首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
End-member synthetic fayalite and forsterite and a natural solid-solution crystal of composition (Mg1.80,Fe0.20)SiO4 were investigated using Raman spectroscopy. Polarized single-crystal spectra were measured as a function of temperature. In addition, polycrystalline forsterite and fayalite, isotopically enriched in 26Mg and 57Fe, respectively, were synthesized and their powder spectra measured. The high-wavenumber modes in olivine consist of internal SiO4 vibrations that show little variation upon isotopic substitution. This confirms conclusions from previous spectroscopic studies that showed that the internal SiO4 vibrations have minimal coupling with the lower-wavenumber lattice modes. The lowest wavenumber modes in both forsterite and fayalite shift in energy following isotopic substitution, but with energies less than that which would be associated with pure Mg and Fe translations. The low-wavenumber Raman modes in olivine are best described as lattice modes consisting to a large degree of mixed vibrations of M(2) cation translations and external vibrations of the SiO4 tetrahedra. The single-crystal spectra of forsterite and Fo90Fa10 were recorded at a number of temperatures from room temperature to about 1200 °C. From these data the microscopic Grüneisen parameters for three different Ag modes for both compositions were calculated, and also the structural state of the solid solution crystal was investigated. Small discontinuities observed in the wavenumber behavior of a low-energy mixed Mg/T(SiO4) mode between 700 and 1000 °C may be related to minor variations in the Fe–Mg intracrystalline partitioning state in the Fo90Fa10 crystal, but further spectroscopic work is needed to clarify and quantify this issue. The mode wavenumber and intensity behavior of internal SiO4 vibrations as a function of temperature are discussed in terms of crystal field and dynamic splitting and also 1 and 3 coupling. Crystal-field splitting increases only very slightly with temperature, whereas dynamical-field splitting is temperature dependent. The degree of 13 coupling decreases with increasing temperature.  相似文献   

2.
We have obtained data on various brightness states of the polar MT Dra over five years of observations, including the first multicolor photometry for this close binary. We confirm the known orbital period, which has remained constant over 17 years, which is unusual for cataclysmic binaries. Our observations in October 2006 demonstrated a transition of the polar to its low brightness state within one day.  相似文献   

3.
This study addresses whether Raman spectra can be used to estimate the degree of accumulated radiation damage in monazite-(Ce) samples whose chemical composition was previously determined. Our results indicate that the degree of disorder in monazite–(Ce), as observed from increasing Raman band broadening, generally depends on both the structural state (i.e., radiation damage) and the chemical composition (i.e., incorporation of non-formula elements). The chemical effects were studied on synthetic orthophosphates grown using the Li-Mo flux method, and non radiation-damaged analogues of the naturally radiation-damaged monazite–(Ce) samples, produced by dry annealing. We found that the “chemical” Raman-band broadening of natural monazite–(Ce) can be predicted by the empirical formula, $$ {\hbox{FWHM}} {\hbox{[c}}{{\hbox{m}}^{ - {1}}}{]} = {3}{.95} + {26}{.66} \times {\hbox{(Th}} + {\hbox{U}} + {\hbox{Ca}} + {\hbox{Pb)}} {\hbox{[apfu]}} $$ where, FWHM = full width at half maximum of the main Raman band of monazite–(Ce) (i.e., the symmetric PO4 stretching near 970?cm?1), and (Th+U+Ca+Pb) = sum of the four elements in apfu (atoms per formula unit). Provided the chemical composition of a natural monazite–(Ce) is known, this “chemical band broadening” can be used to estimate the degree of structural radiation damage from the observed FWHM of the ν1(PO4) band of that particular sample using Raman spectroscopy. Our annealing studies on a wide range of monazite–(Ce) reference materials and other monazite–(Ce) samples confirmed that this mineral virtually never becomes highly radiation damaged. Potential advantages and the practical use of the proposed method in the Earth sciences are discussed.  相似文献   

4.
We present the results of our study of the classical symbiotic star Z And during its period of activity in 2000–2010. In this period, the system experienced a series of six outbursts, for three of which high-resolution spectra were obtained and analyzed. These observations provided information about the system’s behavior during the entire activity period, rather than during an individual outburst. In particular, we found a fundamental difference between the first outburst, which initiated the activity period, and subsequent outbursts, namely, the presence of bipolar collimated optical outflows for some of the outbursts. We propose a model that can explain all the spectroscopic phenomena observed during this series of outbursts, as well as previous series of outbursts of Z And, and suggest that similar scenarios may be valid for other classical symbiotic stars.  相似文献   

5.
International Journal of Earth Sciences - In this study, we report U–Pb Laser Ablation ICP-MS zircon and ID-TIMS monazite ages for peraluminous granitoid plutons...  相似文献   

6.
The reststrahlen features in thermal infrared, or vibrational, spectra of Mg-Fe olivines ((Mg,Fe)2SiO4) exhibit trends in position, strength, and number of features that are diagnostic of the relative proportions of the Mg and Fe cations in the minerals. Although band positions move to lower wavenumbers (longer wavelengths) across the forsterite–fayalite compositional binary in a generally linear manner, specific feature shifts in transmittance data are described best by two linear fits with a break in slope near Fo70. The break in slope may be accompanied by an offset as well; both traits are attributed to structural changes in olivine brought about by distortion of the crystal lattice by Fe. Reflectance and emissivity spectra exhibit similar trends in band position with composition, and all three types of data demonstrate that some olivine band strengths change across the Mg–Fe solid solution series and also are diagnostic of composition. Olivines have been identified in a wide array of thermal infrared spectra of planetary materials and have been interpreted as being present on the surfaces of Mercury, the Moon, Mars, and a number of asteroids based on the analysis of thermal infrared spectra. New linear least squares models of the emissivity spectra of olivine-bearing Martian meteorites enable a preliminary estimation of the accuracy with which quantitative estimates of olivine abundance and solid solution composition can be derived from the spectra of mixtures.  相似文献   

7.
The adsorption of two model siderophores, desferrioxamine B (DFOB) and aerobactin, to lepidocrocite (γ-FeOOH) was investigated by attenuated total reflection infrared spectroscopy (ATR-FTIR). The adsorption of DFOB was investigated between pH 4.0 and 10.6. The spectra of adsorbed DFOB indicated that two to three hydroxamic acid groups of adsorbed DFOB were deprotonated in the pH range 4.0-8.2. Deprotonation of hydroxamic acid groups of adsorbed DFOB at pH values well below the first acid dissociation constant of solution DFOB species (pKa = 8.3) and well below the point of zero charge of lepidocrocite (pHPZC = 7.4) suggested that the surface speciation at the lower end of this pH range (pH 4) is dominated by a surface DFOB species with inner-sphere coordination of two to three hydroxamic acids groups to the surface. Maximum adsorption of DFOB occurred at approximately pH 8.6, close to the first pKa value of the hydroxamic acid groups, and decreased at lower and higher pH values.The spectra of adsorbed aerobactin in the pH range 3-9 indicated at least three different surface species. Due to the small spectral contributions of the hydroxamic acid groups of aerobactin, the interactions of these functional groups with the surface could not be resolved. At high pH, the spectral similarity of adsorbed aerobactin with free aerobactin deprotonated at the carboxylic acid groups indicated outer-sphere complexation of the carboxylate groups. With decreasing pH, a significant peak shift of the asymmetric carboxylate stretch vibration was observed. This finding suggested that the (lateral) carboxylic acid groups are coordinated to the surface either as inner-sphere complexes or as outer-sphere complexes that are strongly stabilized at the surface by hydrogen bonding at low pH.  相似文献   

8.
Vast parts of the Australian continent are prospective for precious and base metal mineralisation, but exploration is hindered by extensive cover of often deeply reaching regolith. New operational exploration methods are required that can help to characterise the cover and provide information about bedrock signatures. This paper shows how mineral mapping information from a combination of satellite multispectral Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery and drill core hyperspectral profiling data (HyLogging™) can be used to unravel the regolith stratigraphy and to describe regional variations of regolith landforms, delivering important information for mineral exploration.The case study is located in the Neale tenements in the northeastern Albany–Fraser Orogen (Western Australia), which is prospective for Tropicana-style gold mineralisation. By interpretation of indicator minerals from hyperspectral drill hole logging data the regolith stratigraphy atop a metamorphic basement, comprising saprock, ferrugineous saprolite, kaolinitic saprolite, silcrete and transported cover, is recorded in cm-detail. Important mineralogical parameters extracted from the hyperspectral subsurface data and validated by XRD and FTIR, are 1) the abundance and type of iron oxides, 2) the abundance and crystallinity of kaolinite, 3) the abundance and composition of primary minerals, such as white mica, and 4) the abundance of quartz.The HyLogging™ data served as ground control points for mineral mapping information provided by CSIRO's ASTER Geoscience Products, which are a collection of mineral maps that highlight variations in the abundance, type or chemistry of selected mineral groups. Key ASTER Geoscience Products for regolith characterisation were the Ferric Oxide and AlOH abundance and composition images. The comparison of the surface with the subsurface data suggests three major different regolith landforms, including erosional, depositional and relict areas, which were used to generate a map showing transported versus relict and erosional areas. Erosional domains were mapped out in great detail, providing important information for exploration in saprolite dominated areas. Furthermore, source areas of transported material could be identified, which may help to understand the distribution of geochemical signatures collected during, for example, geochemical soil sampling projects.  相似文献   

9.
Fractal/multifractal modeling of geochemical data is an interesting topic in the field of applied geochemistry. Identification of weak anomalies for mineral exploration in covered areas is one of the most challenging tasks for utilization of geochemical data. In this study, three fractal models, consisting of the concentration–area (C–A), spectrum–area (S–A) and singularity index models were applied to identify geochemical anomalies in the covered area located in the Chaobuleng Fe polymetallic district, Inner Mongolia (China). The results show that (1) the grassland cover weakens the concentrations of geochemical elements; (2) the C–A model has a limitation to identify weak anomalies in covered areas; (3) the S–A model is a powerful tool to decompose mixed geochemical patterns into a geochemical anomaly map and a varied geochemical background map but suffers edge effects in an irregular shaped study area; and (4) the singularity index is a useful tool to identify weak geochemical anomalies.  相似文献   

10.
Four different sets of experiments were completed in order to constrain vivianite [Fe3(PO4)2 · 8H2O] reactivity under conditions pertinent to As(V)-bearing groundwater systems. Firstly, titration experiments were undertaken in the pH range 4-9 to determine the zero point of charge (ZPC) of vivianite; showing that the ZPC lies at a pH of approximately 5.3. Secondly, the steady state dissolution rates of vivianite far from equilibrium were measured in aqueous solutions in the pH range 2–10 at 18.5 °C (±3 °C) using a fluidized bed reactor. The rate of vivianite dissolution, R, is given by  相似文献   

11.
《Geochimica et cosmochimica acta》1999,63(11-12):1751-1765
Solubility methods were employed to determine conditional equilibrium constants for the formation of hydroxide and mixed hydroxy–chloride complexes of Pd(II). Measurements were made over a temperature range of 25–85°C, a pH range from 0 to 12, and ionic strengths of 0.1, 0.2, 0.5 and 1.0 molal in both KCl and NaClO4 media. Several speciation models were fit to the data using nonlinear regression, and the model yielding the best fit with the fewest number of species was accepted for each temperature and ionic strength. The conditional equilibrium constants were then fit to a function of ionic strength and temperature (including a Debye–Hückel term) to facilitate interpolation and extrapolation to infinite dilution. The following species were found to be important in KCl solutions: PdCl42−, PdCl3(OH)2−, and Pd(OH)20. The relative proportions of the species are dependent on pH and ionic strength (chloride concentration). In perchlorate media the predominant species were Pd(OH)3, Pd(OH)20, PdOH+ and Pd2+, depending on pH. Conditional stability constants determined in this study agree well with those reported in previous work for the simple chloride and hydroxide complexes, but our results suggest that mixed complexes may be more important than previously thought, and that PdCl3(OH)2− may be the dominant species in seawater, followed by Pd(OH)20.  相似文献   

12.
During the Cretaceous, high global sea-level and low latitudinal temperature variations led to the growth of epeiric carbonate platforms. Platform-scale dolomitization of these platforms is not common, reflecting the low Mg/Ca ratio of seawater and a humid climate. This study describes the processes governing pervasive dolomitization of a land-attached carbonate platform within the Iberian Basin. Dolomite is planar to sub-planar with a geochemical signature consistent with dolomitization from penesaline seawater. Dolomitization was most pervasive during a 1 Myr period in the middle Cenomanian, by repeated reflux of seawater from brine pools formed on the top of a southward-prograding carbonate platform. Tilting and structural reorganization in the Upper Cenomanian led to a reversal in polarity of the platform, and dolomitization was restarted by the northward reflux of seawater. Rising relative sea-level and oceanic acidification led to back-stepping of the platform such that the supply of dolomitizing fluids was cut off. In the Lower Turonian, pervasively dolomitized rudist rudstone facies in the south of the study area indicate that dolomitization restarted, either penecontemporaneously or later, from highly evaporated Campanian–Maastrichtian seawater. A systematic increase in dolomite crystal size up-section ties broadly, but not entirely, to stratigraphy. It is possible that these textural differences reflect changes in fluid chemistry, limestone permeability or precursor rock texture. However, the lack of stratigraphic conformance, and the preservation of the earliest-formed dolomite only in the oldest sediments, could indicate a progressive recrystallization of early-formed dolomite through repeated reflux of brines. As such, the succession appears to preserve a fossilized record of dolomite recrystallization through time during the Cenomanian–Turonian. The results of this study therefore provide a record of the progressive dolomitization of a carbonate platform and demonstrate the important interplay of climate and basin-scale tectonics on dolomite distribution and crystallinity.  相似文献   

13.
The synthesis and the chemical, structural, magnetic, and Mössbauer spectral characterization of three synthetic alluaudites, Na2Mn2Fe(PO4)3, NaMn Fe2(PO4)3 and Na2MnFeIIFeIII(PO4)3, and a natural sample with the nominal composition of NaMn Fe2(PO4)3, collected in the Buranga pegmatite, Rwanda, are reported. All four compounds have the expected alluaudite monoclinic C2/c structure with the general formula [A(2)A(2)][A(1)A(1)A(1)2]M(1)M(2)2(PO4)3 in which manganese(II) is on the M(1) site and manganese(II), iron(III) and, in some cases, iron(II) on the M(2) site. The X-ray structure of Na2Mn2Fe(PO4)3 also indicates a partially disordered distribution of NaI and MnII on the M(1) and A(1) crystallographic sites. All four compounds are paramagnetic above 40 K and antiferromagnetically ordered below. Above 40 K the effective magnetic moments of NaMnFe2(PO4)3 and Na2MnFeIIFeIII(PO4)3 are those expected of high-spin manganese(II) and iron(III) with the 6A1g electronic ground state and high-spin iron(II) with the 5T2g electronic ground state. In contrast, the effective magnetic moment of Na2Mn2Fe(PO4)3 is lower than expected as a result of enhanced antiferromagnetic exchange coupling by the manganese(II) on the M(2) site. The Mössbauer spectra of all four compounds have been measured from 4.2 to 295 K and have been found to be magnetically ordered below 40 K for Na2Mn2Fe(PO4)3 and 35 K for the remaining compounds. The Mössbauer spectra of Na2Mn2Fe(PO4)3 exhibit the two expected iron(III) quadrupole doublets and/or magnetic sextets expected for a random distribution of manganese(II) and iron(III) ions on the M(2) site. Further, the Mössbauer spectra of Na2MnFeIIFeIII(PO4)3 exhibit the two iron(II) and two iron(III) quadrupole doublets and/or magnetic sextets expected for a random distribution of iron(II) and iron(III) on the M(2) site. Surprisingly, the synthetic and natural samples of NaMnFe2(PO4)3 have 19 and 10% of iron(II) on the M(2) site; apparently the presence of some iron(II) stabilizes the alluaudite structure through the reduction of iron(III)–iron(III) repulsion. The temperature dependence of the iron(II) quadrupole splitting yields a 440 to 600 cm–1 low-symmetry component to the octahedral crystal field splitting at the M(2) site. The iron(II) and iron(III) hyperfine fields observed at 4.2 K are consistent with the presence of antiferromagnetic ordering at low temperatures in all four compounds.  相似文献   

14.
The Sn-rich Qiguling topaz rhyolite dike intrudes the Qitianling biotite granite of the Nanling Range in southern China; the granite hosts the large Furong Sn deposit. The rhyolite dike is typically peraluminous, volatile-enriched, and highly evolved. Whole-rock F and Sn concentrations attain 1.9 wt.% and 2700 ppm, respectively. The rhyolite consists of a fine-grained matrix formed by quartz, feldspar, mica and topaz, enclosing phenocrysts of quartz, feldspar and mica; it is locally crosscut by quartz veinlets. Lithium-bearing micas in both phenocrysts and the groundmass can be classified as primary zinnwaldite, “Mus-Ann” (intermediate member between annite and muscovite), and secondary Fe-rich muscovite. Topaz is present in the groundmass only; common fluorite occurs in the groundmass and also in a specific cassiterite, rutile and fluorite (Sn–Ti–F) assemblage. Cassiterite and rutile are the only Sn and Ti minerals; both cassiterite and Nb-rich rutile are commonly included in the phenocrysts. The Sn–Ti–F assemblage is pervasive, and contains spongy cassiterite in some cases; cassiterite also occurs in quartz veinlets which cut the groundmass. Electron microprobe and LA-ICP-MS compositions were used to study the magmatic and hydrothermal processes and the role of F in Sn mineralization. The presence of zinnwaldite and “Mus-Ann”, which are respectively representative of early and late mica crystallization during magma differentiation, also suggests a significant decrease in f(HF)/f(H2O) of the system. Cassiterite included in the zinnwaldite phenocrysts is suggested to have crystallized from the primary magma at high temperature. Within the Sn–Ti–F aggregates, rutile crystallized as the earliest mineral, followed by fluorite and cassiterite. Spongy cassiterite containing inclusions of the groundmass minerals indicate a low viscosity of the late fluid. The cassiterite in the quartz veinlets crystallized from low-temperature hydrothermal fluids, which possibly mixed with meteoric water. In general, cassiterite precipitated during both magmatic and hydrothermal stages, and over a range of temperatures. The original fluorine and tin enrichments, f(HF)/f(H2O) change in the residual magma, formation of Ca,Sn,F-rich immiscible fluid, decrease of the f(HF) during groundmass crystallization, and mixing of magma-derived fluids with low-saline meteoric water during the late hydrothermal stage, are all factors independently or together responsible for the Sn mineralization in the Qiguling rhyolite.  相似文献   

15.
Floods have profound impacts on populations worldwide in terms of both loss of life and property. A global inventory of floods is an important tool for quantifying the spatial and temporal distribution of floods and for evaluating global flood prediction models. Several global hazard inventories currently exist; however, their utility for spatiotemporal analysis of global floods is limited. The existing flood catalogs either fail to record the geospatial area over which the flood impacted or restrict the types of flood events included in the database according to a set of criteria, limiting the scope of the inventory. To improve upon existing databases, and make it more comprehensive, we have compiled a digitized Global Flood Inventory (GFI) for the period 1998–2008 which also geo-references each flood event by latitude and longitude. This technical report presents the methodology used to compile the GFI and preliminary findings on the spatial and temporal distributions of the flooding events that are contained in the inventory.  相似文献   

16.
Investigation of the distribution of basalts, dolerites, and tuffs in the Kanin–Timan–Pechora large igneous province was completed by generalization of data of geological surveys and analysis of the data of deep drilling. The province appears like a nonisometric ellipse and extends northwestward for a distance of nearly 850 km at the width of 250–500 km. Its area is nearly 285 000 km2. The area of the volcanic rocks is about 85 500 km2. The volume of eruptive material alone could be equal to 1000–1200 km3. The age of formation of the traps corresponds to the late period of activity of the process and was less than 7 mln. y. The formation of the province was result of the action of short-lived and low intensity plumes. But it was one of the episodes of the Late Devonian superplume event in the East European platform. The province is separated by an amagmatic area from neighboring magmatic provinces of the same age. The distance between borders of the provinces is 200–400 km.  相似文献   

17.
The study was carried out on the Sulejów dam reservoir (Central Poland). Water and sediment samples were collected between February and October 2006. Sulfur compounds in the sediment were chemically extracted and subjected to isotopic analysis.Large variability of SO42− concentration in the water column (from 10.3 to 36.2 mg/dm3) and the isotopic composition of sulfur (δ34S from 2.1 to 5.4‰) was observed. The main identified sources of SO42− were watercourses, surface runoff, and phosphorus fertilizers.Both oxidized sulfur species (SO42−) and its reduced forms were found in sediments. Particular sulfur forms were characterized by large variations in both, concentrations and the isotopic composition of sulfur. SO42− in the sediment and in the water column had different genesis. Bacterial oxidation of organic sulfur and its binding in SO42− were observed in the sediment. Under reducing conditions, oxidized and organic sulfur is converted to H2S which reacted with Fe or other metallic ions leading to metal sulfide precipitation. Monosulfides were shown to have a very low concentration, ranging up to 0.07 mg/g of sediment. The transformation of elemental sulfur from sulfides through their chemical oxidation occurred in the sediment.  相似文献   

18.
The study area is a small part of the Sabzevar structural zone, and is confined between Semnan and Khorasan provinces. The oldest sedimentary rocks of this region are Middle Jurassic in age with horizons of calc-alkaline rhyolitic-rhyodacitic lavas in between. First alkaline basaltic lavas accompanied by diabasic dikes in this region appeared along with Early Cretaceous lime-stone. Late Cretaceous rocks are composed of volu-minous calc-alkaline rhyodacitic-rhyolitic and trachy-andesitic lavas and dikes, and basaltic dikes. With abundance pinkish-cream plagic limestone this has been overlain by Paleocene rocks.  相似文献   

19.
Acta Geochimica - Goethite (α-FeOOH) is one of the most abundant minerals on the Earth surface, occurring in temperate, tropical and equatorial climates. Fe in goethite can be substituted by...  相似文献   

20.
Jordan, located at the western edge of the Arabian Plate, stands out from the remaining part of the Arabian Peninsula by its abundance in radioactive elements, mainly uranium, in a way so far not found elsewhere on the Arabian Peninsula. Uranium (U) and thorium in Jordan are concentrated in eight different types of ore mineralization: (1) intrusive-related (intramagmatic), (2) vein-type, (3) superficial, (4) sandstone-hosted (5) limestone-hosted, (6) U-Th-REE placer-type, (7) black shales, and (8) phosphorites. The major concentration of radioactive elements are synsedimentary and diagenetic in nature, mainly in near-shore marine depositional environments where uranium contents are abnormally high in the late Cretaceous to Paleogene phosphorites and increasing towards the mobile shelf of the Tethys ocean. These uraniferous phosphorites form the source of uranium that was redeposited within terrigenous chemical residues of lacustrine-fluvial depositional systems in Central Jordan (calcretes). Faultbound radiometric anomalies are caused by hot brines being vented along with the Jordan-Dead-Sea rifting. Presumably, low-grade U accumulation in (hot) black shales and marls of Silurian age are responsible for these radiometric anomalies. In the present paper, the Jordanian uranium concentrations are compared with reference types of uranium deposits elsewhere in the world to get an idea if the geological, chemical, and mineralogical features of analogue uranium mineralization in Jordan are indicative of economic targets. The uranium concentration in Jordanian phosphorites has been tracked beyond the border into Syria, Iraq, Israel, and Saudi Arabia. The uranium potential in neighboring countries is assessed based on the current geological data available for the Mediterranean Phosphorite Belt which is poised to become a another string to the bow with respect to energy supply on the Arabian Peninsula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号