性试验结果发现:人为热源的存在对城市热岛的生成有重要作用.计算结果表明,南京现有的人为热源排放量对该地区的城市热岛贡献率约为296%,若人为热通量密度在现有量值的基础上增大1倍,则其热岛贡献率可达429%;此外,人为热的排放对清晨城市边界层逆温结构有一定程度的破坏作用,能明显升高夜间近地层气温达05~10℃,并能使白天湍流活动的影响范围增大,混合层高度抬高,使夜间城市热岛环流的影响范围扩大.  相似文献   

5.
Based on observation data from urban observation stations in Nanjing and Suzhou at two heights in the roughness sublayer above the canopy and observation data at three heights in the SORPES station at the Xianlin Campus of Nanjing University in a suburban area, the of land-atmosphere turbulent flux exchange and the energy balance over complex underlying surfaces were analyzed. The results indicated that in the roughness sublayer above the canopy, the nearsurface momentum flux, sensible heat flux, and latent heat flux increase with height, and the observation value of the surface albedo increases with height. However, the observation value of the net radiation decreases with height, thus resulting in a change in the urban surface energy budget with height. At the SORPES station in the Xianlin Campus of Nanjing University located in a hilly area, the momentum flux, sensible heat flux, and latent heat flux of the ground observation field significantly differed from those of the two heights on the tower, while the two heights on the tower were extremely close. These results indicate that the flux observation over the complex underlying surface exhibits adequate local only when it is conducted at a higher altitude above the ground. The turbulent flux observation results at a lower altitude in urban areas are underestimated, while the turbulent flux observation results near the surface produce a large deviation over the underlying hilly complex.  相似文献   

6.
荆思佳  肖薇  王伟  刘强  张圳  胡诚  李旭辉 《湖泊科学》2019,31(6):1698-1712
湖泊模型为数值天气预报模型提供热量通量、水汽通量和动量通量等下边界条件,但是不同时间尺度上湖泊水热通量变化的控制因子不同,因此有必要对湖泊模型进行多时间尺度上的离线评估.本文利用2012-2016年太湖中尺度通量网避风港站的气象资料和辐射数据驱动CLM4-LISSS模型(Community Land Model version 4-Lake,Ice,Snow and Sediment Simulator),并与涡度相关观测(Eddy Covariance,EC)结果进行对比,以年平均潜热通量模拟结果最佳为目标调整了模式中的消光系数、粗糙度长度方案,研究了该模型从半小时到年尺度上对湖表温度和水热通量的模拟性能.结果表明:模型对湖表温度的模拟在各时间尺度上均比较理想,但是模拟的日较差较小;从半小时到年尺度上潜热通量的变化趋势都能被很好地模拟出来,但在季节尺度上,潜热通量的模拟出现了秋冬季偏高、春夏季偏低的情况,季节变化模拟不准确.湖表温度和潜热通量模拟偏差的原因可能是消光系数的参数化方案.相比之下,感热通量尽管年际变化趋势的模拟值与观测值一致,但是从半小时到年尺度均被高估.特别地,冷锋过境期间,模型能较好地模拟出潜热通量和感热通量的变化趋势,但对于高风速条件下的感热通量模拟效果不佳.本文的研究结果能为湖泊模式的应用与发展提供有用信息.  相似文献   

7.
China's Loess Plateau is located at the edge of the Asian summer monsoon in a transition zone of climate and ecology. In the Loess Plateau, climate and environments change along with space, which has an obvious impact on the spatial distribution of surface energy fluxes. Because of scarce land-surface observation sites and short observation time in this area, previous studies have failed to fully understand the land-surface energy balance characteristics over the entire the Loess Plateau and their effect mechanisms. In this paper, we first test the simulation ability of the Community Land Model(CLM) model by comparing its simulated data with observed data. Based on the simulation data for the Loess Plateau over the past thirty years, we then analyze the spatial distribution of surface energy fluxes and compare the pattern differences between the area averages for the driest year and wettest year. Furthermore, we analyze the relationship between the spatial distribution of the components of the surface energy balance with longitude, latitude, altitude, precipitation and temperature. The main results are as follows: the spatial distribution of surface energy fluxes are significantly different, with the surface net radiation and sensible heat flux increasing from south to north and latent heat flux and soil heat flux decreasing from southeast to northwest. The sensible heat flux at the driest point is nearly twice as high as that at the wettest point, whereas the latent heat flux and soil heat flux at the driest point are half as much as that at the wettest point. The impact of variations of annual precipitation on the components of the surface energy balance is also obvious, and the maximum magnitude of the changes to the sensible heat flux and latent heat flux is nearly 30%. To a certain extent, geographical factors(including longitude, latitude, and altitude) and climate factors(including temperature and precipitation) affect the surface energy fluxes. However, the surface net radiation is more closely related to latitude and altitude, sensible heat flux is more closely related to the monsoon rainfall and latitude, and latent heat flux and soil heat flux are more closely related to the monsoon rainfall.  相似文献   

8.
研究表明,在很多地震前都出现了潜热通量异常。文中基于Modis遥感数据,结合研究区(四川省汶川地区)的高光谱数据及地面观测的气象数据,利用一种简化的双层模型(双温度差分双源模型)反演显热通量,并通过地表能量平衡方程计算研究区的潜热通量。还探讨了该模型的特点,并对龙门山断裂带通过地区进行了潜热通量的遥感反演,发现在2008年5月12日汶川MS8.0地震前48h内,研究区内的震中地区、龙门山断裂周边地区潜热通量值出现了明显的高值,5月12日中午12时7分沿龙门山断裂带潜热通量值达到300~400W/m2,可能是汶川8.0级地震前的异常反应  相似文献   

9.
Groundwater interactions with surface water and sewers in an urban setting are complex, and classic hydrogeological approaches must be combined with anthropogenic elements to characterize them. The level of detail needed to understand these interactions is illustrated by the analysis of an urban subcatchment in the megacity of Shenzhen in southern China that has had a drastic urban expansion in the last 40 years. The study area is characterized by the Yanshanian granite that is widespread across southern-eastern China. The urban setting is studied using multitemporal analysis of satellite images, borehole investigations and field surveys. Given the local hydrostratigraphy, a conceptual model was developed to identify the physical and anthropogenic factors that regulate the urban groundwater system. Based on the conceptual model and the data collected from the field or compiled from the literature, the average annual effective recharge is estimated to be 290 mm/year, after the urbanization process. From rural to urban conditions, it is estimated that the effective recharge increased by 170% and sewers intercept at least 23% of the effective recharge. Groundwater captured by sewers reduces river flows and increases the required capacity and costs for waste water treatment plants.  相似文献   

10.
To evaluate the interactive effects of snow and forest on turbulent fluxes between the forest surface and the atmosphere, the surface energy balance above a forest was measured by the eddy correlation method during the winter of 1995–1996. The forest was a young coniferous plantation comprised of spruce and fir. The study site, in Sapporo, northern Japan, had heavy and frequent snowfalls and the canopy was frequently covered with snow during the study period. A comparison of the observed energy balance above the forest for periods with and without a snow‐covered canopy and an analysis using a single‐source model gave the following results: during daytime when the canopy was covered with snow, the upward latent heat flux was large, about 80% of the net radiation, and the sensible heat flux was positive but small. On the other hand, during daytime when the canopy was dry and free from snow, the sensible heat flux was dominant and the latent heat flux was minor, about 10% of the net radiation. To explain this difference of energy partition between snow‐covered and snow‐free conditions, not only differences in temperature but also differences in the bulk transfer coefficients for latent heat flux were necessary in the model. Therefore, the high evaporation rate from the snow‐covered canopy can be attributed largely to the high moisture availability of the canopy surface. Evaporation from the forest during a 60‐day period in midwinter was estimated on a daily basis as net radiation minus sensible heat flux. The overall average evaporation during the 60‐day period was 0·6 mm day−1, which is larger than that from open snow fields. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
As a critical water discharge term in basin‐scale water balance, accurate estimation of evapotranspiration (ET) is therefore important for sustainable water resources management. The understanding of the relationship between ET and groundwater storage change can improve our knowledge on the hydrological cycle in such regions with intensive agricultural land usage. Since the 1960s, the North China Plain (NCP) has experienced groundwater depletion because of overexploitation of groundwater for agriculture and urban development. Using meteorological data from 23 stations, the complementary relationship areal evapotranspiration model is evaluated against estimates of ET derived from regional water balance in the NCP during the period 1993–2008. The discrepancies between calculated ET and that derived by basin water balance indicate seasonal and interannual variations in model parameters. The monthly actual ET variations during the period from 1960 to 2008 are investigated by the calibrated model and then are used to derive groundwater storage change. The estimated actual ET is positively correlated with precipitation, and the general higher ET than precipitation indicates the contributions of groundwater irrigation to the total water supply. The long term decreasing trend in the actual ET can be explained by declining in precipitation, sunshine duration and wind speed. Over the past ~50 years, the calculated average annual water storage change, represented by the difference between actual ET and precipitation, was approximately 36 mm, or 4.8 km3; and the cumulative groundwater storage depletion was approximately 1700 mm, or 220 km3 in the NCP. The significantly groundwater storage depletion conversely affects the seasonal and interannual variations of ET. Irrigation especially during spring cause a marked increase in seasonal ET, whereas the rapid increasing of agricultural coverage over the NCP reduces the annual ET and is the primary control factor of the strong linear relationship between actual and potential ET. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
We measured the fluxes of sensible and latent heat between a low‐land dipterocarp forest in Peninsular Malaysia and the atmosphere. No clear seasonal or interannual changes in latent heat flux were found from 2003 to 2005, while sensible heat flux sometimes fluctuated depending on the fluctuation of incoming radiation between wet and dry seasons. The evapotranspiration rates averaged for the period between 2003 and 2005 were 2·77 and 3·61 mm day?1 using eddy covariance data without and with an energy balance correction, respectively. Average precipitation was 4·74 mm day?1. Midday surface conductance decreased with an increasing atmospheric water vapour pressure deficit and thus restricted the excess water loss on sunny days in the dry season. However, the relationship between the surface conductance and vapour pressure deficit did not significantly decline with an increase in volumetric soil water content even during a period of extremely low rainfall. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Evapotranspiration (ET) plays a crucial role in catchment water budgets, typically accounting for more than 50% of annual precipitation falling within temperate deciduous forests. Groundwater ET is a portion of total ET that occurs where plant roots extend to the capillary fringe above the phreatic surface or induce upward movement of water from the water table by hydraulic redistribution. Groundwater ET is spatially restricted to riparian zones or other areas where the groundwater is accessible to plants. Due to the difficulty in measuring groundwater ET, it is rarely incorporated explicitly into hydrological models. In this study, we calibrated Topographic Model (TOPMODEL) using a 14‐year hydrograph record and added a groundwater ET pathway to derive a new model, Groundwater Evapotranspiration TOPMODEL (GETTOP). We inspected groundwater elevations and stream flow hydrographs for evidence of groundwater ET, examined the relationship between groundwater ET and topography, and delineated the area where groundwater ET is likely to take place. The total groundwater ET flux was estimated using a hydrological model. Groundwater ET was larger where the topography was flat and the groundwater table was shallow, occurring within about 10% of the area in a headwater catchment and accounting for 6 to 18% of total annual ET. The addition of groundwater ET to GETTOP improved the simulation of stream discharge and more closely balanced the watershed water budget. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
L. Li  Q. Yu  Z. Su  C. van der Tol 《水文研究》2009,23(5):665-674
Estimation of evapotranspiration from a crop field is of great importance for detecting crop water status and proper irrigation scheduling. The Penman–Monteith equation is widely viewed as the best method to estimate evapotranspiration but it requires canopy resistance, which is very difficult to determine in practice. This paper presents a simple method simplified from the Penman–Monteith equation for estimating canopy temperature (Tc). The proposed method is a biophysically‐sound extended version of that proposed by Todorovic. The estimated canopy temperature is used to calculate sensible heat flux, and then latent heat flux is calculated as the residual of the surface energy balance. An eddy covariance (EC) system and an infrared thermometer (IRT) were installed in an irrigated winter wheat field on the North China Plain in 2004 and 2005, to measure Tc, and sensible and latent heat fluxes were used to test the modified Todorovic model (MTD). The results indicate that the original Todorovic model (TD) severely underestimates Tc and sensible heat flux, and hence severely overestimates the latent heat flux. However, the MTD model has good capability for estimating Tc, and gives acceptable results for latent heat flux at both half‐hourly and daily scales. The MTD model results also agreed well with the evapotranspiration calculated from the measured Tc. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Combining a six-term heat balance equation and a seasonal thermocline model, a new equation to calculate non- radiative fluxes of Lake Banyoles has been determined. Mean daily measurements of global solar radiation, downward longwave radiation, wind speed, air temperature and water surface temperature were used as input data and lake temperature as the calculated output data of the model. To calibrate performance of the new equation, calculated lake temperature was compared with measured lake temperature during both the mixing and the stratified period of the lake. The new coefficients in the wind function to calculate the non-radiative fluxes at the water surface were assumed to depend on the variability of the wind speed, the air temperature of the study area and the surface temperature of the lake. In addition, the results were used to estimate the heat balance of the air–water interface of Lake Banyoles over a period of two years. The processes that have been taken into account are shortwave and longwave radiation, back-radiation emitted by the lake, sensible and latent heat and throughflow.  相似文献   

16.
Two long term microclimate measurement stations with Bowen ratio capability have been used to study water cycling in a closed desert basin. Microclimate variables including the temperature and vapor pressure gradients were monitored continuously and were used to estimate the Bowen ratio, sensible and latent heat fluxes during 1986 and 1987. Despite having a water table that varied between the surface and 30 cm below the surface, the playa had little evaporation except after rainfall events. The very high osmotic pressure of the soil and salt crust caused most of the absorbed radiation to be partitioned to sensible heat. In contrast, along the margin the thin grass and brush cover transpired water freely, with the latent heat flux exceeding 60% of available energy for much of the season. The higher air temperatures above the playa raised potential evapotranspiration (ET) significantly higher than along the margin throughout the summer. The annual average actual ET of the playa was only 36% of the margin. During the drier summer period (May–October), this ratio decreased to < 28%. Immediately after a rainfall event, evaporation rates of the two sites were similar, but the playa rate was quickly reduced as the osmotic potential increased. During this study, the playa lost < 229 mm of subsurface water to evaporation annually, while > 638 mm were lost from the margin groundwater supply.

The 24-h solar and net radiation correlations were 0.80 and 0.94 for the playa and margin, respectively. The lower correlation for the playa resulted from the wide variation of albedo with surface moisture changes. The annual average albedo values for the playa and margin were 0.64 and 0.46, respectively.  相似文献   


17.
Land surface process modeling of high and cold area with vegetation cover has not yielded satisfactory results in previous applications. In this study, land surface energy budget is simulated using a land surface model for the A’rou meadow in the upper-reach area of the Heihe River Basin in the eastern Tibetan Plateau. The model performance is evaluated using the in-situ observations and remotely sensed data. Sensible and soil heat fluxes are overestimated while latent heat flux is underestimated when the default parameter setting is used. By analyzing physical and physiological processes and the sensitivities of key parameters, the inappropriate default setting of optimum growth and inhibition temperatures is identified as an important reason for the bias. The average daytime temperature during the period of fastest vegetation growth(June and July) is adopted as the optimum growth temperature, and the inhibition temperatures were adjusted using the same increment as the optimum temperature based on the temperature acclimation. These adjustments significantly reduced the biases in sensible, latent, and soil heat fluxes.  相似文献   

18.
The degree to which the hydrologic water balance in a snow-dominated headwater catchment is affected by annual climate variations is difficult to quantify, primarily due to uncertainties in measuring precipitation inputs and evapotranspiration (ET) losses. Over a recent three-year period, the snowpack in California's Sierra Nevada fluctuated from the lightest in recorded history (2015) to historically heaviest (2017), with a relatively average year in between (2016). This large dynamic range in climatic conditions presents a unique opportunity to investigate correlations between annual water availability and runoff in a snow-dominated catchment. Here, we estimate ET using a water balance approach where the water inputs to the system are spatially constrained using a combination of remote sensing, physically based modelling, and in-situ observations. For all 3 years of this study, the NASA Airborne Snow Observatory (ASO) combined periodic high-resolution snow depths from airborne Lidar with snow density estimates from an energy and mass balance model to produce spatial estimates of snow water equivalent over the Tuolumne headwater catchment at 50-m resolution. Using observed reservoir inflow at the basin outlet and the well-quantified snowmelt model results that benefit from periodic ASO snow depth updates, we estimate annual ET, runoff efficiency (RE), and the associated uncertainty across these three dissimilar water years. Throughout the study period, estimated annual ET magnitudes remained steady (222 mm in 2015, 151 mm in 2016, and 299 mm in 2017) relative to the large differences in basin input precipitation (547 mm in 2015, 1,060 mm in 2016, and 2,211 mm in 2017). These values compare well with independent satellite-derived ET estimates and previously published studies in this basin. Results reveal that ET in the Tuolumne does not scale linearly with the amount of available water to the basin, and that RE primarily depends on total annual snowfall proportion of precipitation.  相似文献   

19.
Evapotranspiration (ET) is an important expenditure in water and energy balances, especially on cold and high‐altitude land surfaces. Daily ET of the upper reach of the Shule River Basin was estimated using Landsat 5 TM data and the Surface Energy Balance Algorithm for Land (SEBAL) model. Based on observations made at the Suli station, the algorithms of land surface temperature and soil heat flux in SEBAL were modified. Land surface temperature was retrieved and compared with ground truth via three methods: the radiative transfer equation method, the mono‐window algorithm, and the single‐channel method. We selected the best of these methods, mono‐window algorithm, for estimating ET. The average error of daily ET estimated by the modified SEBAL model and measured by the eddy covariance system was 16.4%, with a root‐mean‐square error of 0.52 mm d?1. The estimated ET means were 3.09, 2.48, and 1.48 mm d?1 on June 9 (DOY 160), June 25 (DOY 176), and July 27 (DOY 208) of the year 2010, respectively. The average estimated ET on the glacier surface of all days was more than 3 mm d?1, a measurement that is difficult to capture in‐situ and has rarely been reported. This study will improve the understanding of water balance in cold, high‐altitude regions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Information about seasonal crop water consumption is useful to develop the appropriate irrigation scheme. Measurements of energy balance components using the Bowen ratio method were made for a complete growing season at a vineyard in the arid region of northwest China. Vine in the experiment was furrow‐irrigated using a trellis system. The measured evapotranspiration was compared with estimates using the soil water balance method. It is shown that the Bowen ratio method provided accurate estimates of evapotranspiration from the vineyard and this requires that the Bowen ratio system is appropriately installed. The energy balance components showed typical diurnal pattern with peaks that occurred around the midday, except for the ground heat flux which delayed its peak by 2–3 h. The sensible heat flux was greater than the latent heat flux and followed the net radiation closely. The ratio of the latent heat flux to net radiation was low in the early growing season and increased over time. Under the limited irrigation experienced in the vineyard, the latent heat flux was controlled by available soil moisture and the total evapotranspiration in the growing season was 253 mm. The seasonal progression of the crop coefficient is similar to that reported in the literature, with the maximum occurring during the month of September. The crop coefficient can be estimated as a non‐linear function of day of year (DOY) and used to estimate evapotranspiration from vineyards in the region. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号