首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
新疆水文水资源变化及对区域气候变化的响应   总被引:6,自引:1,他引:5  
Based on the surface runoff, temperature and precipitation data over the last 50 years from eight representative rivers in Xinjiang, using Mann-Kendall trend and jump detection method, the paper investigated the long-term trend and jump point of time series, the surface runoff, mean annual temperature and annual precipitation. Meanwhile, the paper analyzed the relationship between runoff and temperature and precipitation, and the flood frequency and peak flow. Results showed that climate of all parts of Xinjiang conformably has experienced an increase in temperature and precipitation since the mid-1980s. Northern Xinjiang was the area that changed most significantly followed by southern and eastern Xinjiang. Affected by temperature and precipitation variation, river runoff had changed both inter-annually and intra-annually. The surface runoff of most rivers has increased significantly since the early 1990s, and some of them have even witnessed the earlier spring floods, later summer floods and increasing flood peaks. The variation characteristics were closely related with the replenishment types of rivers. Flood frequency and peak flow increased all over Xinjiang. Climate warming has had an effect on the regional hydrological cycle.  相似文献   

2.
Based on the surface runoff, temperature and precipitation data over the last 50 years from eight representative rivers in Xinjiang, using Mann-Kendall trend and jump detection method, the paper investigated the long-term trend and jump point of time series, the surface runoff, mean annual temperature and annual precipitation. Meanwhile, the paper analyzed the relationship between runoff and temperature and precipitation, and the flood frequency and peak flow. Results showed that climate of all parts of Xinjiang conformably has experienced an increase in temperature and precipitation since the mid-1980s. Northern Xinjiang was the area that changed most significantly followed by southern and eastern Xinjiang. Affected by temperature and precipitation variation, river runoff had changed both inter- annually and intra-annually. The surface runoff of most rivers has increased significantly since the early 1990s, and some of them have even witnessed the earlier spring floods, later summer floods and increasing flood peaks. The variation characteristics were closely related with the replenishment types of rivers. Flood frequency and peak flow increased all over Xinjiang. Climate warming has had an effect on the regional hydrological cycle.  相似文献   

3.
 中亚咸海流域地处全球气候变化的敏感中心,生态环境脆弱、水资源紧缺,过去百年来中亚咸海流域气候、人类活动、生态环境均经历了较为显著的变化,分析中亚咸海流域气候-水-生态-人类活动的关系,对自然与人文相近的新疆可持续发展具有重要的借鉴意义。以最新收集的资料为基础,对比研究近50 a来新疆及近80 a来中亚咸海流域的气温、降水和主要河流的径流变化情况,结合二者水资源开发利用的演变历程,分析气候变化与人类活动对研究区生态环境与持续发展的影响,最后借鉴中亚咸海流域气候变化、人类活动、生态环境的综合关系,讨论气候变化下新疆水资源开发利用的适应性对策。结果表明:近80 a来,新疆与中亚咸海流域气候呈现较为一致的变暖趋势,尤其是20世纪80年代以来,二者绝大部分地区气候呈现“暖干”向“暖湿”转型迹象,河川径流也有不同程度的增加,但由于人类活动规模与强度的迅速、持续增强,研究区生态环境呈现尚未得到有效遏制的恶化趋势。立足于有利的气候时期,强化水资源开发利用管理,提高水资源利用效率和效益,加快关键水源工程建设,完善水资源配置网络体系的建设,是未来一段时期内应对气候变化下新疆水资源开发利用的主要适应性对策。  相似文献   

4.
气候变化情景下中国自然生态系统脆弱性研究   总被引:3,自引:2,他引:3  
赵东升  吴绍洪 《地理学报》2013,68(5):602-610
本研究以动态植被模型LPJ 为主要工具,以区域气候模式工具PRECIS 产生的A2、B2和A1B情景气候数据为输入,模拟了未来气候变化下中国自然生态系统的变化状况,应用脆弱性评价模型,评估中国自然生态系统响应未来气候变化的脆弱性。结果表明:未来气候变化情景下中国东部地区脆弱程度呈上升趋势,西部地区呈下降趋势,但总体上,中国自然生态系统的脆弱性格局没有大的变化,仍呈现西高东低、北高南低的特点。受气候变化影响严重的地区是东北和华北地区,而青藏高原区南部和西北干旱区受气候变化影响,脆弱程度明显减轻。气候变化情景下的近期气候变化对我国生态系统的影响不大,但中、远期气候变化对生态系统的负面影响较大,特别是在自然条件相对较好的东部地区,脆弱区面积增加较多。  相似文献   

5.
农户生计对气候变化的恢复力研究综述   总被引:2,自引:0,他引:2  
熊思鸿  阎建忠  吴雅 《地理研究》2020,39(8):1934-1946
随着气候变化对自然生态环境和社会经济可持续发展影响的不断加剧,恢复力逐渐成为应对气候变化的一种新理念。首先梳理了不同领域恢复力概念,进而阐述了农户生计对气候变化的恢复力的科学内涵及研究框架。然后重点分析了农户生计对气候变化的恢复力在资本、政府机构、自组织能力和学习能力四方面的具体表现。最后从定性和定量两方面归纳了生计恢复力的度量方法。定性评价方法主要包括农户问卷调查、关键线人访谈、重点小组讨论、生计轨迹方法和案例分析等,定量评价方法包括指标替代法、结构动力学分析法、贝叶斯网络模型法、基准线对比法等。未来研究应注重完善农户生计对气候变化的恢复力评价方法、加强农户生计对气候变化的恢复力动态研究并且开展区域间农户生计对气候变化的恢复力对比研究。  相似文献   

6.
The Arctic climate is changing, carrying wide-ranging implications for indigenous and non-indigenous inhabitants, businesses, industry and government across the circumpolar region. The latest scientific assessments indicate that change is happening faster than previously thought, and that the Arctic will continue to experience dramatic climate change in the future. This special edition of Polar Research brings together nine papers on climate change impacts, adaptation and vulnerability in the Arctic, providing important insights on the nature of the risks and opportunities posed by climate change in the circumpolar region, highlighting opportunities for policy response and providing insights on how to conduct effective climate change research with Arctic communities.  相似文献   

7.
Kate Manzo 《Area》2010,42(1):96-107
This paper explores the iconography of climate change in contemporary climate action campaigns in the UK. I aim to show how sample images are simultaneously scientific denotations of global warming and cultural connotations of danger and vulnerability. I further demonstrate that while similar images are associated with different agendas and geographical visions, they attach to a shared discourse of vulnerability that has Western (colonial) roots. The paper concludes with an overview of possible ways for climate action campaigns to effectively convey their political messages without recycling colonial visions of the world.  相似文献   

8.
长江源区地表水资源对气候变化的响应及趋势预测(英文)   总被引:2,自引:0,他引:2  
In this paper,variations of surface water flow and its climatic causes in China are analyzed using hydrological and meteorological observational data,as well as the impact data set(version 2.0) published by the National Climate Center in November 2009.The results indicate that surface water resources showed an increasing trend in the source region of the Yangtze River over the past 51 years,especially after 2004.The trend was very clearly shown,and there were quasi-periods of 9 years and 22 years,where the Tibetan Plateau heating field enhanced the effect,and the plateau monsoon entered a strong period.Precipitation notably increased,and glacier melt water increased due to climate change,all of which are the main climatic causes for increases in water resources in the source region.Based on global climate model prediction,in the SRESA1B climate change scenarios,water resources are likely to increase in this region for the next 20 years.  相似文献   

9.
Climate change is likely to increase the occurrence of floods and flashfloods that affect Santiago de Chile's drinking water supply system throughout the 21st century. A relationship between flashfloods in the Maipo River--Santiago's main raw water source, drainage area in the Maipo Alto Sub Basin and precipitation 48 hours previous to the event was found. Despite having legal guidelines to guarantee continuity and stability in water supply, Chilean law does not specify the maximum admissible magnitude of an event. A 12% drop of average monthly flow at Maipo en El Manzano Station was estimated for the 2035-2065 period due to climate change, meaning water suppliers would not be able to meet 90% monthly water supply security, required by Chilean law. Water suppliers would need to increase their current allotted quota of the Maipo River, from 24.5% to a percentage between 26% and 30% to comply. If the 0 °C isotherm keeps increasing its elevation through the 21st century, more intense floods could occur because of additional drainage area granted by the elevation of the snow line, even if precipitation does not suffer a significant change. In order to withstand a five day turbidity event, 2 m 3 /s of groundwater, or any non river source, should be temporarily incorporated to the emergency drinking water production.  相似文献   

10.
To reveal the changing trend and annual distribution of the surface water hydrology and the local climate in the Bayanbuluk alpine-cold wetlands in the past 50 years, we used temperature, precipitation, different rank precipitation days, evaporation, water vapor pressure, relative humidity, dust storm days and snow depth to analyze their temporal variations. We conclude that there were no distinct changes in annual mean temperature, and no obvious changes in the maximum or minimum temperatures. Precipitation in warm season was the main water source in the wetlands of the study area and accounted for 92.0% of the annual total. Precipitation dropped to the lowest in the mid-1980s in the past 50 years and then increased gradually. The runoff of the Kaidu River has increased since 1987 which has a good linear response to the annual precipitation and mean temperature in Bayanbuluk alpine-cold wetland. Climate change also affected ecosystems in this area due to its direct relations to the surface water environment.  相似文献   

11.
灌溉管理方式的转变及其对作物用水影响的实证   总被引:2,自引:0,他引:2  
采用三年的面板数据实证研究了我国黄河流域灌区灌溉管理方式的转变及其对作物用水的影响。结果表明:2001年以后,黄河流域灌区灌溉管理改革的推进速度进一步加快,而且用水协会转变的速度超过承包管理,成为改革的主导方式。在一些村中,用水协会或承包管理也可能又返回到原来的集体管理。最后,定量分析结果显示,在用水协会转变初期,作物...  相似文献   

12.
开都河流域气候变化对地表水的影响   总被引:4,自引:0,他引:4  
1IntroductionWetlands, forests and oceans are the three main ecosystems with the highest ecological values in the world. According to the data of United Nations Environment Programme in 2002, the annual production value of the wetland ecosystems per hecta…  相似文献   

13.
黑河流域气候变化对水资源的影响   总被引:3,自引:1,他引:3  
1IntroductionThe climate conditions of temperature and precipitation are of primary importance for arid region and a change of climate in the direction to warmer or colder, wetter or drier would have large water resources, biological and socio-economic consequences (Raino Heino, 1994; Guido V etal., 2001).Since last century, there has been a warming trend for global climate with greenhouse gases such as CO2 continually increasing. The trend got intensified particularly in the late 20th centu…  相似文献   

14.
水分利用效率(Water use efficiency,WUE)是研究陆地碳水循环耦合的一种常用度量指标。基于MODIS的总初级生产力(GPP)和蒸散发(ET)数据,通过Slope趋势分析和敏感性分析等方法,研究了中亚WUE的时空变化规律及其对气候因子与干旱的动态响应。结果表明:(1)2000-2018年,中亚年均WUE随着生境湿润程度的增加而升高(生长期规律与此相反),其中湿地WUE最高(1.820±0.10 g C·mm-1·m-2),而灌丛WUE最低(1.330±0.18 g C·mm-1·m-2)。(2)中亚WUE呈略微下降趋势,每年下降速率为0.016 g C·mm-1·m-2,年均WUE的显著下降区域大于上升区域。WUE对年降水和年气温的敏感性均表现为正值区大于负值区且均存在阈值效应,降水敏感性阈值介于250~300 mm(低值点)和500~550 mm(高值点),温度阈值介于3~6℃(高值点)和9~12℃(低值点),且εNDV(I WUE对NDVI敏感性系数)与降水变化呈正相关关系,与气温变化呈负相关关系。(3)通过WUE与标准化降水指数(SPEI)的相关性比较,发现WUE受干旱程度影响由大到小依次为灌丛、作物、森林、草原和湿地,且不同植被类型下WUE随着干旱程度的增加而升高。  相似文献   

15.
Studies indicate that the climate has experienced a dramatic change in the Heihe River Basin with scope of temperature rise reaching 0.5-1.1oC in the 1990s compared to the mean value of the period 1960-1990, precipitation increased 18.5 mm in the 1990s compared to the 1950s, and 6.5 mm in the 1990s compared to the mean value of the period 1960-1990, water resources decreased 2.6×108 m3 in the 1990s compared to the 1950s, and 0.4×108 m3 in the 1990s compared to the mean value of the period 1960-1990. These changes have exerted a greater effect on the local environment and socio-economy, and also made the condition worsening in water resources utilizations in the Heihe Rver Basin.  相似文献   

16.
This article assesses the vulnerability to climatic and socioeconomic stresses in the Reef Islands, Solomon Islands, an atoll island group in the Southwest Pacific. Climate change and the associated sea-level rise are often seen as the most pressing challenges to atoll communities, yet this study aims at critically re-assessing this view by placing climate in the context of a range of other internal and external stressors affecting local livelihoods, including population growth, inadequate land use practices, and lack of economic potential, as well as external factors such as poorly developed infrastructure, economic marginalization and weak governance of Solomon Islands. Findings suggest that some of these non-climatic stresses are currently – and in the short term – more important determinants of local vulnerability than climate change and sea-level rise. Certainly, these stresses are likely to be exacerbated by different elements of climate change in the short, medium and long term, but generally speaking climate change does not appear to be a major driver of the current changes in the islands. On the basis of these observations, the possible adaptation options, relevant to different time scales, are discussed.  相似文献   

17.
Land degradation and climate change in South Africa   总被引:2,自引:0,他引:2  
This paper considers the potential impact of future climate change on the nature and extent of land degradation in South Africa. The basis of the assessment is the comprehensive review published by the Department of Environmental Affairs and Tourism (DEA&T) as a contribution to the South African effort in respect of the United Nations Convention to Combat Desertification. The DEA&T report is founded on information collated from 34 workshops, one in each of the agricultural regions of South Africa, involving some 453 participants consisting mainly of agricultural extension officers and soil conservation technicians. This analysis reveals that land degradation is underpinned by poverty and its structural roots in colonial and apartheid political planning. Nevertheless, future climate change represents a key challenge to the developing economies of countries like South Africa. Regionally downscaled models predicting the nature and degree of rainfall changes in the future are used to assess the possible impact of future change on the South African land degradation situation. It is concluded that the most severely degraded areas of the country, including large areas of the former 'homeland' states, are likely to become even more susceptible under predicted climate change scenarios.  相似文献   

18.
Ba  Wulong  Du  Pengfei  Liu  Tie  Bao  Anming  Chen  Xi  Liu  Jiao  Qin  Chengxin 《地理学报(英文版)》2020,30(1):164-176

In the context of climate change and over-exploitation of water resources, water shortage and water pollution in arid regions have become major constraints to local sustainable development. In this study, we established a Soil and Water Assessment Tool (SWAT) model for simulating non-point source (NPS) pollution in the irrigation area of the lower reaches of the Kaidu River Basin, based on spatial and attribute data (2010–2014). Four climate change scenarios (2040–2044) and two agricultural management scenarios were input into the SWAT model to quantify the effects of climate change and agricultural management on solvents and solutes of pollutants in the study area. The simulation results show that compared to the reference period (2010–2014), with a decline in streamflow from the Kaidu River, the average annual irrigation water consumption is expected to decrease by 3.84x108 m3 or 8.87% during the period of 2040–2044. Meanwhile, the average annual total nitrogen (TN) and total phosphorus (TP) in agricultural drainage canals will also increase by 10.50% and 30.06%, respectively. Through the implementation of agricultural management measures, the TN and TP in farmland drainage can be reduced by 14.49% and 16.03%, respectively, reaching 661.56 t and 12.99 t, accordingly, and the increasing water efficiency can save irrigation water consumption by 4.41 x108 m3 or 4.77%. The results indicate that although the water environment in the irrigation area in the lower reaches of the Kaidu River Basin is deteriorating, the situation can be improved by implementing appropriate agricultural production methods. The quantitative analysis results of NPS pollutants in the irrigation area under different scenarios provide a scientific basis for water environmental management in the Kaidu River Basin.

  相似文献   

19.
过去50年气候变化下中国潜在植被NPP的脆弱性评价   总被引:3,自引:1,他引:3  
借助动态植被模型IBIS,首先模拟了过去50年(1961-2010年)气候变化下中国潜在植被NPP的动态变化,然后采用IPCC第五次评估报告选定的标准气候态时段(1986-2005年)平均气候状态作为“标准年气候”,并将该气候条件下的潜在植被NPP作为评价基准。通过与基准进行比较,计算每一年潜在植被NPP的波动情况,进而评价该年的气候条件是否使潜在植被“不适应”以及“不适应”的程度,最后根据过去50年的“不适应”次数和程度综合判断气候变化下潜在植被NPP的脆弱性。评价结果显示:在过去50年的气候变化下,天山以南的暖温带荒漠生态系统、北方温带草原生态系统以及青藏高原西部的高寒草原生态系统更容易受到气候变化的不利影响,NPP呈现出较高的脆弱性;而大部分以森林为主的生态系统则不容易受到气候变化的影响,NPP脆弱性较低,其中以常绿阔叶林和针叶林为主的生态系统NPP脆弱性更低。此外,天山以北的温带荒漠生态系统以及青藏高原中部和东部的高寒草原草甸生态系统NPP也呈现出较低的脆弱性。  相似文献   

20.
利用Penman-Monteith公式和干燥度指数公式,计算并分析了青藏高原65个气象站1972-2011年间记录的气候变化趋势,同时在总结国内外有关气候变化对青藏高原水环境各要素影响研究的基础上,通过简单线性相关统计方法,分析了研究区域气候变化与水环境变化的相关性。结果表明:(1)青藏高原整体升温显著,降水显著增加,最大可能蒸散(ET0)显著降低,暖湿化趋势显著;高原北部和西部降水显著增加、ET0显著降低、干燥度指数显著下降,东部和南部ET0显著降低、干燥度指数显著下降;(2)受升温影响,青藏高原的冰川消融,尤以东部地区变化显著;湖泊因其补给条件不同而分别呈现出扩张、萎缩和基本稳定3种状态,总体上,高原西部的湖泊以扩张为主,东部的湖泊基本稳定,而萎缩的湖泊分布较为分散。水环境的改变对于高原区水循环过程及生态系统都将产生重要影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号