首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Original results of igneous rock studies are presented. The rocks were dredged during a marine expedition (cruise 37 of R/V Akademik M.A. Lavrent’ev in August–September, 2005) in the region of the submarine Vityaz Ridge and Kuril Arc outer slope. Several age complexes (Late Cretaceous, Eocene, Late Oligocene, Miocene, and Pliocene-Pleistocene) are recognizable on the Vityaz Ridge. These complexes are characterized by a number of common geochemical features since all of them represent the formations of island arc calc-alkali series. At the same time, they also have individual features reflecting different geodynamic settings. The outer slope of the Kuril Arc demonstrates submarine volcanism. The Pliocene-Pleistocene volcanic rocks dredged here are similar to the volcanites of the Kuril-Kamchatka Arc frontal zone.  相似文献   

2.
The paper reports the results of a geochemical study of volcanogenic rocks from the southern part of the Kyushu–Palau Ridge. Volcanic structures, such as plateaulike rises, mountain massifs, and single volcanoes, are the major relief-forming elements of the southern part of the Kyushu–Palau Ridge. They are divided into three types according to the features of the relief and geological structure: shield, cone-shaped, and dome-shaped volcanoes. The ridge was formed on oceanic crust in the Late Mesozoic and underwent several stages of evolution with different significance and application of forces (tension and compression). Change in the geodynamic conditions during the geological evolution of the ridge mostly determined the composition of volcanic rocks of deep-mantle nature. Most of the ridge was formed by the Early Paleogene under geodynamic conditions close to the formation of oceanic islands (shield volcanoes) under tension. The island arc formed on the oceanic basement in the compression mode in the Late Eocene–Early Oligocene. Dome-shaped volcanic edifices composed of alkaline volcanic rocks were formed in the Late Oligocene–Early Miocene under tension. Based on the new geochemical data, detailed characteristics of volcanic rocks making up the shield, cone-shape, and dome-shape stratovolcanoes resulting in the features of these volcanic edifices are given for the first time. Continuous volcanism (with an age from the Cretaceous to the Late Miocene and composition from oceanic tholeiite to calc-alkaline volcanites of the island arc type) resulting in growth of the Earth’s crust beneath the Kyushu–Palau Ridge was the major factor in the formation this ridge.  相似文献   

3.
The paper generalizes the distribution of volcanoclastic material in the Cenozoic sedimentary cover of the Walvis Ridge, made on the basis of the DSDP (Deep Sea Drilling Projects) and ODP (Ocean Drilling Program). The cycles of volcanoclastic accumulation have been distinguished. It has been proved that the distribution of the material in the Paleogene primary reflects the dynamics of volcanism of the ridge itself. The sources of volcanoclastics have been determined. The possibility of the existence of Early Eocene submarine volcanoes in the central part of the ridge has been shown. The dynamics of volcanism of the ridge has been compared with the variability of major climatic markers in sediments, indicating the unity of volcanic processes in the region and processes that led to an increase in the index of 13C content in sediments and CO2 content in the atmosphere.  相似文献   

4.
Several coeval volcanogenic complexes indicating synchronous volcanic events in the Sea of Japan and the Sea of Okhotsk are defined. Volcanics from different-age complexes of the Sea of Okhotsk show many features in common and are attributed to the Pacific type of calc-alkaline series. They were formed in geodynamic settings of the active continental margin and point to its origination on the continental crust of the fragmented Asian continent margin. The volcanic rocks developed in the Sea of Japan reflect different rifting stages. The initial stage was marked by an eruption of calc-alkaline lavas (Paleocene-Eocene complex). At the stage of the marginal-sea spreading, erupted volcanics of the middle Miocene-Pliocene complex were melted from the depleted mantle and magmatism terminated by an eruption of postspreading Pliocene-Holocene volcanics melted from the enriched mantle EM I. Along with the differences, the magmatism in the Sea of Japan and Sea of Okhotsk has some features in common. In both cases, the sialic component of the lithosphere substantially influenced the magma generation.  相似文献   

5.
通过对马里亚纳海槽两沉积岩芯中主要化学元素的因子分析,其结果表明,化学元素的共生组合和含量变化,与火山碎屑矿物以及大部分由海底玄武岩和玄武质火山玻璃蚀变而成的粘土矿物密切相关.岩芯的化学成分主要来自火山喷发物,因此,元素的地球化学特征反映了该区火山作用的影响.  相似文献   

6.
Several boreholes drilled by the Commissariat à l'Energie Atomique have reached and passed through the volcanic bedrock of Fangataufa atoll. The sampled volcanic rocks under the coral ring were produced during both aerial and submarine activity, whereas rocks drilled under the lagoon were erupted during submarine volcanism only. The bathymetric data show that the atoll has a “starfish” shape. The rift zones are elongated in N-S, N70–80 and N120 directions; these three main directions are also the directions of structural discontinuities in the lithosphere. Reconstruction of the atoll's topography before erosion using a slope angle of about 16° shows that the maximum height reached by the volcano was about 1300 m above sea level. For comparison, the maximum height of Méhetia island (southeast of Tahiti) is approximately 435 m. The successive construction stages are: (1) initiation of volcanism along the rift zones and construction of a central volcano; (2) production of brecciated lavas; (3) emergent volcanism; and (4) central and aerial activity. The present day position of the aerial volcanic rocks under the coral reef and the submarine products under the lagoon is discussed with reference to two hypotheses. The first is based on sea level changes and the second on a tectonic origin (collapse of the atoll's flanks). Using recent geochronological data, the submarine construction of the atoll related to the hot-spot activity lasted about 1.1 Ma. The accumulation rate was approximately 0.7 cm/yr (1.5 × 10−3 km3/yr) and the aerial volcanic activity lasted about 2 Ma (1.5 × 10−5 km3/yr).  相似文献   

7.
The newly obtained data on the West Kamchatka complexes, together with the results published previously, allowed us to reach some conclusions regarding the Cenozoic kinematics in the eastern part of the Sea of Okhotsk region. The Cenozoic stress fields of submeridional-NW-SE trend were reconstructed. These results may provide independent evidence for the riftogenic opening model of the Sea of Okhotsk. On the other hand, the data might fit with the alternative concept of the effect of the collision process between the Indo-Australian and Eurasian plates concerning the Cenozoic structure of the Sea of Okhotsk region (including its eastern part). The stages of the principal regional phases of the structural development are shown. The NW-SE compression was the last and most essential stage of the structure formation and might, evidently, show a long-term response to the completion of the collision between the island arc of the Eastern peninsulas (Kronotskaya) and the Kamchatka Peninsula in the Middle-Late Miocene. In the recent and present-day intraplate geodynamic situation, the boundary between the hypothetic Sea of Okhotsk block and the Kamchatka Peninsula (the East Sea of Okhotsk fault zone) was mainly developed under the conditions of a left-side transpression and strike-slip setting. The comparison of the data obtained with the results of earlier detailed seismic surveys in the Sea of Okhotsk (the Deryugin Basin area) showed their general similarity.  相似文献   

8.
In the Ulleung Basin, East Sea, the Dok Do seamount group comprises Dok Do (Dok Island), consisting of very small islets/rocks and a large submerged volcanic edifice, and two voluminous tablemounts, Simheungtaek and Isabu. We attempted to reconstruct the evolution of these seamounts, using virtual geomagnetic poles (VGPs) determined by the least-squares and the seminorm magnetization methods, with 1,500 m upward continued magnetic anomalies. The VGPs of Dok Do with normal dipole anomaly, and of Simheungtaek with normal dipole anomaly are located near the present magnetic pole. The VGP of Isabu with normal dipole anomaly is located at low latitude, presumably due to overprints of reversals in the Tertiary, and the distortion of magnetization and structures associated with volcanism after its formation. In contrast to the tablemounts, magnetic anomalies over Dok Do are a combination of both normal polarity and reversed polarity dipoles in the northern hemisphere, indicating that Dok Do has had at least two major eruptions, one during normal and another during reversed polarity intervals. From these results, and information on the ages of the seamounts (either published radiometric ages of subaerial volcanic rocks, or ages reconstructed in terms of reported elastic thickness incorporated into an existing cooling plate model), we tentatively propose that (1) Isabu formed first, during a normal polarity interval after the opening of the East Sea had ceased; (2) this was followed by an initial and subsequent large eruption of Dok Do during a normal polarity and a reversed polarity interval after about 5 Ma; and (3) the formation of Simheungtaek occurred in between that of Isabu and Dok Do in a normal polarity interval. The pattern of normal/reversed magnetization is not inconsistent with the geomagnetic polarity timescale for at least the last 5 Ma. Nevertheless, precise ages of formation would need verification by additional geophysical/geochemical constraints. Evaluating various possible models explaining the successive formation of the Dok Do seamounts, we currently favor fracturing and volcanism related to compression-induced weakening of the extensional field from the late Miocene to Pliocene after the opening of the East Sea.  相似文献   

9.
This paper presents the results of geological studies carried out during the two marine expeditions of the R/V Akademik M.A. Lavrent’ev (cruises 37 and 41) in 2005 and 2006 at the underwater Vityaz Ridge. Dredging has yielded various rocks from the basement and sedimentary cover of the ridge within the limits of three polygons. On the basis of the radioisotope age determinations, petrochemical, and paleontological data, all the rocks have been subdivided into the following complexes: the volcanic ones include the Paleocene, Eocene, Late Oligocene, Middle Miocene, and Pliocene-Pleistocene; the volcanogenic-sedimentary ones include the Late Cretaceous-Early Paleocene, Paleogene undifferentiated, Oligocene-Early Miocene, and Pliocene-Pleistocene. The determination of the age and chemical composition of the rocks has enabled us to specify the formation conditions of the extracted complexes and to trace the geological evolution of the Vityaz Ridge. The presence of young Pliocene-Pleistocene volcanites allows one to come to a conclusion about the modern tectono-magmatic activity of the central part of the Pacific slope of the Kuril Islands.  相似文献   

10.
This work is based upon results of interpretation of about 8872 km-long regional seismic lines acquired in 2011 within the international project Geology Without Limits in the Black Sea. The seismic lines cover nearly the entire Black Sea Basins, including Russia, Turkey, Ukraine, Romania and Bulgaria sectors. A new map of acoustic basement relief and a new tectonic structure scheme are constructed for the Black Sea Basins. The basement of the Black Sea includes areas with oceanic crust and areas with highly rifted continental crust. A chain of buried seamounts, which were interpreted as submarine volcanoes of Late Cretaceous (Santonian to Campanian) age, has been identified to the north of the Turkish coast. On the Shatsky Ridge, probable volcanoes of Albian age have also been recognized. Synorogenic turbidite sequences of Paleocene, Eocene and Oligocene ages have been mapped. In the Cenozoic, numerous compressional and transpressional structures were formed in different parts of the Black Sea Basin. During the Pleistocene–Quaternary, turbidites, mass-transport deposits and leveed channels were formed in the distal part of the Danube Delta.  相似文献   

11.
The paper presents the results of a study on the geomorphic structure, tectonic setting, and volcanism of the volcanoes and volcanic ridges in the deep Central Basin of the Sea of Japan. The ridges rise 500–600 m above the acoustic basement of the basin. These ridges were formed on fragments of thinned continental crust along deep faults submeridionally crossing the Central Basin and the adjacent continental part of the Primorye. The morphostructures of the basin began to submerge below sea level in the Middle Miocene and reached their contemporary positions in the Pliocene. Volcanism in the Central Basin occurred mostly in the Middle Miocene–Pliocene and formed marginal-sea basaltoids with OIB (ocean island basalt) geochemical signatures indicating the lower-mantle plume origin of these rocks. The OIB signatures of basaltoids tend to be expressed better in the eastern part of the Central Basin, where juvenile oceanic crust has developed. The genesis of this crust is probably related to rising and melting of the Pacific superplume apophyse.  相似文献   

12.
SeaMARC II side-scan sonar data reveal that a large area of seafloor north and west of Easter Island has been disrupted by recent submarine volcanism. A large volcanic area begins approximately 60 km WNW of the island and extends for over 130 km to the west. The volcanic field is characterized by high backscatter intensity in the side-scan sonar records and is elevated 400–1000 m above the N-S seafloor fabric that surrounds it. This field, the Abu Volcanic Field, covers at least 2500 km2 and appears to consist of recent lava flows and small volcanoes. Backscatter intensity of the Abu Volcanic Field is similar to that of the adjacent ridge flank which is less than 0.4 Ma, suggesting a similar age for its formation. Two additional areas of high backscatter immediately north of Easter Island cover a combined area of over 300 km2. The sidescan sonar records show that these features are clearly of volcanic origin and are not debris flows from the nearby island. The flows are nearly 300 m thick and are morphologically similar to subaerial pahoehoe lava shields. Their high backscatter indicates that they are also the products of relatively recent submarine volcanic activity. The presence of these large areas of recent volcanism in the vicinity of Easter Island has important implications for the various models that have been proposed to explain the origin of the Easter Seamount Chain. In addition, the similar ages of Easter Island and the Easter Microplate suggest that the presence of a hotspot near or beneath this fast-spreading portion of the East Pacific Rise about 4.5 m.y. ago may have initiated the large-scale rift propagation that created the microplate.  相似文献   

13.
There are many large-scale Cenozoic sedimentary basins with plentiful river deltas, deep-water fans and carbonate platforms in the southern South China Sea. The Crocker Fan was deposited as a typical submarine fan during the late Eocene–early Miocene, and stretches extensively across the entire Sarawak–Sabah of the northern Borneo area. However, systematic analyses are still lacking regarding its sediment composition and potential source suppliers. No consensus has been reached yet on the provenance evolution and sedimentary infilling processes, which seriously impeded the oil-and-gas exploration undertakings. By combining with sedimentary-facies identification, heavy mineral assemblages, elemental geochemistry and detrital zircon U-Pb dating, this paper aims to generalize an integrated analysis on the potential provenance terranes and restore source-to-sink pathways of the Crocker Fan. In general, the Crocker Fan was initially formed over the Cretaceous–lower/middle Eocene Rajang Group by an angular Rajang unconformity. The continual southward subduction of the proto-South China Sea resulted in magmatic activities and subsequent regional deformation and thrusting along the Lupar Line in the northern Borneo. The lowermost Crocker sequence is featured by a thick conglomerate layer sourced from in-situ or adjacent paleo-uplifts. From the late Eocene to the early Miocene, the Crocker Fan was constantly delivered with voluminous detritus from the Malay Peninsula of the western Sundaland. The Zengmu Basin was widely deposited with delta plain and neritic facies sediments, while the Brunei-Sabah Basin, to the farther east, was ubiquitously characterized by turbiditic sequences. The Crocker Fan successions are overall thick layers of modest-grained sandstones, which formed high-quality reservoirs in the southern South China Sea region.  相似文献   

14.
In the Embla oil field on the northern flank of the Mid North Sea High, the central North Sea, multiple quartz porphyric volcanic beds at ca. 4600 m depth form part of a volcano-sedimentary interval above the Caledonian basement as interpreted from seismic data. Zircon U–Pb laser ablation ICPMS date one bed to 374 ± 3 Ma, indicating that the volcanic rocks and interbedded sediments are early Famennian and correlate to the Buchan Formation. The volcanic rocks have been extensively clay and carbonate altered in a near-surface environment, but high field strength element data show that the protoliths were alkali rhyolites, yielding intra-plate signatures in tectonic discrimination diagrams. Famennian quartz porphyric volcanic rocks have also been reported from well A17-1 on the southern flank of the Mid North Sea High. The Famennian volcanism on the northern and southern flanks testify to an active magmatic environment in the central North Sea in the early Famennian, supporting the existence of a late Devonian proto-Central Graben rift extending northwards into the central North Sea. The rift is likely an early example of strain localisation to a zone of reduced crustal strength along the Caledonian suture between Avalonia and Baltica.  相似文献   

15.
《Marine Geology》2004,203(1-2):119-140
The results of a combined geophysical and geochemical research programme on Deception Island, an active volcano at 62°43′S, 60°57′W in Bransfield Strait (Antarctica), are presented. Ultrahigh-resolution acoustic data obtained with a TOPAS (TOpographic PArameter Sonar) system and multibeam bathymetry (Simrad EM1000) allow a detailed analysis of submarine vents in Port Foster, the submerged caldera of Deception Island. The data show three different types of seafloor structures: low-relief mounds, high-relief mounds (‘wasp nest’-like) and spire-like structures. We interpret these structures as products of sediment volcanism and seeps caused by heating and boiling of pore fluids in gas-charged sediments, and related to recent short-lived volcanic events, possibly those that occurred in 1967, 1969 and 1970. In addition, subsurface vertical disturbed zones, formed by increased amplitude and phase-inverse reflectors beneath the mounds, suggest the presence of fluidised and brecciated sediments within hydrofracture systems. A key finding of this study is that there appears to be a close relationship between the submarine mounds detected by our ultrahigh-resolution seismic study, geochemical haloes, fault-pathways and present-day thermal anomalies in surface waters. We suggest that seafloor hydrofracture systems and subsurface pipes can be re-used as fluid migration pathways, resulting in hydrothermal seeps and vents on the seafloor, possibly up to decades after coeval volcanic eruptions.  相似文献   

16.
渤海的地质演化与断裂活动   总被引:3,自引:0,他引:3  
本文将渤海的地质演化分为:前中生代、中生代和新生代三大时期,并论述各个时期的构造特征和地层分布。渤海的断裂系统主要有北北东—北东、近东西和北西向三组,每组断裂既有其各自的发生、发展规率,同时彼此之间又有一定的关联。  相似文献   

17.
滇西腾冲新生代火山岩岩石地球化学特征   总被引:3,自引:0,他引:3  
腾冲新生代火山岩位于印度板块和欧亚板块碰撞带附近,但是喷发时大洋已经闭合,属于大陆板内火山岩。对其进行地球化学研究,可以用来划分构造属性和推测岩浆来源。采用XRF和ICP-MS对典型岩石样品进行了较系统的岩石地球化学研究,结果表明,岩石类型有玄武质粗面安山岩、粗面安山岩和玄武安山岩,属高钾钙碱性系列;岩石化学显示高K2O、CaO和低TiO2,Mg#较高,平均约为46;稀土元素分布呈右倾,显示明显的Eu负异常;相对于原始地幔富集大离子亲石元素和高场强元素,并具有明显的Th正异常;地球化学组成总体上与岛弧岩浆岩相似,推测其成因与印度板块向欧亚板块俯冲引发的岩浆活动有关。特征元素比值显示岩浆可能来源于与俯冲作用相关的EMⅠ型地幔。  相似文献   

18.
Taiwan Island's outcropping strata can provide important insights into the sedimentary environment and source development of the southeast China margin. This research is based on the Eocene–Miocene strata of the Tsukeng area in the central Western Foothills, northeast shoreline of Taiwan Island and two sites of the East China Sea Shelf Basin(ECSSB), using petrology and detrital zircon U-Pb age for the analysis. Results show that central and northeast Taiwan Island experienced a transformation from continental to marine facies during the Eocene–Miocene, and the sandstone maturity changed with time. Source analysis shows that sediments from the Eocene–early Oligocene strata mainly originated from near-source Mesozoic rocks, whose zircon age is consistent with the igneous rock in the surrounding area and coastal Cathaysia, showing 120 Ma and 230 Ma peaks in the age spectrum diagram. Since the late Oligocene, peaks of 900 Ma and 1 800 Ma are seen, indicating that deposition of matter from the old block began. The sediments could be a mixture of the surrounding Mesozoic volcanic and fewer pre-Cambrian rocks sourced from the coastal river and sporadic old basement in the ECSSB instead of longdistance transportation.  相似文献   

19.
A number of samples have been dredged from the upper parts of Amanay and El Banquete Seamounts, yet volcanic materials have been collected only on Amanay Seamount. Based on textural features and the presence or absence of kaersutite, two main types of olivine pyroxene basaltic rocks have been identified. The rocks are basanites with high enrichment in the most incompatible elements, similar to that displayed by Ocean Island Basalts. Samples from Amanay Seamount formed due to a low degree of melting of an enriched mantle, very similar to that which probably caused the Miocene volcanic activity of Fuerteventura. The age of Amanay volcanic rocks, 15.3 ± 0.4 and 13.1 ± 0.3 Ma, is similar to those of the older volcanic units exposed in the nearby islands (Gran Canaria, Fuerteventura and Lanzarote). This proves the formation of a separate submarine volcanic edifice coeval with the other edifices of the Eastern Canarian Volcanic Ridge. Volcanic activity on the submarine edifice is thought to have ceased at about 13 Ma, simultaneous with the adjacent main volcanic construction.  相似文献   

20.
Based on the isotopic chronologic results of Cenozoic alkali basalts from the South China Sea, the characteristics of volcanic activi- ty of the South China Sea after spreading were studied. The potassium - argon ages of eight alkali basalt samples from the South China Sea, and the argon - argon ages of two samples among them are reported. Apparent ages of the whole rock are 3.80 to 7. 91 Ma with an average value of 5.43 Ma (potassium- argon, whole rock), and there is little difference among samples at the same location, e. g. , 4. 76 - 5.78 Ma for location S(M-12. The argon - argon ages for the two samples are 6.06 and 4. 71 Ma, which lie within the age scope of potassium - argon method. The dating results indicate that rock-forming age is from late Miocene to Pliocene, which is consistent with erupting event for alkali basalts from adjacent regions of the South China Sea. Volcanic activities occur after the cessation of spreading of the South China Sea, which are controlled by lithospheric fault and the spreading center formed during the spreading period of the South China Sea. These dating results, combined with geochemical characteristics of these basalts, the published chronological data for the South China Sea and its adjacent regions, and the updated geophysical data near Hainan Island, suggest that after the cessation of spreading of the South China Sea, there occur widely distributing magmatic activities which primarily is alkali basalt, and the volcanic activity continues to Quaternary. The activity may be relative to Hainan mantle plume originated from core/mantle boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号