首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The authors extend the deduction of the equations satisfied by the force fields from inertial to rotating frames, when the curves of a certain family are known to be solutions for the equations of motion. Then Drǎmbâ's equation is obtained as a consequence of this result. The works of Hadamard and Moiseev are proved to be closely related to the inverse problem of dynamics.  相似文献   

2.
The general problem of motion of a rigid body about a fixed point under the action of stationary non-symmetric potential and gyroscopic forces is considered. The equations of motion in the Euler-Poisson form are derived. An interpretation is given in terms of charged, magnetized gyrostat moving in a superposition of three classical fields. As an example, the problem of motion of a satellite — gyrostat on a circular orbit with respect to its orbital system is reduced to that of its motion in an inertial system under additional magnetic and Lorentz forces.When the body is completely symmetric about one of its axes passing through the fixed point, the above problem is found to be equivalent to another one, in which the body has three equal moments of inertia and the forces are symmetric around a space axis. The last problem is well-studied and the given analogy reveals a number of integrable cases of the original problem. A transformation is found, which gives from each of these cases a class of integrable cases depending on an arbitrary function. The equations of motion are also reduced to a single equation of the second order.  相似文献   

3.
We construct a non-stationary form of the Lagrangian of a material point with a known integral of motion and given monoparametric family of evolving orbits. An equation for non-stationary space symmetrical ‘potential’ function of such Lagrangian is given and this stands for the analog of Szebehely's (1974) equation. As an application of the problem, an integrable equation from celestial mechanics of variable mass with use of non-perturbed orbits of evolving type is constructed. On its basis adiabatic invariants of non-stationary two-body problem containing a tangential force are found. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
The Newtonian differential equations of motion for the two-body problem can be transformed into four, linear, harmonic oscillator equations by simultaneously applying the regularizing time transformation dt/ds=r and the Kustaanheimo-Stiefel (KS) coordinate transformation. The time transformation changes the independent variable from time to a new variables, and the KS transformation transforms the position and velocity vectors from Cartesian space into a four-dimensional space. This paper presents the derivation of uniform, regular equations for the perturbed twobody problem in the four-dimensional space. The variation of parameters technique is used to develop expressions for the derivatives of ten elements (which are constants in the unperturbed motion) for the general case that includes both perturbations which can arise from a potential and perturbations which cannot be derived from a potential. These element differential equations are slightly modified by introducing two additional elements for the time to further improve long term stability of numerical integration.Originally presented at the AAS/AIAA Astrodynamics Specialists Conference, Vail, Colorado, July 1973  相似文献   

5.
In this investigation, a procedure is described for extending the application of canonical perturbation theories, which have been applied previously to the study of conservative systems only, to the study of non-conservative dynamical systems. The extension is obtained by imbedding then-dimensional non-conservative motion in a 2n-dimensional space can always be specified in canonical form, and, consequently, the motion can be studied by direct application of any canonical perturbation method. The disadvantage of determining a solution to the 2n-dimensional problem instead of the originaln-dimensional problem is minimized if the canonical transformation theory is used to develop the perturbation solution. As examples to illustrate the application of the method, Duffing's equation, the equation for a linear oscillator with cubic damping and the van der Pol equation are solved using the Lie-Hori perturbation algorithm.This research was supported by the Office of Naval Research under Contract N00014-67-a-0126-0013.  相似文献   

6.
The main problem in the orbit determination of the space debris population orbiting our planet is identifying which separate sets of data belong to the same physical object. The observations of a given object during a passage above an observing station are collectively called a Too Short Arc (TSA): data from a TSA cannot allow for a complete determination of an orbit. Therefore, we have to solve first the identification problem, finding two or more TSAs belonging to the same physical object and an orbit fitting all the observations. This problem is well known for the determination of orbits of asteroids: we shall show how to apply the methods developed for preliminary orbit determination of heliocentric objects to geocentric objects. We shall focus on the definition of an admissible region for space debris, both in the case of optical observations and radar observations; then we shall outline a strategy to perform a full orbit determination.  相似文献   

7.
We present a map for the study of resonant motion in a potential made up of two harmonic oscillators with quartic perturbing terms. This potential can be considered to describe motion in the central parts of non-rotating elliptical galaxies. The map is based on the averaged Hamiltonian. Adding on a semi-empirical basis suitable terms in the unperturbed averaged Hamiltonian, corresponding to the 1:1 resonant case, we are able to construct a map describing motion in several resonant cases. The map is used in order to find thex − p x Poincare phase plane for each resonance. Comparing the results of the map, with those obtained by numerical integration of the equation of motion, we observe, that the map describes satisfactorily the broad features of orbits in all studied cases for regular motion. There are cases where the map describes satisfactorily the properties of the chaotic orbits as well.  相似文献   

8.
We study the problem of the reconstruction of a non-stationary space symmetrical regular planar potential of the gravitating system on a family of evolving types of orbits being used in the dynamics of stationary stellar systems. An application of such an inverse problem to the dynamical evolution of stellar systems with variable masses is given. The general form of the evolving orbit which we use when writing out the differential equations for non-stationary potential may also be interpreted as an osculating orbit of the perturbed Keplerian motion. In this case we are making an additional transformation of the basic equation of the problem and demonstrating an appropriate example of the construction of a non-stationary potential of a gravitating system. In connection with the stellar dynamical character of our inverse problem, we also give a generalized form of its basic equation in a rotating coordinate system.  相似文献   

9.
The inertial effect on the structure of the magnetosphere of a rotating star is investigated, in the corotation approximation for a surrounding quasi-neutral plasma. The equation of motion reduces to a usual static balance equation between the electromagnetic and the centrifugal forces, in the rotating frame. However the MHD condition, which can be regarded as a special form of the generalized Ohm's law, is modified by the inclusion of inertial effect, with a violation of the frozen-in condition in case of a general (i.e., not restricted to corotation) plasma motion. The inertial effect on the electromagnetic field is summarized in a partial scalar potential named the non-Backus potential, which is proportional to the centrifugal potential in the corotation approximation.An approximate solution of this corotation problem is given, in which another characteristic radiusr M appears besides the light radiusr L . This radius defines a distance beyond which the inertial effect becomes dominant over the electromagnetic one, and is useful in estimating the magnitude of the terminal velocity of a centrifugal wind. A few examples of the modification of dipole magnetic field due to the inertial effect are visualized. In an oblique-rotation case, it can be seen that such a warp of the neutral sheet (the surface ofB r =0) is reproduced as observed in the Jovian magnetosphere.  相似文献   

10.
In this paper, we developed statistical method for distance determination of a stellar group. The method depends on the assumption that, the stars scatter around a mean magnitude in a Gaussian distribution. The mean apparent magnitude of the stars is then expressed in terms of the frequency function of the apparent magnitudes, so as to correct for observational incompleteness at the faint end. The problem reduces to the solution of a highly transcendental equation for a given apparent magnitude parameter α. Computational algorithm of the method is illustrated and the numerical solutions of the basic equation are given for some values of α .  相似文献   

11.
The determination of the explicit form of vector constants of the motion for a point mass moving in an arbitrary spherically symmetric time-independent potential is reduced to the solution of an ordinary second-order linear differential equation. The vectors to be determined are assumed to be orthogonal to the angular momentum. The differential equation is solved for some particular fields of force and the corresponding vectors are constructed.  相似文献   

12.
Szebehely's equation for the inverse problem of Dynamics is used to obtain the equation of the characteristic curve of a familyf(x,y)=c of planar periodic orbits (crossing perpendicularly thex-axis) created by a certain potentialV(x,y). Analytic expressions for the characteristic curves are found both in sideral and synodic systems. Examples are offered for both cases. It is shown also that from a given characteristic curve, associated with a given potential, one can obtain an analytic expression for the slope of the orbit at any point.  相似文献   

13.
The rosette-shaped motion of a particle in a central force field is known to be classically solvable by quadratures. We present a new approach of describing and characterizing such motion based on the eccentricity vector of the two body problem. In general, this vector is not an integral of motion. However, the orbital motion, when viewed from the nonuniformly rotating frame defined by the orientation of the eccentricity vector, can be solved analytically and will either be a closed periodic circulation or libration. The motion with respect to inertial space is then given by integrating the argument of periapsis with respect to time. Finally we will apply the decomposition to a modern central potential, the spherical Hernquist–Newton potential, which models dark matter halos of galaxies with central black holes.  相似文献   

14.
Our physical intuition usually separates space from time, ignoring the spacetime character of the physical reality. In strongly curved spacetimes this may lead to confusion and paradoxes. I present here two examples: (1) in the non-static cosmological spacetimes with flat space sections, the cosmological expansion of space is a true physical effect. Contrary to what the intuition imagines, it cannot be explained as a motion of matter in a non-expanding flat space. (2) Contrary to intuition, for static spacetimes the mathematically simplest 3+1 split is not given by the direct projection as in the standard ADM scheme. The simplest split is defined by a counter intuitive “optical geometry” that redshifts both space and time by the same conformal factor.  相似文献   

15.
Based on the Lambert equation and knowledge of space geometry a method of orbit determination is given using the sparse observational data provided by the space monitoring electronic fence device. Our simulated experiment of a large number of targets shows that the initial orbit determined by this method can be improved and can converge to a final accuracy better than 100 m, so proving that the method can be applied to the orbit determination of an overwhelming majority of space targets with the observed data of the electronic fence. Finally, the effect of the latitude of the observing station on the application of the method is discussed.  相似文献   

16.
The direct problem of dynamics in two dimensions is modeled by a nonlinear second-order partial differential equation, which is therefore difficult to be solved. The task may be made easier by adding some constraints on the unknown function = f y /f x , where f(x, y) = c is the monoparametric family of orbits traced in the xy Cartesian plane by a material point of unit mass, under the action of a given potential V(x, y). If the function is supposed to verify a linear first-order partial differential equation, for potentials V satisfying a differential condition, can be found as a common solution of certain polynomial equations.The various situations which can appear are discussed and are then illustrated by some examples, for which the energy on the members of the family, as well as the region where the motion takes place, are determined. One example is dedicated to a Hénon—Heiles type potential, while another one gives rise to families of isothermal curves (a special case of orthogonal families). The connection between the inverse/direct problem of dynamics and the possibility of detecting integrability of a given potential is briefly discussed.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

17.
In this paper, an algorithm is constructed for the determination of the perturbed motion, in both, the rectangular and the orbital elements of highly eccentric orbits in Earth's gravitational field with axial symmetry whatever the number N of the zonal harmonic coefficients may be. An application of the algorithm for the Explorer 28 satellite (e > 0.94) is given for two geopotential models corresponding to N = 2 and N = 36. In both examples extremely accurate predictions during the satellite life time are obtained.  相似文献   

18.
The statistical puls loss by the use of a photon counting photometer can be corrected on the base of the equation n = Ne−Nι. A simple method is given for determination of the parameter ι which can be realized on each photometer.  相似文献   

19.
In the present note we first give a simple proof of the Dainelli formulas for the force field generating a given family of orbits. We also show that the Szebehely partial differential equation for the potential can be derived from the Dainelli formulas if the energy integral is assumed. The Szebehely equation can be solved directly with the method of characteristics or indirectly with the Joukovsky formulas. Several examples are briefly described in the article. In particular we find some rather general potential functions corresponding to circular motion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号