首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Song和Banner(2002,简称SB02)利用二维数值波浪水槽(Drimer和Agnon开发,并被Segre改进,简称DAS)研究了深水及中等水深下波群破碎,并依据波群内部能量调制和演变特性提出一个新的波浪破碎阈值.本文利用两个DAS改进模型对SB02的波浪破碎结果进行检验和比较,并研究底面斜坡坡度对SB02破碎判据的影响,其中第一个改进模型(简称MDAS1)修正了DAS中某些积分的计算错误,第二个改进模型(简称MDAS2)在自由表面上用三阶元取代原来的线性元.研究表明: MDAS1和DAS的结果非常一致;而MDAS2和MDAS1相比,波浪临界破碎时的造波板振幅、破碎时刻和局部能量极大值的最大平均变化率δmax都会发生变化,但MDAS2仍然符合SB02提出的破碎阈值.由MDAS1模拟中等水深下波群在坡度为1∶500、1∶300、1∶150和1∶100斜坡上的破碎结果表明:随着斜坡变陡,波群的局部能量极大值μ增大,δmax在临界非破碎情况下微弱变小,在临界破碎情况下急剧增大,SB02提出的破碎阈值在中等水深下坡度小于1∶100的斜坡上仍然有效.  相似文献   

2.
The concept of planetary wave breaking (McIntyre andPalmer, 1983; 1984) is critically reviewed. It is concluded that the wave breaking signature is not unique to any particular dynamic event in the stratosphere. Therefore, the classification of stratospheric transport events, such as wave breaking, groups fundamentally different events together. Better qualification of the wave breaking signature and a more solid theoretical basis of planetary wave breaking must be presented if the concept is to be of significant utility in describing stratospheric tracer transport.  相似文献   

3.
Testing dispersant effectiveness under conditions similar to that of the open environment is required for improvements in operational procedures and the formulation of regulatory guidelines. To this end, a novel wave tank facility was fabricated to study the dispersion of crude oil under regular non-breaking and irregular breaking wave conditions. This wave tank facility was designed for operation in a flow-through mode to simulate both wave- and current-driven hydrodynamic conditions. We report here an evaluation of the effectiveness of chemical dispersants (Corexit® EC9500A and SPC 1000) on two crude oils (Medium South American [MESA] and Alaska North Slope [ANS]) under two different wave conditions (regular non-breaking and plunging breaking waves) in this wave tank. The dispersant effectiveness was assessed by measuring the water column oil concentration and dispersed oil droplet size distribution. In the absence of dispersants, nearly 8-19% of the test crude oils were dispersed and diluted under regular wave and breaking wave conditions. In the presence of dispersants, about 21-36% of the crude oils were dispersed and diluted under regular waves, and 42-62% under breaking waves. Consistently, physical dispersion under regular waves produced large oil droplets (volumetric mean diameter or VMD ? 300 μm), whereas chemical dispersion under breaking waves created small droplets (VMD ? 50 μm). The data can provide useful information for developing better operational guidelines for dispersant use and improved predictive models on dispersant effectiveness in the field.  相似文献   

4.
Based on the effective medium approximation theory of composites, the empirical model proposed by Pandey and Kakar is remedied to investigate the microwave emissivity of sea surface under wave breaking driven by strong wind. In the improved model, the effects of seawater bubbles, droplets and difference in temperature of air and sea interface (DTAS) on the emissivity of sea surface covered by whitecaps are discussed. The model results indicate that the effective emissivity of sea surface in-creases with DTAS increasing, and the impacts of bubble structures and thickness of whitecaps layer on the emissivity are included in the model by introducing the effective dielectric constant of whitecaps layer. Moreover, a good agreement is obtained by comparing the model results with the Rose’s ex-perimental data.  相似文献   

5.
Bubble size distribution in surface wave breaking entraining process   总被引:1,自引:0,他引:1  
From the similarity theorem, an expression of bubble population is derived as a function of the air en-trainment rate, the turbulent kinetic energy (TKE) spectrum density and the surface tension. The bubble size spectrum that we obtain has a dependence of a?2.5 nd on the bubble radius, in which nd is positive and dependent on the form of TKE spectrum within the viscous dissipation range. To relate the bubble population with wave parameters, an expression about the air entrainment rate is deduced by intro-ducing two statistical relations to wave breaking. The bubble population vertical distribution is also derived, based on two assumptions from two typical observation results.  相似文献   

6.
Current chemical dispersant effectiveness tests for product selection are commonly performed with bench-scale testing apparatus. However, for the assessment of oil dispersant effectiveness under real sea state conditions, test protocols are required to have hydrodynamic conditions closer to the natural environment, including transport and dilution effects. To achieve this goal, Fisheries and Oceans Canada and the US Environmental Protection Agency (EPA) designed and constructed a wave tank system to study chemical dispersant effectiveness under controlled mixing energy conditions (regular non-breaking, spilling breaking, and plunging breaking waves). Quantification of oil dispersant effectiveness was based on observed changes in dispersed oil concentrations and oil-droplet size distribution. The study results quantitatively demonstrated that total dispersed oil concentration and breakup kinetics of oil droplets in the water column were strongly dependent on the presence of chemical dispersants and the influence of breaking waves. These data on the effectiveness of dispersants as a function of sea state will have significant implications in the drafting of future operational guidelines for dispersant use at sea.  相似文献   

7.
A new methodology based on wavelet analysis is used to estimate steep wave statistics under depth-limited conditions and the corresponding high concentration sediment statistics. Steep waves here are defined as wave crests within the wavelet transform exceeding a root mean square derived acceleration threshold. The method is applied to laboratory data obtained in a large-scale wave-flume experiment conducted in 2005 at Oregon State University's O. H. Hinsdale Wave Research Laboratory from an acoustic Doppler velocimeter and a fiber optic backscatter sensor array above a mobile sand bed. The steep wave and high concentration statistical results for the erosive condition suggest that sand suspensions are intermittent when a wave-breaking timescale (the ratio of breaking wave height and rms wave velocity) is used to detect the concurrence among steep wave, high velocity turbulent fluctuations, and sand concentration events near the bed. More importantly, at 1 cm above the bed, though the accretive case has more steep wave events, the erosive case has more steep waves and concurrent high concentration events, suggesting a more intense breaking wave process near the sensors. The use of a longer time window, based on the dominant wave period in the detection process of steep wave and high concentration events at 1 cm above the bed, does not change the resulting statistics for the erosive condition. However, increased percentages of high concentration events correlated with steep wave and high velocity turbulence events for the accretive condition are obtained. These increased percentages are conjectured to be due to advection of non-local turbulent events and sediment concentration peaks from upstream.  相似文献   

8.
Zhihua Xie 《Ocean Dynamics》2017,67(10):1251-1261
Wind effects on periodic breaking waves in the surf zone have been investigated in this study using a two-phase flow model. The model solves the Reynolds-averaged Navier–Stokes equations with the k ? ?? turbulence model simultaneously for the flows both in the air and water. Both spilling and plunging breakers over a 1:35 sloping beach have been studied under the influence of wind, with a focus during wave breaking. Detailed information of the distribution of wave amplitudes and mean water level, wave-height-to-water-depth ratio, the water surface profiles, velocity, vorticity, and turbulence fields have been presented and discussed. The inclusion of wind alters the air flow structure above water waves, increases the generation of vorticity, and affects the wave shoaling, breaking, overturning, and splash-up processes. Wind increases the water particle velocities and causes water waves to break earlier and seaward, which agrees with the previous experiment.  相似文献   

9.
层结海洋中小振幅内行进波的演变和破碎   总被引:1,自引:0,他引:1       下载免费PDF全文
采用高精度的拟谱方法,数值模拟了层结海洋中小振幅内行进波的演变和破碎过程.在演变过程中,导致内波破碎的PSI不稳定机制在共振相互作用中逐渐占据主导地位,能量从初级波向低频、高波数运动缓慢传递并形成一次级波包,随即破碎发生.破碎后产生的层化湍流引起的强烈混合以及湍流间歇性可从总能量和涡度峰度随时间的变化趋势看出.我们分析了层化湍流的一些统计特性,包括动能和有效位能沿垂向波数ky的功率谱.结果表明,动能和有效位能谱都存在一个谱段满足k-3y律,且分别可表示为01N4k-3y和02N4k-3y(N为Brunt Visl频率),通常称其为浮力子区.另外,我们分析了Cox数(湍流扩散系数与分子扩散系数之比),在层化湍流维持在一定强度时,计算结果和由海洋内区观测(远离内波强生成源和复杂地形)所推测的结论较为吻合.  相似文献   

10.
In the surface wind drift layer with constant momentum flux, two sets of the consistent surface eleva- tion expressions with breaking and occurrence conditions for breaking are deduced from the first in- tegrals of the energy and vortex variations and the kinetic and mathematic breaking criterions, then the expression of the surface elevation with wave breaking is established by using the Heaviside function. On the basis of the form of the sea surface elevation with wave breaking and the understanding of small slope sea waves, a triple composite function of real sea waves is presented including the func- tions for the breaking, weak-nonlinear and basic waves. The expression of the triple composite func- tion and the normal distribution of basic waves are the expected theoretical model for surface elevation statistics.  相似文献   

11.
Vertical mixing of oil droplets by breaking waves   总被引:2,自引:0,他引:2  
Oil spilled on a sea surface can be dispersed by a variety of natural processes, of which the influence of breaking waves is dominant. Breaking waves are able to split the slick into small droplets, facilitating oil mixing in the water column. Vertical dynamics of the droplets plays a major role in the oil mass exchange between the slick and the water column. In this paper a mathematical model of oil droplet mixing by breaking waves is developed. The model uses a kinetic approach to describe the vertical exchange of the droplets at the interface between the slick and the water column. The majority of the coefficients and parameters are conveniently combined into a single "mixing factor". The model is verified using sensitivity analysis and empirical formulae of other authors. The model permits a rapid estimation of the amount of dispersed oil under the breaking waves. The ultimate goal of the research is to parameterise influence of breaking waves on vertical mixing of oil droplets to be used in a general 3-D oil spill model.  相似文献   

12.
A large wave event was observed in the three upper-mesospheric (80–105 km) airglow emissions of O(1S), Na and OH by the Boston University all-sky imager, at the Arecibo Observatory, during the night of 3 May 2003. The airglow structures appeared to be due to a large upward propagating internal gravity wave, which subsequently became unstable near the 95 km height level and produced large-scale vertical motions and mixing. Simultaneous density and temperature lidar measurements indicated the presence of a large temperature inversion of 80 K valley-to-peak between 88 and 96 km during the time of the event. Near-simultaneous temperature profiles, made by the TIMED SABER instrument, provided evidence that the horizontal extent of the inversion was localized to within 500 km of Arecibo during the wave event. As the gravity wave dissipated, an internal bore was generated, apparently due to the deposition of momentum and energy into the region by the original wave. Although mesospheric gravity wave breaking has been reported previously (Swenson and Mende, 21(1994); Hecht et al., 102(1997); Yamada et al., 28(2001), for example), this was the first time that the phenomenon has been associated with the generation of an internal mesospheric bore. The event suggested that the breaking of a large mesospheric gravity wave can lead to the generation of an internal bore, as suggested by Dewan and Picard 106(2001). Such behavior is of particular interest since little is known of their origins.  相似文献   

13.
A note on the general concept of wave breaking for Rossby and gravity waves   总被引:3,自引:0,他引:3  
A recently proposed general definition of wave breaking is further discussed, in order to deal with some points on which misunderstanding appears to have arisen. As with surface and internal gravity waves, the classification of Rossby waves into breaking and not breaking is a generic classification based on dynamical considerations, and not a statement about any unique signature or automatically recognizable shape. Nor is it a statement about passive tracers uncorrelated with potential vorticity on isentropic surfaces. A strong motivation for the definition is that proofs of the nonacceleration theorem of wave, mean-flow interaction theory rely, explicitly or implicitly, on a hypothesis that the waves do not break in the sense envisaged.The general definition refers to the qualitative behaviour of a certain set of material contours, namely those, and only those, which would undulate reversibly, with small slopes, under the influence of the waves' restoring mechanism, in those circumstances for which linearized, nondissipative wave theory is a self-consistent approximation to nonlinear reality. The waves' restoring mechanism depends upon the basic-state vertical potential density gradient in the case of gravity waves, and upon the basic-state isentropic gradient of potential vorticity in the case of Rossby waves. In the usual linearized theory of planetary scale Rossby waves on a zonal shear flow, the relevant material contours lie along latitude circles when undisturbed.  相似文献   

14.
We examine the implementation of a wave-breaking mechanism into a nonlinear potential flow solver. The success of the mechanism will be studied by implementing it into the numerical model HOS-NWT, which is a computationally efficient, open source code that solves for the free surface in a numerical wave tank using the high-order spectral (HOS) method. Once the breaking mechanism is validated, it can be implemented into other nonlinear potential flow models. To solve for wave-breaking, first a wave-breaking onset parameter is identified, and then a method for computing wave-breaking associated energy loss is determined. Wave-breaking onset is calculated using a breaking criteria introduced by Barthelemy et al. (J Fluid Mech https://arxiv.org/pdf/1508.06002.pdf, submitted) and validated with the experiments of Saket et al. (J Fluid Mech 811:642–658, 2017). Wave-breaking energy dissipation is calculated by adding a viscous diffusion term computed using an eddy viscosity parameter introduced by Tian et al. (Phys Fluids 20(6): 066,604, 2008, Phys Fluids 24(3), 2012), which is estimated based on the pre-breaking wave geometry. A set of two-dimensional experiments is conducted to validate the implemented wave breaking mechanism at a large scale. Breaking waves are generated by using traditional methods of evolution of focused waves and modulational instability, as well as irregular breaking waves with a range of primary frequencies, providing a wide range of breaking conditions to validate the solver. Furthermore, adjustments are made to the method of application and coefficient of the viscous diffusion term with negligible difference, supporting the robustness of the eddy viscosity parameter. The model is able to accurately predict surface elevation and corresponding frequency/amplitude spectrum, as well as energy dissipation when compared with the experimental measurements. This suggests the model is capable of calculating wave-breaking onset and energy dissipation successfully for a wide range of breaking conditions. The model is also able to successfully calculate the transfer of energy between frequencies due to wave focusing and wave breaking. This study is limited to unidirectional waves but provides a valuable basis for future application of the wave-breaking model to a multidirectional wave field. By including parameters for removing energy due to wave-breaking into a nonlinear potential flow solver, the risk of developing numerical instabilities due to an overturning wave is decreased, thereby increasing the application range of the model, including calculating more extreme sea states. A computationally efficient and accurate model for the generation of a nonlinear random wave field is useful for predicting the dynamic response of offshore vessels and marine renewable energy devices, predicting loads on marine structures, and in the study of open ocean wave generation and propagation in a realistic environment.  相似文献   

15.
多相离散随机介质模型及其探地雷达波场特征研究   总被引:2,自引:2,他引:0       下载免费PDF全文
沥青混凝土是由骨料、沥青胶浆、空气按照一定的体积百分比混合而成的多相非匀质混合物,其骨料、沥青胶浆和空气的体积不等、形状各异、介电特性不同、空间位置随机分布,具有明显的多相、离散、随机介质特征.本文基于随机介质模型理论,(1)测量与统计了介电常数在典型沥青混凝土芯样空间上的随机分布统计特征;(2)估算了沥青混凝土介质的自相关函数及其特征参数(自相关长度、自相关角度等),确定其随机介质类型;(3)提出了量化约束下的多相离散随机介质建模算法,以混合型椭圆自相关函数为基础,构建了不同粗糙度因子的多相离散随机介质模型;(4)构建了不同空隙率的多相离散随机介质模型,正演模拟与对比分析了探地雷达波在均匀介质、连续型随机介质和多相离散随机介质中的传播特征.结果表明:多相离散随机介质模型不仅描述了沥青混凝土的多相、离散与空间随机分布统计特征,而且进一步描述了其各组成物质体积百分比,能更全面、准确地描述沥青混凝土的介质特征,同时也为描述其他类似材料或介质提供了新的方法和途径;在多相离散随机介质模型中,探地雷达波散射强烈,随机、无序传播的散射波相互叠加干涉,形成了明显的随机扰动和"噪声",致使异常体反射波扭曲变形、不连续,降低了探地雷达回波的信噪比和分辨率.研究探地雷达波的随机扰动特征与多相离散随机介质模型参数之间的关系,将为定量评价多相离散随机介质的属性参数提供参考和帮助.  相似文献   

16.
An equivalent medium model for wave simulation in fractured porous rocks   总被引:3,自引:0,他引:3  
Seismic wave propagation in reservoir rocks is often strongly affected by fractures and micropores. Elastic properties of fractured reservoirs are studied using a fractured porous rock model, in which fractures are considered to be embedded in a homogeneous porous background. The paper presents an equivalent media model for fractured porous rocks. Fractures are described in a stress‐strain relationship in terms of fracture‐induced anisotropy. The equations of poroelasticity are used to describe the background porous matrix and the contents of the fractures are inserted into a matrix. Based on the fractured equivalent‐medium theory and Biot's equations of poroelasticity, two sets of porosity are considered in a constitutive equation. The porous matrix permeability and fracture permeability are analysed by using the continuum media seepage theory in equations of motion. We then design a fractured porous equivalent medium and derive the modified effective constants for low‐frequency elastic constants due to the presence of fractures. The expressions of elastic constants are concise and are directly related to the properties of the main porous matrix, the inserted fractures and the pore fluid. The phase velocity and attenuation of the fractured porous equivalent media are investigated based on this model. Numerical simulations are performed. We show that the fractures and pores strongly influence wave propagation, induce anisotropy and cause poroelastic behaviour in the wavefields. We observe that the presence of fractures gives rise to changes in phase velocity and attenuation, especially for the slow P‐wave in the direction parallel to the fracture plane.  相似文献   

17.
Wave breaking statistics, such as the whitecap coverage and average volume of broken seawater, are evaluated in terms of wave parameters by use of wave breaking model (Yuan et al., 1988) taking the fifth order Stokes’s wave as the analog of the original wave field. Based on the observed fact that breaking waves play an important role in the exchange of mass, momentum and energy between the atmosphere and the ocean, the influence of wave breaking on air-sea fluxes of heat and moisture is investigated. Theoretical expressions of bubble-volume flux and sea spray spectrum at the sea surface and models for bubble-induced and spray droplet-induced heat and moisture fluxes are established. This work can be taken as the basis for further understanding the mechanism of air-sea coupling and parameterization models.  相似文献   

18.
Wave breaking statistics, such as the whitecap coverage and average volume of broken seawater, are evaluated in terms of wave parameters by use of wave breaking model (Yuan et al., 1988) taking the fifth order Stokes's wave as the analog of the original wave field. Based on the observed fact that breaking waves play an important role in the exchange of mass, momentum and energy between the atmosphere and the ocean, the influence of wave breaking on air-sea fluxes of heat and moisture is investigated. Theoretical expressions of bubble-volume flux and sea spray spectrum at the sea surface and models for bubble-induced and spray droplet-induced heat and moisture fluxes are established. This work can be taken as the basis for further understanding the mechanism of air-sea coupling and parameterization models.  相似文献   

19.
The ability to calculate the oil droplet size distribution (DSD) and its dynamic behavior in the water column is important in oil spill modeling. Breaking waves disperse oil from a surface slick into the water column as droplets of varying sizes. Oil droplets undergo further breakup and coalescence in the water column due to the turbulence. Available models simulate oil DSD based on empirical/equilibrium equations. However, the oil DSD evolution due to subsequent droplet breakup and coalescence in the water column can be best represented by a dynamic population model. This paper develops a phenomenological model to calculate the oil DSD in wave breaking conditions and ocean turbulence and is based on droplet breakup and coalescence. Its results are compared with data from laboratory experiments that include different oil types, different weathering times, and different breaking wave heights. The model comparisons showed a good agreement with experimental data.  相似文献   

20.
A model of wave propagation in fluid-saturated porous media is developed where the principal fluid/solid interaction mode affecting the propagation of the acoustic wave results from the conjunction of the Biot and the Squirt flow mechanism. The difference between the original Biot/Squirt (BISQ) flow theory and the new theory, which we call the reformulated BISQ, is that the average fluid pressure term appearing in the dynamic equation for a two component solid/fluid continuum is independent of squirt flow length. P-velocity and attenuation relate to measurable rock physical parameters: the Biot's poroelastic constants, porosity, permeability, pore fluid compressibility and viscosity. Modelling shows that velocity and attenuation dispersion obtained using the reformulated BISQ theory are of the same order of magnitude as those obtained using the original BISQ theory. Investigation on permeability effect on velocity and attenuation dispersion indicate that the transition zone in velocity and attenuation peak, occurring both at the relaxation frequency, shifts toward high frequency when permeability decreases. This behaviour agrees with Biot's theory prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号