首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in oceanic O–Sr isotopic compositions and global cooling beginning in the Eocene are considered to have been caused by the uplift of the Tibetan Plateau. The specific timing and uplift mechanism, however, have long been subjects of debate. We investigated the Duogecuoren lavas of the central-western Qiangtang Block, which form the largest outcrops among Cenozoic lavas in northern-central Tibet and have widely been considered as shoshonitic. Our study demonstrates, however, that most of these lavas are high-K calc-alkaline andesites, dacites and rhyolites. Moreover, they are characterized by high Sr (367–2472 ppm) and Al2O3 (14.55–16.86 wt.%) and low Y (3.05–16.9 ppm) and Yb (0.31–1.48 ppm) contents and high La/Yb (27–100) and Sr/Y (48–240) ratios, similar to adakitic rocks derived by partial melting of an eclogitic source. They can be further classified as either peraluminous and metaluminous subtypes. The peraluminous rocks have relatively high SiO2 (> 66 wt.%) contents, and low MgO (< 1.0 wt.%), Cr (4.94–23.3 ppm) and Ni (2.33–17.0 ppm) contents and Mg# (20–50) values, while the metaluminous rocks exhibit relatively low SiO2 (55–69 wt.%) contents, and high MgO (1.41–6.34), Cr (25.7–383 ppm), Ni (14.13–183 ppm) and Mg# (46–69) values, similar to magnesian andesites. 40Ar/39Ar and SHRIMP zircon U–Pb dating reveal that both peraluminous and metaluminous adakitic rocks erupted in the Eocene (46–38 Ma). Paleocene–Early Miocene thrust faults and associated syn-contractional basin deposits in the Qiangtang Block suggest that this region was undergoing crustal shortening within a continent during the Eocene. The low εNd (− 2.81 to − 6.91) and high 87Sr/86Sr (0.7057–0.7097), Th (11.2–32.3 ppm) and Th/La (0.23–0.88) values in the Duogecuoren adakitic rocks further indicate that they were not derived by partial melting of subducted oceanic crust. Taking into account tectonic and geophysical data and the compositions of xenoliths in Cenozoic lava in northern-central Tibet, we suggest that the peraluminous adakitic rocks were most probably derived by partial melting of subducted sediment-dominated continent of the Songpan-Ganzi Block along the Jinsha suture to the north at a relatively shallow position (the hornblende + garnet stability field), but the metaluminous adakitic rocks likely originated from the interaction between peraluminous adakitic melts generated at greater depths (the garnet + rutile stability field) and mantle. Because the Duogecuoren adakitic rocks must have originated from a garnet-bearing (namely, eclogite facies) source, Eocene continental subduction along the Jinsha suture caused the thickening of the Qiangtang crust. Given that crustal thickening generally equates with elevation, the uplift of the Central Tibetan Plateau probably began as early as 45–38 Ma, which provides important evidence for tectonically driven models of oceanic O–Sr isotope evolution during global cooling and Asian continental aridification beginning in the Eocene.  相似文献   

2.
Many of the Yanshannian intermediate-acid intrusive rocks related to Cu-Au mineralization in the Eastern Yangtze Block are characterized by high Al2O3, Sr contents, while low in Y, Yb contents, thus with high Sr/Y, and La/Yb ratios, and variational isotope signatures in particular, e.g. εNd(t) = ?11.92–1.96, (143Nd/144Nd)i = 0.5120–0.5125, TDM = 0.70–1.71 Ga, (87Sr/86Sr)i = 0.7043 –0.7076. The geochemical characteristics of these rocks suggest that: (1) these rocks are geochemically similar to adakite, which might have been stemmed from the partial melting of thickened basaltic lower crust due to basalt underplating; and (2) the high pressure (1.2–4.0 GPa) and high temperature (850–1150°C) surroundings of the lower crust favor both the fluid and adakite-like magma to generation. Not only can the adakite-like magma carry abundant fluid and Cu-Au ore-froming materials, but also can it bring them to the shallow part with ease and contributes to the Cu-Au mineralization.  相似文献   

3.
The Yongchun pluton is a Late Cretaceous adakitic intrusion in South Fujian Province, Southeast China, with associated metal mineralization. An understanding of the Yongchun pluton is helpful in tectono‐magmatic evolutionary processes, and is important in explaining the origin of related porphyry‐type deposits. Zircons from three samples of the pluton were analyzed by laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS), yielding U–Pb ages of 99.50 ±0.87 Ma, 97.74 ±0.59 Ma, and 99.65 ±0.92 Ma. These ages are similar to those of the Sifang, Luoboling, and Sukeng plutons, all of which are related to Cu–Pb–Zn–Mo mineralization within the study area. The Yongchun pluton comprises high‐potassium, calc‐alkaline, metaluminous rocks, with average A/CNK values of 0.91, 87Sr/86Sr ratios of 0.705 51 to 0.706 83, εNd(t) values of ?4.63 to ?5.90, and two‐stage Nd model (T2DM) ages of 1.49–1.39 Ga, indicating the magmas were generated by partial melting of Mesoproterozoic continental crust mixed with mantle‐derived magmas. The pluton has geochemical characteristics typical of adakites, such as a high Sr content (average 553 ppm), and low Y (average 15.2 ppm) and Yb (average 1.61 ppm) contents, indicating that the parental magma was formed under high‐pressure conditions. The magmatism was associated with thickening of the lower crust during a change in subduction angle and convergence rate of the paleo‐Pacific Plate at 100 Ma. The compression was limited to South Fujian Province.  相似文献   

4.
Granulite facies metamorphism and crustal anatexis exist in the East Cathaysia Block, the exact timing of granulite facies partial melting and its link with orogenesis have not been well constrained. In this study, we carried out petrography, whole rock geochemistry, and zircon U–Pb dating, trace elements and Hf isotopes analyses on Dazhe gneissic granite and banded migmatite from the Badu Group in southwest Zhejiang province in the East Cathaysia Block. The melts were produced through the dehydration of biotite, such as biotite + quartz + plagioclase = orthopyroxene + K-feldspar + melt and biotite + quartz + plagioclase + sillimanite = garnet + K-feldspar + melt. Zircons from these rocks show clear core-rim structure and yield rim and core concordant ages at 233 Ma and 1.83 Ga, respectively. The zircon rims suggesting the melts and the cores are suggesting the protolith of Dazhe gneissic granite and banded migmatite were crystallized from an evolving magma. The zircon cores and rims have negative εHf(t) = −2.2 ~ −6.3 and εHf(t) = −22.8 ~ −32.4, and they give suggestion of the presence of Neoarchean components. Although the major-element compositions of the gneissic granite and banded migmatite are slightly different, the trace-element spider diagram and REE pattern show they are similar, and then we find that the protoliths are A-type granodiorite/diorite. Combined with the published data, we suggested that the Dazhe gneissic granite and banded migmatite were formed through granulite facies partial melting at 233 Ma, which was promoted by crustal shortening and thickening of the collision orogeny between East Cathaysia Block and an unknown terrane with a NNE trend structure line. The protoliths (granite or granodiorite) of Dazhe gneissic granite and banded migmatite crystallized at 1.83 Ga by reworking of the Neoarchean components of East Cathaysia Block. The Paleoproterozoic (1912–1819 Ma) collisional orogeny and the later intraplate rifting stage are corresponding to the aggregation and breakup of the Columbia supercontinent.  相似文献   

5.
Precambrian basement rocks have been affected by Caledonian thermal metamorphism. Caledonian‐aged zircon grains from Precambrian basement rocks may have resulted from thermal metamorphism. However, Hercynian ages are rarely recorded. Zircon U–Pb Sensitive High Resolution Ion Microprobe (SHRIMP) dating reveals that zircon ages from the Huyan, Lingdou, and Pengkou granitic plutons can be divided into two groups: one group with ages of 398.9 ±5.3 Ma, 399 ±5 Ma, and 410.2 ±5.4 Ma; and a second group with ages of 354 ±11 Ma, 364.6 ±6.7 Ma, and 368 ±14 Ma. The group of zircon U–Pb ages dated at 410–400 Ma represent Caledonian magmatism, whereas the 368–354 Ma ages represent the age of deformation, which produced gneissosity. The three plutons share geochemical characteristics with S‐type granites and belong to the high‐K calc‐alkaline series of peraluminous rocks. They have (87Sr/86Sr)i ratios of 0.710 45–0.724 68 and εNd(t) values of ?7.33 to ?10.74, with two‐stage Nd model ages (TDM2) ranging from 1.84 Ga to 2.10 Ga. Magmatic zircon εHf(t) values range from ?3.79 to ?8.44, and have TDMC ages of 1.65–1.93 Ga. The data suggest that these granites formed by partial melting of Paleoproterozoic to Mesoproterozoic continental crust. A collision occurred between the Wuyi and Minyue microcontinents within the Cathaysia Block and formed S‐type granite in the southwest Fujian province. The ca 360 Ma zircon U–Pb ages can represent a newly recognized period of deformation which coincided with the formation of the unified Cathaysia Block.  相似文献   

6.
Abundant dunite and harzbugite xenoliths are preserved in Early Cretaceous high-Mg# [63–67, where Mg# = molar 100 × Mg/(Mg + Fetot)] diorite intrusions from western Shandong in the North China Craton (NCC). Dunite and some harzburgite xenoliths typically preserve areas of orthopyroxenite (sometimes accompanied by phlogopite) either as veins or as zones surrounding chromite grains. Harzburgite is chiefly composed of olivine, orthopyroxene, minor clinopyroxene and chromian-spinel. High Mg#'s (averaging 91.4) and depletions in Al2O3 and CaO (averaging 0.52 wt.% and 0.29 wt.%, respectively) in harzburgite and dunite xenoliths suggest that they are residues formed by large degrees of polybaric melting. However, olivines and orthopyroxenes from dunite xenoliths spatially associated with orthopyroxenite display lower Mg#'s (i.e., 82–87 and 83–89, respectively), suggesting that an adakitic melt–peridotite reaction has taken place. This is consistent with the production of veined orthopyroxene or orthopyroxene + phlogopite in dunite and some harzburgite xenoliths in response to the introduction of adakitic melt into the previously depleted lithospheric mantle (i.e., harzburgite and dunite xenoliths). The presence of orthopyroxene in veins or as a zones surrounding chromite in peridotite xenoliths is thought to be representative of adakitic melt metasomatism. The dunite and harzbugite xenoliths are relatively rich in light rare earth elements (LREEs) and large ion lithophile elements (LILEs), poor in heavy rare earth elements (HREEs) and high field strength elements (HFSEs), and lack Eu anomalies on chondrite normalized trace element diagrams. The initial 87Sr/86Sr ratios and εNd(t) values for the xenoliths range from 0.7058 to 0.7212 and + 0.18 to ? 19.59, respectively. Taken together, these features, combined with the strong depletion in HFSE and the existence of Archean inherited zircons in the host rocks, suggest that the adakitic melt was derived from the partial melting of early Mesozoic delaminated lower continental crust. The interaction of the adakitic melt with peridotite is responsible for the high-Mg# character of the early Cretaceous diorites in western Shandong.  相似文献   

7.
Ar–Ar dating, major and trace element analyses, and Sr–Nd–Pb isotope results of two groups of Lower Cretaceous (erupted at 126 and 119 Ma, respectively) intermediate–felsic lava from the northeastern North China Block (NCB) suggest their derivation from melting of mixtures between the heterogeneous lower crust and underplated basalts. Both groups exhibit high‐K calc‐alkaline to shoshonitic affinities, characterized by light rare earth element (LREE) and large ion lithophile element (LILE) enrichment and variable high field strength element (HFSE, e.g. Nb, Ta and Ti) depletion, and moderately radiogenic Sr and unradiogenic Nd and Pb isotopic compositions. Compared with Group 2, Group 1 rocks have relatively higher K2O and Al2O3/(CaO + K2O + Na2O) in molar ratio, higher HFSE concentrations and lower Nb/Ta ratios, and higher Sr–Nd–Pb isotope ratios. Group 1 rocks were derived from a mixture of an enriched mantle‐derived magma and a lower crust that has developed radiogenic Sr and unradiogenic Nd and Pb isotopic compositions, whereas the Group 2 magmas were melts of another mixture between the same mantle‐derived component and another type of lower crust having even lower Sr, Nd, and Pb isotopic ratios. Shift in source region from Group 1 to Group 2 coincided with a change in melting conditions: hydrous melting of both the underplated basalt and the lower crust produced the earlier high‐Nb and low‐Nb/Ta melts with little or no residual Ti‐rich phases; while the younger low‐Nb and high‐Nb/Ta magmas were melted under a water‐deficient system, in which Ti‐rich phases were retained in the source. Generation of the two groups of intermediate–felsic volcanic rocks was genetically linked with the contemporaneous magma underplating event as a result of lithospheric thinning in the eastern NCB.  相似文献   

8.
This paper summarizes the geochronological, geochemical and zircon Hf isotopic data for Mesozoic granitoids within the Erguna Massif, NE China, and discusses the spatial-temporal variation of zircon Hf isotopic compositions, with the aim of constraining the accretion and reworking processes of continental crust within the Erguna Massif, and shedding light on the crustal evolution of the eastern segment of the Central Asian Orogenic Belt. Based on the zircon U-Pb dating results, the Mesozoic granitic magmatisms within the Erguna Massif can be subdivided into five stages: Early-Middle Triassic(249–237 Ma), Late Triassic(229–201 Ma), Early-Middle Jurassic(199–171 Ma), Late Jurassic(155–149 Ma), and Early Cretaceous(145–125 Ma).The Triassic to Early-Middle Jurassic granitoids are mainly I-type granites and minor adakitic rocks, whereas the Late Jurassic to Early Cretaceous granitoids are mainly A-type granites. This change in magmatism is consistent with the southward subduction of the Mongol-Okhotsk oceanic plate and subsequent collision and crustal thickening, followed by post-collision extension. Zircon Hf isotopic data indicate that crustal accretion of the Erguna Massif occurred in the Mesoproterozoic and Neoproterozoic. ZirconεHf(t) values increase gradually over time, whereas two-stage model(TDM2) ages decrease throughout the Mesozoic. The latter result indicates a change in the source of granitic magmas from the melting of ancient crust to more juvenile crust. Zircon εHf(t)values also exhibit spatial variations, with values decreasing northwards, whereas TDM2 ages increase. This pattern suggests that,moving from south to north, there is an increasing component of ancient crustal material within the lower continental crust of the Erguna Massif. Even if at the same latitude, the zircon Hf isotopic compositions are also inconsistent. These results reveal lateral and vertical heterogeneities in the lower continental crust of the Erguna Massif during the Mesozoic, which we use as the basis of a structural and tectonic model for this region.  相似文献   

9.
This paper reports geochemical and Pb-Sr-Nd isotopic compositions of the Indosinian Yangba (215 Ma),Nanyili (225 Ma) and Mopi granitoids from the Bikou block of the northwestern margin of the Yangtze plate. These granitoids are enriched in Al (Al2O3:14.56%―16.48%) and Sr (352 μg/g―1047 μg/g),and depleted in Y (<16 μg/g) and HREE (e.g. Yb<1.61 μg/g),resulting in high Sr/Y (36.3―150) and (La/Yb)N (7.8―36.3) ratios and strongly fractionationed REE patterns. The Indosinian granotoids show initial Sr isotopic ratios (ISr) from 0.70419 to 70752,εNd(t) values from-3.1 to -8.5,and initial Pb isotopic ratios 206Pb/204Pb=17.891-18.250,207Pb/204Pb=15.494-15.575,and 208Pb/204Pb=37.788-38.335. Their geochemi-cal signatures indicate that the granitoids are adakitic. However,they are distinct from some adakites,generated by partial melting of subducted oceanic slab and/or underplated basaltic lower crust,be-cause they have high K (K2O: 1.49%―3.84%) and evolved Nd isotopic compositions,with older Nd iso-topic model ages (TDM=1.06―1.83 Ga). Geochemical and Sr-Nd isotopic compositions suggest that the magmas of the Insoninian adakitic rocks in the Bikou block were derived from partial melting of thick-ened basaltic lower crust. Combined with regional analyses,a lithospheric delamination model after collision between the North China and South China plates can account for the Indosinian adakitic magma generation. On the other hand,based on the Pb-Sr-Nd isotopic probing to the magma sources of the adakitic rocks,it is suggested that there is an unexposed continent-type basement under the exposed Bikou Group volcanic rocks. This can constrain on the Bikou Group volcanic rocks not to be MORB-or OIB-type.  相似文献   

10.
Whole‐rock geochemical and Sr–Nd isotopic data are presented for late Miocene volcanic rocks associated with the Chah Zard epithermal Au–Ag deposit in the Urumieh‐Dokhtar Magmatic Arc (UDMA), Iran, to investigate the magma source, petrogenesis and the geodynamic evolution of the study area. The Chah Zard andesitic to rhyolitic volcanic rocks are characterized by significant Large Ion Lithophile Element (LILE) and Light Rare Earth Element (LREE) enrichment coupled with High Field Strength Element (HFSE) depletion. Our geochemical data indicate an adakitic‐like signature for the volcanic rocks (e.g. SiO2 > 62 wt%, Al2O3 > 15 wt%, MgO < 1.5 wt%, Sr/Y > 70, La/Yb > 35, Yb < 1 ppm, and Y < 18 ppm, and no significant Eu anomalies), distinguishing them from the other volcanic rocks of the UDMA. The Chah Zard volcanic rocks have similar Sr and Nd isotopic compositions; the 87Sr/86Sr(i) ratios range from 0.704 902 to 0.705 093 and the εNd(i) values are from +2.33 to +2.70. However, the rhyolite porphyry represents the final stage of magmatism in the area and has a relatively high 87Sr/86Sr ratio (0.705 811). Our data suggest that the andesitic magmas are from a heterogeneous source and likely to result from partial melting of a metasomatized mantle wedge associated with a mixture of subducted oceanic crust and sediment. These melts subsequently underwent fractional crystallization along with minor amounts of crustal assimilation. Our study is consistent with the model that the volcanic host rocks to epithermal gold mineralization in the UDMA are genetically related to late Miocene Neo‐Tethyan slab break‐off beneath Central Iran.  相似文献   

11.
Abstract Rb–Sr and Sm–Nd isochron ages were determined for whole rocks and mineral separates of hornblende‐gabbros and related metadiabases and quartz‐diorite from Shodoshima, Awashima and Kajishima islands in the Ryoke plutono‐metamorphic belt of the Setouchi area, Southwest Japan. The Rb–Sr and Sm–Nd whole‐rock‐mineral isochron ages for six samples range from 75 to 110 Ma and 200–220 Ma, respectively. The former ages are comparable with the Rb–Sr whole‐rock isochron ages reported from neighboring Ryoke granitic rocks and are thus due to thermal metamorphism caused by the granitic intrusions. On the contrary, the older ages suggest the time of formation of the gabbroic and related rocks. The initial 87Sr/86Sr and 143Nd/144Nd ratios of the gabbroic rocks (0.7070–0.7078 and 0.51217–0.51231 at 210 Ma, respectively) are comparable with those of neighboring late Cretaceous granites and lower crustal granulite xenoliths from Cenozoic andesites in this region. Because the gabbroic rocks are considered to be fragments of the lower crustal materials interlayered in the granulitic lower crust, their isotopic signature has been inherited from an enriched mantle source or, less likely, acquired through interaction with the lower crustal materials. The Sr and Nd isotopic and petrologic evidence leads to a plausible conclusion that the gabbroic rocks have formed as cumulates from hydrous mafic magmas of light rare earth element‐rich (Sm/Nd < 0.233) and enriched isotopic (?Sr > 0 and ?Nd < 0) signature, which possibly generated around 220–200 Ma by partial melting of an upper mantle. We further conclude that they are fragments of refractory material from the lower crust caught up as xenoblocks by granitic magmas, the latter having been generated by partial melting of granulitic lower crustal material around 100 Ma.  相似文献   

12.
Zircons from two samples of the Sukeng pluton in the southwest Fujian Province, China, were analyzed by LA–ICP–MS with the aim of determining the timing of formation. The zircons from the two samples yield similar U–Pb ages of 100.47 ± 0.42 and 102.46 ± 0.69 Ma, indicating that the Sufeng pluton is contemporaneous with the Sifang and Luoboling plutons, all of which are also related to Cu–Au–Pb–Zn–Mo mineralization within the study area. All three plutons have geochemical features of I‐type granites, are high‐ to mid‐K calc‐alkaline metaluminous rocks, and have average molar Al2O3/ (CaO+Na2O+K2O) values of 0.95, initial 87Sr/86Sr ratios of 0.70465–0.70841, εNd(t) values at 101 Ma from –1.72 to –7.26, and two‐stage Nd model ages (T2DM) from 1.16 to 1.60 Ga. Zircons within these plutons have εHf(t) values at 101 Ma from –3.5 to 6.25 and T2DM ages from 0.74 to 1.46 Ga, suggesting these I‐type granites formed from magmas generated by partial melting of Mesoproterozoic to Neoproterozoic continental crust that mixed with mantle‐derived magmas. The magmatism was associated with thickening of the lower crust caused by collisions between microcontinents in the Cathaysian Block, which were driven by Early Cretaceous subduction of the Pacific Plate.  相似文献   

13.
Abstract   Small-volume plutons of Early to Late Cretaceous ages are widely distributed in the Yamizo Mountains, central Japan. These plutons consist predominantly of granitoids, classified into hornblende gabbro, quartz diorite, hornblende–biotite granodiorite and coarse-grained biotite granite. The quartz diorite (52–64 wt% of SiO2) is characterized by a high Sr content (606–769 p.p.m.) associated with a low Y (13–27 p.p.m.) and heavy rare earth element content (Yb content of 1.19–2.13 p.p.m.). On the Sr/Y versus Y diagram, this rock type mainly plots in the adakite and Archean high-Al tonalite, trondhjemite and granodiorite (TTG) field. Together with its initial Sr isotopic ratios, which range from 0.7038 to 0.7046, these data suggest that quartz diorite originated as slab melts. However, geochemical calculations assuming either eclogite or garnet amphibolite as the source material do not support this suggestion. Instead, the chemical compositions of quartz diorite are better explained by the fractional crystallization of hornblende, plagioclase and biotite from a primitive, basaltic melt in a magma chamber. In this case, the formation of the associated hornblende gabbro can also be explained by the accumulation of hornblende and plagioclase. Adakitic rocks of Early Cretaceous ages have also been reported in the Tamba Belt of the inner zone of southwest Japan, located ca 500 km west of the Yamizo Mountains. These rocks can be correlated to the adakitic rocks in the Yamizo Mountains based on the geology, petrography, geochemistry and radiometric ages. Therefore, we propose the possibility that the Early Cretaceous adakitic rocks in the inner zone of southwest Japan were produced by fractional crystallization from basaltic arc magmas generated by a partial melting of metasomatized wedge mantle peridotite.  相似文献   

14.
Adakites are increasingly being recognized worldwide in a variety of tectonic settings. Models on the formation of this geochemically distinct class of volcanic rocks have evolved from partial melting of subducted young, hot oceanic slabs to magmatism resulting from oblique subduction, low‐angle or flat subduction, or even slab‐tearing. Some workers have also pointed to the partial melting of thickened crust to explain the generation of adakitic melts. Rare earth element ratios from adakites and adakitic rocks in the Philippines were used in this study to obtain approximations of the levels where they were generated. These were tied to available geophysical data that defines the crustal thickness of the areas where the samples were collected. High Sm/Yb and La/Yb ratios denote the involvement of amphiboles, and in some cases garnet, in the generation of adakites and adakitic magmas. The presence of amphibole and garnet as residual phases suggests high pressures corresponding to thicker crust (~30 to 45 km). Adakites and adakitic rocks formed through processes other than melting of subducted young oceanic crust would need ≥30 km to account for the heavy rare earth element signatures. If mantle fractionation is not the process involved, crustal thickness is critical to generate adakites and adakitic rocks.  相似文献   

15.
The strongly peraluminous granites (SPGs) of Eastern Nanling Range (ENR) are a characteristic of all bearing highly aluminous minerals, such as muscovite±AI-rich biotite±tourmaline±garnet, and lack of cordierite. In respect of petrography, geochemistry, Nd isotope, and single grain zircon U-Pb dating, the representative granite bodies of them are studied. The research shows that these granites were emplaced in two stages, namely 228-225 Ma BP and J2-3 159-156 Ma BP, belonging to Indosinian and early Yanshanian periods, respectively, and they have low εNd(t) values (-10.6--11.1), high A/CNK, Rb/Sr ratios and tDM values (1887-1817 Ma), and REE's tetrad effect (TE1,3=1.13-1.34). In comparison with related geology, petrology and chronology of granites in adjacent regions, it is suggested that Indosinian SPGs of ENR formed in the circumstance of post-collisional extension 20 Ma after the major collision of Indosinian Movement (258-243 Ma BP) in Indo-China Peninsula, and early Yanshanian SPGs formed in the  相似文献   

16.
Abstract The Ryoke Belt is one of the important terranes in the South‐west Japan Arc (SJA). It consists mainly of late Cretaceous granitoid rocks, meta‐sedimentary rocks (Jurassic accretionary complexes) and mafic rocks (gabbros, metadiabases; late Permian–early Jurassic). Initial ?Sr (+ 25– + 59) and ?Nd (? 2.1–?5.9) values of the metadiabases cannot be explained by crustal contamination but reflect the values of the source material. These values coincide with those of island arc basalt (IAB), active continental margin basalt (ACMB) and continental flood basalt (CFB). Spiderdiagrams and trace element chemistries of the metadiabases have CFB‐signature, rather than those of either IAB or ACMB. The Sr–Nd isotope data, trace element and rare earth element chemistries of the metadiabases indicate that they result from partial melting of continental‐type lithospheric mantle. Mafic granulite xenoliths in middle Miocene volcanic rocks distributed throughout the Ryoke Belt were probably derived from relatively deep crust. Their geochemical and Sr–Nd isotopic characteristics are similar to the metadiabases. This suggests that rocks, equivalent geochemically to the metadiabases, must be widely distributed at relatively deep crustal levels beneath a part of the Ryoke Belt. The geochemical and isotopic features of the metadiabases and mafic granulites from the Ryoke Belt are quite different from those of mafic rocks from other terranes in the SJA. These results imply that the Ryoke mafic rocks (metadiabase, mafic granulite) were not transported from other terranes by crustal movement but formed in situ. Sr–Nd isotopic features of late Cretaceous granitoid rocks occurring in the western part of the Japanese Islands are coincident with those of the Ryoke mafic rocks. Such an isotopic relation between these two rocks suggests that a continental‐type lithosphere is widely represented beneath the western part of the Japanese Islands.  相似文献   

17.
Many of the Yanshannian intermediate-acid intrusive rocks related to Cu-Au mineralization in the Eastern Yangtze Block are characterized by high Al2O3, Sr contents, while low in Y, Yb contents, thus with high Sr/Y, and La/Yb ratios, and variational isotope signatures in particular, e.g. εNd(t) = -11.92-1.96, (143Nd/144Nd)i = 0.5120-0.5125, TDM = 0.70-1.71 Ga,(87Sr/86Sr)i = 0.7043-0.7076. The geochemical characteristics of these rocks suggest that: (1) these rocks are geochemically similar to adakite, which might have been stemmed from the partial melting of thickened basaltic lower crust due to basalt underplating; and (2) the high pressure (1.2-4.0 GPa) and high temperature (850-1150℃) surroundings of the lower crust favor both the fluid and adakite-like magma to generation. Not only can the adakite-like magma carry abundant fluid and Cu-Au ore-froming materials, but also can it bring them to the shallow part with ease and contributes to the Cu-Au mineralization.  相似文献   

18.
The Hejiazhuang pluton is located in the South Qinling Tectonic Belt(SQTB)in the north side of the Mianxian-Lueyang Suture Zone,and consists dominantly of granodiorites.LA-ICP-MS zircon U-Pb dating and Lu-Hf isotopic analyses reveal that these granodiorites of the Hejiazhaung pluton emplaced at~248 Ma,and show a large variation in zirconεHf(t)values from4.8 to 8.8.These granodiorite samples are attributed to high-K to mid-K calc-alkaline series,and characterized by high SiO2(66.6%–70.0%),Al2O3(15.04%–16.10%)and Na2O(3.74%–4.33%)concentrations,with high Mg#(54.2–61.7).All samples have high Sr(627–751 ppm),Cr(55–373 ppm)and Ni(17.2–182 ppm),but low Y(5.42–8.41 ppm)and Yb(0.59–0.74 ppm)concentrations with high Sr/Y ratios(84.90–120.66).They also display highly fractionated REE patterns with(La/Yb)N ratios of 18.9–34.0 and positive Eu anomalies(δEu=1.10–2.22)in the chondrite-normalized REE patterns.In the primitive mantle normalized spidergrams,these samples exhibit enrichment in LILEs but depletion in Nb,Ta,P and Ti.These geochemical features indicate that the granodioritic magma of the Hejiazhuang pluton was derived from the partial melting of hybrid sources comprising the subducted oceanic slab and sediments,and the melts were polluted by the mantle wedge materials during their ascent.The emplacement ages and petrogenesis of the Hejiazhuang pluton prove that the initial subduction of the Mianlue oceanic crust occurred at~248 Ma ago,and the SQTB was still under subduction tectonic setting in the Early Triassic.  相似文献   

19.
In this study, new geochemical, zircon U–Pb, and Lu–Hf isotopic data are presented for volcanics from the Hadataolegai Formation of the central Great Xing'an Range (GXR) in Northeast China. These new data offer insights into the petrogenesis of the volcanics of the Hadataolegai Formation and the tectonic evolution of the Paleo–Asian Ocean (PAO) and Mongol–Okhotsk Ocean (MOO). These volcanics of the Hadataolegai Formation are divided into andesite‐trachyandesites and dacite‐trachydacites. Zircon U–Pb ages show that the volcanics of the Hadataolegai Formation erupted between 230 Ma and 228 Ma during the Late Triassic, which agrees with recently obtained data. The volcanic rocks in this study have low Y (9.9–21.1 ppm) and Yb (0.78–2.02 ppm) contents, high Sr (444–954 ppm) contents, and slight Eu anomalies (δEu = 0.82 to 0.94), similar to ‘adakite‐like’ rocks. The dacites were formed by fractional crystallization of coeval andesitic magmas. The zircons within the andesite and trachyandesite yield higher positive εHf(t) values (+6.3 to +12.0) and model ages (TDM2) between 860 Ma and 453 Ma, which indicates that the magmas were generated by a newly accreted continental crustal source. Moreover, some of the volcanics are relatively high in MgO contents. These characteristics indicate that the volcanic magmas were derived from the partial melting of delaminated lower crust and mixing with mantle materials. Combining these data with previous studies, we suggest that the magmatism in the central GXR was governed by extension due to the closure of the PAO and the back‐arc extension associated with the southward subduction of the MOO plate (western GXR, near the Erguna Block).  相似文献   

20.
High-resolution P wave tomography shows that the subducting Pacific slab is stagnant in the mantle transition zone and forms a big mantle wedge beneath eastern China. The Mg isotopic investigation of large numbers of mantle-derived volcanic rocks from eastern China has revealed that carbonates carried by the subducted slab have been recycled into the upper mantle and formed carbonated peridotite overlying the mantle transition zone, which becomes the sources of various basalts. These basalts display light Mg isotopic compositions(δ26 Mg = –0.60‰ to –0.30‰) and relatively low87 Sr/86 Sr ratios(0.70314–0.70564) with ages ranging from 106 Ma to Quaternary, suggesting that their mantle source had been hybridized by recycled magnesite with minor dolomite and their initial melting occurred at 300-360 km in depth. Therefore, the carbonate metasomatism of their mantle source should have occurred at the depth larger than 360 km, which means that the subducted slab should be stagnant in the mantle transition zone forming the big mantle wedge before 106 Ma. This timing supports the rollback model of subducting slab to form the big mantle wedge. Based on high P-T experiment results, when carbonated silicate melts produced by partial melting of carbonated peridotite was raising and reached the bottom(180–120 km in depth) of cratonic lithosphere in North China, the carbonated silicate melts should have 25–18 wt% CO2 contents, with lower Si O2 and Al2 O3 contents, and higher Ca O/Al2 O3 values, similar to those of nephelinites and basanites, and have higher εNdvalues(2 to 6). The carbonatited silicate melts migrated upward and metasomatized the overlying lithospheric mantle, resulting in carbonated peridotite in the bottom of continental lithosphere beneath eastern China. As the craton lithospheric geotherm intersects the solidus of carbonated peridotite at 130 km in depth, the carbonated peridotite in the bottom of cratonic lithosphere should be partially melted, thus its physical characters are similar to the asthenosphere and it could be easily replaced by convective mantle. The newly formed carbonated silicate melts will migrate upward and metasomatize the overlying lithospheric mantle. Similarly, such metasomatism and partial melting processes repeat, and as a result the cratonic lithosphere in North China would be thinning and the carbonated silicate partial melts will be transformed to high-Si O2 alkali basalts with lower εNdvalues(to-2). As the lithospheric thinning goes on,initial melting depth of carbonated peridotite must decrease from 130 km to close 70 km, because the craton geotherm changed to approach oceanic lithosphere geotherm along with lithospheric thinning of the North China craton. Consequently, the interaction between carbonated silicate melt and cratonic lithosphere is a possible mechanism for lithosphere thinning of the North China craton during the late Cretaceous and Cenozoic. Based on the age statistics of low δ26 Mg basalts in eastern China, the lithospheric thinning processes caused by carbonated metasomatism and partial melting in eastern China are limited in a timespan from 106 to25 Ma, but increased quickly after 25 Ma. Therefore, there are two peak times for the lithospheric thinning of the North China craton: the first peak in 135-115 Ma simultaneously with the cratonic destruction, and the second peak caused by interaction between carbonated silicate melt and lithosphere mainly after 25 Ma. The later decreased the lithospheric thickness to about70 km in the eastern part of North China craton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号