首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
As vegetation are closely related to soil erosion, hydrodynamic parameter changes under various vegetation pattern conditions can be used as an important basis for the research of the soil erosion mechanism. Through upstream water inflow experiments conducted on a loess hillslope, how the vegetation pattern influences the hydrodynamic processes of sediment transport was analyzed. The results show that the placement of a grass strip on the lower upslope can effectively reduce runoff erosion by 69...  相似文献   

2.
20世纪50~60年代,刘东生先生组织了黄河中游黄土区十条大断面(六纵四横)的野外考察和室内分析,从而证实了从西北到东南黄土粒度逐渐变细的现象,并划分出砂黄土、黄土和粘黄土带。从此,粒度成为黄土研究最基本、最重要的物理指标之一。时至今日,黄土粒度的古气候意义依然有待进一步明确。在前辈研究的基础上,我们对黄土高原57个S2以上剖面进行了详细调查和粒度分析,构建了典型冷暖时期粒度等值线。结果显示,无论是黄土还是古土壤,其粒度均从北向南变细,粒度等值线整体上呈现近东西向展布,表明粒度空间分异以南北向为主。地质记录综合对比显示,沉积区距物源区的距离变化对黄土粒度的影响是第一位的,冬季风风力变化的影响是第二位的。据此,我们构建了"黄土中值粒径-沉积区距源区最小距离"的模型。模型显示:距源区最小距离在400km以内为"快速分异区",粉尘沉积的粒度随搬运距离增加迅速变细,黄土高原黄土即在此区域;在400~2000km间为"缓慢分异区",粉尘粒度随搬运距离的增加缓缓变细,黄土高原新近纪红粘土即为典型代表;距源区2000km以上为粉尘沉积与搬运风力的"平衡区",粉尘粒度随搬运距离增加变化很小,深海粉尘沉积为典型代表。依据低空搬运的黄土"粒度-距离"模型推测的远距离(>2000km)搬运后的粉尘粒度为1~3μm,同高空搬运的北太平洋现代降尘和深海粉尘沉积粒度(2~4μm)非常吻合,表明该模型可能揭示了风力这样一种地质营力的内在动力学特征,这一点需要在今后研究中予以关注。  相似文献   

3.
Soil erosion is a serious global environmental problem which limits the survival and development of human beings. In our country, due to the special physical geography and socio-economic conditions, soil erosion intensity is great, which is particularly prominent in Loess Plateau region. Therefore, preventing and controlling soil erosion, as well as reducing soil erosion in Loess Plateau have become the key to solving environmental problems in the region. Soil erosion on Loess Plateau is serious, and grassland vegetation has good effects on soil and water conservation, which can improve ecological environment well. After the implementation of the project about returning farmland to grassland on Loess Plateau, the ecological benefits mainly focused on soil and water conservation benefits, soil improvement benefits, water conservation benefits and species diversity benefits, etc. Grassland vegetation has an irreplaceable role in the construction of the ecological environment on Loess Plateau. Therefore, the role of grassland in preventing soil erosion has received more and more attention. Scholars have done lots of research involved in the relationship between grassland coverage and soil erosion, impacts of grassland on hydrodynamic parameters, effects of grassland on soil properties, reduction effects of grassland on runoff and sediment, and soil erosion process on grassland slope. However, there is little research on erosion effect induced by grassland cover. This paper mainly pointed out the following questions: First, grassland cover is influenced by many factors, but the relationship with soil erosion from the dynamic mechanism is rarely discussed; Second, there is no well-developed theory of overland flow erosion at present, which limits the study of hydrodynamic parameters on grassland slope; Third, establishment of mathematical model between grassland cover and soil resistance can accelerate the quantitative analysis of grassland influence on erosion; Fourth, comprehensive analysis of influencing factors on water reduction and sediment reduction effect on grassland are insufficient; Fifth, there are not many mechanisms to analyze the erosion process of grassland slope by using the hydrodynamic characteristics of slope; sixth, research results on grassland-induced erosion are mainly focused on leading to soil dry layer and we should continue to strengthen in the future. This paper summarized the previous results, and supplemented some studies about erosion caused by grassland, then pointed out the existing problems in current research and the areas that need to be strengthened in the future, aiming at reducing soil erosion on the Loess Plateau.  相似文献   

4.
正Jinding core(ZK04,36°47′35.36″N,108°19′05.24″E)is located in the northern area of Luohe river basin,northern Chinese loess plateau,lying to the southeast of Wuqi County about 20 km.The total depth of Core ZK04 is 92.20  相似文献   

5.

黄土高原聚湫/淤地坝内的沉积物是黄土再侵蚀搬运的直接结果,以高堆积速率和多沉积旋回为特征,是认识黄土高原地球关键带过程和历史的理想载体之一。如何鉴定并有效划分沉积旋回是利用聚湫/淤地坝沉积序列恢复流域土壤侵蚀和地表环境过程的基础。本文选取地处黄土高原中部丘陵沟壑区(陕西靖边)和高塬沟壑区(甘肃合水)的两个聚湫为代表,利用高分辨率XRF岩芯扫描仪获取两个聚湫上部近代沉积序列的元素分布,提出划分沉积旋回的地球化学指标,并识别年际冻融层,获得旋回产沙模数及年际产沙量,进而讨论土壤侵蚀与强降水频率和强度的关系及区域差异。结果表明,沉积旋回的下部粗颗粒层均以高Zr为特征,上部细颗粒层则富集Al、Fe、Rb、Ca和Sr等造岩元素,由此提出Rb/Zr比值可有效划分沉积旋回。根据Rb/Zr比值分布,靖边和合水聚湫上部4m和2m沉积序列可分别划分为35个和18个沉积旋回。结合细颗粒层的137Cs比活度分布,划分的沉积旋回个数可分别与1963年以来两个地区强降水次数一一对应。靖边聚湫的年际沉积旋回数量和产沙模数均高于合水,是黄土高原丘陵沟壑区砂黄土更易遭受侵蚀的结果;在次降水量为50mm的强度下,靖边流域的产沙模数约为合水流域的两倍左右。重要的是,两个流域的产沙模数均与强降水次数和强度紧密相关,旋回产沙模数随降水强度线性增加。聚湫沉积旋回记录的侵蚀历史及区域差异将有助于深入认识黄土高原地球关键带中侵蚀风化、水文和生态环境变化等历史与过程。

  相似文献   

6.
Soils of the Chinese Loess Plateau(CLP)contain substantial amounts of soil inorganic carbon(SIC),as well as recent and ancient soil organic carbon(SOC).With the advent of the Anthropocene,human perturbation,including excavation,has increased soil CO2 emission from the huge loess carbon pool.This study aims to determine the potential of loess CO2 emission induced by excavation.Soil CO2 were continuously monitored for seven years on a newly-excavated profile in the central CLP and the stable C isotope compositions of soil CO2 and SOC were used to identify their sources.The results showed that the soil CO2 concentrations ranged from 830μL·L-1 to 11190μL·L-1 with an annually reducing trend after excavation,indicating that the human excavation can induce CO2 production in loess profile.Theδ13 C of CO2 ranged from–21.27‰to–19.22‰(mean:–20.11‰),with positive deviation from top to bottom.The range of δ13CSOC was–24.0‰to–21.1‰with an average of–23.1‰.Theδ13 C-CO2 in this study has a positive relationship with the reversed CO2 concentration,and it is calculated that 80.22%of the soil CO2 in this profile is from the microbial decomposition of SOC and 19.78%from the degasification during carbonate precipitation.We conclude that the human excavation can significantly enhance the decomposition of the ancient OC in loess during the first two years after perturbation,producing and releasing soil CO2 to atmosphere.  相似文献   

7.
Soil organic carbon (SOC) is one of the key components for assessing soil quality. Meanwhile, the changes in the stocks SOC may have large potential impact on global climate. It is increasingly important to estimate the SOC stock precisely and to investigate its variability. In this study, Yangjuangou watershed was selected to investigate the SOC distribution under different land uses. We found that SOC concentration decreased with increasing soil depth under all land uses and was significantly different across the vertical soil profile (P < 0.01). However, considering effect of land use on SOC, it is only significant (P < 0.01) in the topsoil (0-5 cm) layer. This indicated that land use has a large effect on the stocks of SOC in the surface soil. The stratification ratio of SOC > 1.2 may mean that soil quality is improving. The order of the SOC density (0-30 cm) under different land uses is forestland > orchard land > grassland > immature forestland > terraced cropland. The SOC stock is found to be as large as 2.67 × 103 t (0-30 cm) in this watershed. Considering time effect of restoration, the slope cropland just abandoned is more efficient for SOC accumulation than trees planted in the semi-arid hilly loess area.  相似文献   

8.
黄土高原区域尺度土壤水分空间变异性   总被引:24,自引:0,他引:24       下载免费PDF全文
土壤水分是黄土高原植物生长发育和生态环境重建的主要限制因子。为揭示黄土高原区域尺度深层土壤水分的空间变异性,在黄土高原共布点234个,采集深剖面土壤水分样品12198个。采用经典统计和地统计学相结合的方法系统分析了土壤水分的分布规律、变异特征及影响因素。结果表明:①黄土高原地区土壤水分在水平方向上表现出由东南向西北递减,在垂直方向上(0~500cm)表现出先减小后增加的分布特征;②土地利用对区域尺度土壤水分的数量及垂直分布规律具有显著影响;③土壤水分在不同土层深度(0~500cm)的变异系数、空间异质比等参数的垂直分布均呈先减小后增加趋势,这些参数在表达土壤水分变异的效果上具有一致性。相关结果对黄土高原区域尺度水土过程调控、生态水文过程研究具有一定参考价值。  相似文献   

9.
黄土高原关键带全剖面土壤水分空间变异性   总被引:2,自引:0,他引:2       下载免费PDF全文
土壤水分是黄土高原关键带水循环、地下水补给和植被恢复的关键因素。为揭示黄土高原关键带黄土整个剖面的土壤水分空间变化特征,通过土芯钻探的方式获取了黄土高原关键带5个典型样点(杨凌、长武、富县、安塞和神木)从地表到基岩的土壤水分样品,采用经典统计学和地统计学相结合的方法分析了剖面土壤水分的分布规律、变异特征及空间结构。结果表明:黄土高原关键带剖面土壤水分从南往北,土壤平均含水量由高变低;5个样点的土壤水分均为中等变异,随着深度由40 m增加到200 m,土壤水分变异性变弱,且样点之间的土壤含水量差异降低;地统计学分析表明样点的半方差函数能被理论模型较好地拟合(杨凌除外),指数模型能够描述大部分样点深剖面的空间变异结构。相关结果有助于了解黄土高原深层土壤水分状况及分布规律,对于黄土高原土壤水资源估算和区域植被恢复具有重要价值。  相似文献   

10.
Grain‐size data from different climatic zones across the Chinese Loess Plateau show that the loess generally contains an ultrafine component, which has a consistent modal grain size of ca 0·37 μm and a variable proportion of 4 to 10%. The variation of the ultrafine component through a loess section is characterized by a high proportion and fine grain size in palaeosols, and by a low proportion and coarse grain size in loess layers. Its proportional content in a stratum roughly increases from north‐west to south‐east across the Loess Plateau. Quantitative X‐ray diffraction analysis indicates that the ultrafine component is composed mainly of clay minerals (ca 70%), which are mostly illite (ca 80%), and with significant amounts of kaolinite (ca 8%) and chlorite (ca 2%). The temporal and spatial variations of the ultrafine component, and the degree of illite crystallinity, suggest that this component in aeolian sediments is linked closely to the process of pedogenesis. Weakly altered loess on the north‐western margin of the Loess Plateau contains considerable amounts of detrital clay minerals derived from the aeolian source areas. Results from a loess section with a basal age of 7·6 Ma in the central Loess Plateau show that the ultrafine component increased from 7·6 to 5 Ma, and progressively decreased thereafter. This trend was punctuated by two abrupt changes at 2·6 and 0·6 Ma. These variations reflect to a considerable extent the history of pedogenesis during the Late Cenozoic.  相似文献   

11.
黄土高原沟壑区坡地土壤水分状态空间模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
为掌握黄土高原沟壑区坡地土壤水分的空间分布特征及其影响因素,采用状态空间模型和经典线性回归方法对该区不同土层深度土壤含水率的分布进行模拟.结果表明,不同土层深度的土壤含水率呈中等程度变异,并与海拔高度、黏粒、粉粒、砂粒含量和分形维数具有显著的空间自相关和交互相关关系,可用于状态空间模拟分析.不同因素组合下的状态空间模拟效果均要优于线性回归方程,其中采用海拔高度、砂粒含量和分形维数的三因素状态空间方程模拟精度最高(R2=0.992).状态空间模拟方法可用于黄土高原坡面尺度不同土层深度土壤含水率的预测.  相似文献   

12.

地球关键带是维系地球生态系统功能和人类生存的关键区域,土壤水分是黄土高原关键带植被恢复与生态环境重建的关键因子之一。为探明黄土关键带深剖面土壤水分变化过程并进行模型模拟,对黄土高原长武塬区苹果地和小麦地的深层土壤水分(0~18m)进行监测(2011~2013年,共选择11个不同日期进行深剖面土壤水分监测),在此基础上,采用Hydrus-1D进行模型模拟,分析了深剖面土壤水分动态及其模拟效果的主控因素。结果表明:1)苹果地(6~18m)、小麦地(3~18m)的深层土壤含水量随时间变化很小;0~1m的土壤含水量随时间变化较大;不同土地利用类型会产生不同的土壤水分过程及运动机制;在根系及近根系区,土壤含水量变化受根系分布格局及土壤质地共同影响,接近地表时还同时受降雨、蒸发等上边界条件影响;在非根系区,土壤含水量的主要影响因素为土壤质地;2)利用前6次的实测数据进行调参和校正,后5次实测数据进行预测效果检验,取得了较好的深剖面土壤水分模拟效果——苹果地的决定系数、相对误差绝对值、均方根误差分别介于0.5923~0.7637、3.33%~5.20%、0.0149~0.0168cm3/cm3 之间,小麦地分别介于0.2414~0.6822、2.64%~4.58%、0.0177~0.0247cm3/cm3 之间;3)叶面积指数、根系深度与分布是影响深剖面土壤水分动态模拟效果的主控因素。相关结果可为黄土关键带深剖面土壤水分模拟与调控提供参考。

  相似文献   

13.
14.
The use of high‐resolution and highly precise age models is essential for quantitative environmental reconstructions. To assess the reliability of pollen as a chronometer in laminated lake sediments, pollen traps and lake cores, statistical methods were used to study seasonal pollen signals. The results showed that (a) the pollen assemblages from air traps and lake/reservoir surface sediment traps in the north‐western Loess Plateau of China displayed distinct seasonal patterns, which were confirmed by nonmetric multidimensional scaling (NMDS); and (b) The pollen assemblages of the dark and light layers in the Zhenhu Lake cores allowed detection of the seasonality of sediment deposition based on the results of the pollen traps. The NMDS method also showed statistically significant differences between the pollen assemblages of the dark and light layers. Furthermore, instrumental monitoring data and characteristic time markers of historical events (1958 and 2011) were used to cross‐check the chronologies obtained by the pollen assemblages, and the results strengthened the credibility and reliability of pollen as a chronometer.  相似文献   

15.
Revised Universal Soil Loss Equation(RUSLE) model coupled with transport limited sediment delivery(TLSD) function was used to predict the longtime average annual soil loss, and to identify the critical erosion-/deposition-prone areas in a tropical mountain river basin, viz., Muthirapuzha River Basin(MRB; area=271.75 km~2), in the southern Western Ghats, India. Mean gross soil erosion in MRB is 14.36 t ha~(-1) yr~(-1), whereas mean net soil erosion(i.e., gross erosion-deposition) is only 3.60 t ha~(-1) yr~(-1)(i.e., roughly 25% of the gross erosion). Majority of the basin area(~86%) experiences only slight erosion(5 t ha~(-1) yr~(-1)), and nearly 3% of the area functions as depositional environment for the eroded sediments(e.g., the terraces of stream reaches, the gentle plains as well as the foot slopes of the plateau scarps and the terrain with concordant summits). Although mean gross soil erosion rates in the natural vegetation belts are relatively higher, compared to agriculture, settlement/built-up areas and tea plantation, the sediment transport efficiency in agricultural areas and tea plantation is significantly high,reflecting the role of human activities on accelerated soil erosion. In MRB, on a mean basis, 0.42 t of soil organic carbon(SOC) content is being eroded per hectare annually, and SOC loss from the 4th order subbasins shows considerable differences, mainly due to the spatial variability in the gross soil erosion rates among the sub-basins. The quantitative results, on soil erosion and deposition, modelled using RUSLE and TLSD, are expected to be beneficial while formulating comprehensive land management strategies for reducing the extent of soil degradation in tropical mountain river basins.  相似文献   

16.
时伟  蒋汉朝 《古地理学报》2022,24(3):599-610
为探讨构造稳定地区(如黄土高原)和构造活跃地区(如青藏高原东缘)粉尘沉积物中磁化率(SUS)与粒度的相关性及其对环境事件的指示意义,本次研究分析了黄土高原蓝田剖面黄土—古土壤样品和青藏高原东缘湖相沉积样品的粒度和磁化率记录。黄土高原黄土—古土壤沉积SUS与2~10 μm粒度组分最强正相关,青藏高原东缘湖相沉积的SUS与2~10 μm粒度组分最强负相关,反映2~10 μm粒度组分为黄土高原和青藏高原乃至亚洲干旱—半干旱地区连续稳定敏感的背景沉积组分。黄土高原黄土—古土壤沉积的SUS与32~63 μm粒度组分最强负相关,青藏高原东缘湖相沉积的SUS与32~63 μm粒度组分最强正相关,反映32~63 μm粒度组分不仅是黄土高原尘暴事件沉积的敏感指标,也是青藏高原东缘湖相沉积记录的地震事件敏感指标。SUS与粒度组分的相关性在青藏高原东缘地区地震事件层开始部分高于结束部分,也较好地反映地震事件为研究区添加新鲜沉积物后随地形地貌恢复逐步减少的过程。SUS与粒度组分相关性也受当地物源的影响。  相似文献   

17.
时伟  蒋汉朝 《古地理学报》1999,24(3):599-610
为探讨构造稳定地区(如黄土高原)和构造活跃地区(如青藏高原东缘)粉尘沉积物中磁化率(SUS)与粒度的相关性及其对环境事件的指示意义,本次研究分析了黄土高原蓝田剖面黄土—古土壤样品和青藏高原东缘湖相沉积样品的粒度和磁化率记录。黄土高原黄土—古土壤沉积SUS与2~10 μm粒度组分最强正相关,青藏高原东缘湖相沉积的SUS与2~10 μm粒度组分最强负相关,反映2~10 μm粒度组分为黄土高原和青藏高原乃至亚洲干旱—半干旱地区连续稳定敏感的背景沉积组分。黄土高原黄土—古土壤沉积的SUS与32~63 μm粒度组分最强负相关,青藏高原东缘湖相沉积的SUS与32~63 μm粒度组分最强正相关,反映32~63 μm粒度组分不仅是黄土高原尘暴事件沉积的敏感指标,也是青藏高原东缘湖相沉积记录的地震事件敏感指标。SUS与粒度组分的相关性在青藏高原东缘地区地震事件层开始部分高于结束部分,也较好地反映地震事件为研究区添加新鲜沉积物后随地形地貌恢复逐步减少的过程。SUS与粒度组分相关性也受当地物源的影响。  相似文献   

18.
The origin of the Tertiary ‘red clay’ underlying the Pleistocene loess in the Chinese Loess Plateau remains controversial, although several lines of evidence have suggested a wind‐blown origin. This study examines the particle‐size parameters of the late Miocene and Pliocene ‘red clay’ by comparing it with those of the late Pleistocene loess. The particle‐size distribution of a total of 15 339 loess and 6394 ‘red clay’ samples taken from 12 loess sections along a north–south transect and two ‘red clay’ sequences at Lingtai and Jingchuan was systematically analysed. The median grain size, skewness and kurtosis of the late Pleistocene loess all show a systematic southward change and are principally influenced by distance from source region. The spatial and temporal differentiation of dust deposits is expressed in a skewness–kurtosis–median grain size ternary diagram, from which the distance to the source region can be inferred. The particle‐size characteristics of the Tertiary ‘red clay’ sediments are very similar to those of the palaeosols within the late Pleistocene loess deposits, suggesting an aeolian origin for the ‘red clay’. Based on the comparison of ‘red clay’ and loess in the ternary diagrams, it is inferred that the source–sink distance was greater in the Neogene than in the last and penultimate interglacials, and that the dust source region in north‐western China underwent a progressive expansion during the period from at least 7·0 Ma to the present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号