首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Pollen and diatoms preserved in the radiocarbon dated sediments of Two Frog Lake in the Seymour-Belize Inlet Complex of the central mainland coast of British Columbia document postglacial climate change. Two Frog Lake was isolated from the sea prior to 11,040 ± 50 yr BP (13,030 cal. yr BP) when the climate was cool and dry, and open Pinus contorta woodlands covered the landscape. These woodlands were replaced by a mixed conifer forest ca. 10,200 yr BP (ca. 12,300 cal. yr BP) when the climate became moister. A relatively dry and warm early Holocene climate allowed Pseudotsuga menziesii to migrate northward to this site where it grew with Picea, Tsuga heterophylla and Alnus. The climate became cooler and moister at ca. 8,000 yr BP (ca. 9,200 cal. yr BP), approximately 500–1,000 years prior to sites located south of Two Frog Lake and on the Queen Charlotte Islands, but contemporary with sites on the northern mainland coast of British Columbia and south coastal Alaska. Climate heterogeneity in central coastal British Columbia appears to have occurred on a synoptic scale, suggesting that atmospheric dynamics linked to a variable Aleutian Low pressure system may have had an important influence on early Holocene climate change in the Seymour-Belize Inlet Complex. The transition to cooler and moister conditions facilitated the expansion of Cupressaceae and the establishment of a modern-type coastal temperate rainforest dominated by Cupressaceae and T. heterophylla. This was associated with progressive lake acidification. Diatom changes independent of vegetation change during the late Holocene are correlative with the mid-Neoglacial period, when cooler temperatures altered diatom communities.  相似文献   

2.
Arcellaceans have been used as indicators of a variety of paleolimnological conditions including pH, eutrophication, oxygen level, and heavy metal contamination, but there has only been limited application of the group to climate and land-use change research. The limnological evolution of Swan Lake in southwestern Ontario was documented using arcellaceans as proxies, and compared to the results of a palynological analysis, with which it closely correlated. The palynological record documents the rapid disappearance of forest by around 1850 as the area was cleared for agriculture and settlements. The change was characterized by a shift in the palynological record from the Woodland to High Diversity assemblages. Similarly the arcellacean fauna changed from the Pre-European Settlement Assemblage to the distinctive low diversity, stressed environment European Deforestation Assemblage. The introduction of high-yield chemical fertilizers in the post World War II era, and the resultant eutrophication of the lake, was clearly recognizable in the palynological record as indicated by the dramatic increase in the algae Pediastrum (High Nutrient Assemblage). This change in farming practice was also identifiable with arcellacean proxies, as indicated by the appearance of the algalphilic Eutrophication Assemblage. The arcellacean Ecologically Destabilized Assemblage dominated the lake for short intervals during the transition between the Pre-European Settlement and European Deforestation assemblages and again at the transition between the European Deforestation and Eutrophication Assemblages, indicative of periods of ecological destabilization as the lake adjusted to new trophic inputs. A stressed environment arcellacean Ecologically Destabilized Assemblage found in a portion of the core estimated to have been deposited between AD 1350 and AD 1700 may provide evidence of an earlier phase of deforestation associated with Huron Indian agricultural practices. The close correlation between the palynological and arcellacean proxy data clearly demonstrates the potential of arcellaceans as land-use change proxies, and indicates that changes in land-use had an almost immediate impact on the Swan Lake ecosystem. This observation raises concerns about the impact that rapid urbanization is having on the environmentally sensitive Oak Ridges Moraine watershed, of which Swan Lake is a part.  相似文献   

3.
Lamination thickness measurements in sediments from Lake Tuborg, northern Ellesmere Island, Canada document an increase in high-energy hydrologic discharge events from ∼1865 to 1962. The timing of these events corresponds with evidence for an increase in the amount of melt on the adjacent Agassiz Ice Cap, as recorded in ice cores. There appears to have been a non-linear change in depositional energy resulting from a dramatic increase in Agassiz meltwater discharge, particularly after ∼1908. A strong correlation between the Lake Tuborg varve thickness record, the amount of melting on the Agassiz Ice Cap and Eureka 900 mb air temperature records suggests that changes in the height of the freezing level in the atmosphere have affected the extent of summer melting on the Agassiz Ice Cap, leading to high volume discharge events and associated sediment flux to Lake Tuborg.  相似文献   

4.
A combined bulk and detailed geochemical study of the sedimentary organic matter in Lake Albano, central Italy, provides critical data to track the response of this aquatic system to the environmental changes of variable amplitude that occurred during the Holocene. RockEval pyrolysis of this predominantly laminated, organic carbonrich sedimentary sequence shows changes in hydrogen and oxygen indices that are related to variations in the dominance of the primary producers. These variations are further confirmed by the pigments and the carbon isotopic composition of bulk organic matter showing that cyanobacteria dominated the lake waters during the early and late Holocene whereas diatoms have been the main producers during the middle Holocene. Sharp decreases in productivity, 2–3 centuries long, are identified at ca. 8.2, 6.4 and 3.8 ka. B.P. Changes in temperature and/or effective moisture are suggested as the most probable causes, although human impact cannot be ruled out for the latest part of the Holocene.  相似文献   

5.
This paper deals with the investigation of the upper 11.6 m portion of a long drill core (KDP-01) taken from the bottom sediments of Lake Khubsugul. Ostracod species and their assemblages recovered from the core were analyzed. The data are compared with the carbonate and sulfate values obtained from bulk sediment, as well as with the flux of the coarse terrigenous fraction (>200 m) from the same core. Based on the previously calculated depth-age sedimentary model, the oldest age of the core studied here is about 230 ka. The four ostracod species recovered in the core are Cytherissa lacustris, Candona lepnevae, Limnocythere inopinata and Leucocythere sp. According to the distribution of those ostracods, we distinguish four main periods, each of about 50 ka long. Based on the ecological requirements of extant ostracods, two assemblages typifying a low water level and high salinity, on the first hand, and another representing freshwater and high lake level are recognized. The first “high salinity” ostracods correspond to “cold” periods as seen globally, while “freshwater” ostracods are associated with interglacials. Ostracod valves are absent during interglacial optima. This may be due to chemical dissolution of calcium carbonate related to organic matter decay at the initial stages of diagenesis, probably because during interglacials, in contrast to glacials, organic matter flux reaching the lake bottom were significantly higher. The periodicity in the development of ostracod species assemblages follows 17, 24 and 47 ka cycles related to orbital forcing. Its diversity is correlated with summer temperature fluctuations in northern altitudes for the past 230 ka. The maximum in species diversity follows the temperature maxima, by about 1.5 and 2 ka. Overall, the data obtained demonstrate a correlation between climatic changes and variations in specific and quantitative ratios of ostracod species during the last 230 ka.  相似文献   

6.
This study focuses on Holocene monsoon dynamics on the central Tibetan Plateau (TP) inferred using a sediment record from Lake Nam Co. A high-resolution (decadal) multi-proxy approach, using geochemical, micropaleontological, and sedimentological methods was applied. Fifteen AMS-14C ages were used to establish the chronology, assuming a reservoir effect of 1,420 years. Our results point to a first strong monsoonal pulse at Lake Nam Co ~11.3 cal ka BP, followed by colder and drier conditions until ~10.8 cal ka BP. A warm and humid climate from ~10.8 to ~9.5 cal ka BP is related to a strong summer monsoon on the central TP, triggering a lake-level highstand at ~9.5 cal ka BP. Declining minerogenic input after ~9.5 cal ka BP indicates less moisture availability until ~7.7 cal ka BP. Following stable conditions between ~7.7 and ~6.6 cal ka BP, a warm and wet climate is inferred for the time span from ~6.6 to ~4.8 cal ka BP. A change towards drier conditions after ~4.8 cal ka BP points to a weakening of the Indian Ocean Summer Monsoon on the central TP, further diminished after ~2.0 cal ka BP. A short-term wet spell occurred from ~1.5 to ~1.3 cal ka BP. By comparing the results derived from Lake Nam Co with several lacustrine records from the central, northern, and eastern TP, a similar but not synchronous pattern of monsoon-driven paleoenvironmental change is observed. Although the general trend of lake and catchment evolution on the TP during the Holocene is also reproduced in this record, pronounced spatial and temporal offsets with respect to distinct climate events were detected, suggesting periods of non-uniform moisture and temperature evolution.  相似文献   

7.
Swan Lake is a small kettle lake located on the Oak Ridges Moraine; a moraine that is recognized as an important source of ground water for the nearby and rapidly expanding Greater Toronto Area. A paleolimnological reconstruction using pollen and diatoms from the lake sediments showed significant changes in biological community composition through the last ∼400 years. Alterations in the diatom and pollen assemblages were most dramatic ca. A.D. 1850, correlating with the highest sediment flux in the lake between the period ca. A.D. 1850 and A.D. 1870. These changes were directly linked to regional deforestation and agricultural activities associated with European settlement. The pollen record from ca. A.D. 1850 to present day indicated that tree species (e.g. Pinus spp., Tsuga canadensis) were declining, while grass (Poaceae) and invasive species (e.g. Ambrosia) were increasing. Around A.D. 1850, the diatom flora changed from an assemblage dominated by large, benthic species (e.g. Sellaphora pupula, Pinnularia cf. maior, and Stauroneis phoenicenteron) to an assemblage characterized by smaller, tychoplanktonic (e.g. Fragilaria tenera, Staurosirella pinnata) and epiphytic (e.g. Achnanthidium minutissimum, Rossithidium linearis) taxa. This diatom community change supports the intermediate disturbance hypothesis which predicts a high level of diversity and richness following an intermediate to intense disturbance of short duration. Phosphorus concentrations in Swan Lake were inferred using a diatom-based regional calibration model, and the results indicated marked changes in lake water chemistry through time (from below detection limits before land clearance and settlement to 19.3 μg l−1 in the current sediments), which were concurrent with episodes of regional deforestation and land-use change. Although the sediment and biological records indicate that the lake ecology has stabilized over the last 30–50 years, paleolimnological records show that the water quality and biology of Swan Lake has changed dramatically and not returned to pre-settlement conditions. Swan Lake presents a detailed record of the impact created by deforestation and urban development with a population of <50 individuals per km2. Detailed paleolimnological studies like Swan Lake, in tandem with global human footprint studies, can create realistic estimates of land-use impacts at the global scale.  相似文献   

8.
A stratigraphic record from a lake in the Central Plateau Regionof northern British Columbia reveals changes in environment and inferredclimate during the Holocene. Upon deglaciation (ca. 11500 BP), Skinny Lakebecame an embayment of an ice-dammed lake. High clastic sedimentationrates, an unstable landscape, and cool, possibly wet conditions likelypersisted until the early Holocene (ca. 9000 BP). From ca. 9000–8300 BPdeclining lake levels coupled with warm and dry conditions resulted in theformation of a prominent marl bed. A colonizing shrub and herb assemblagepersisted from 9000 BP until about 8300 BP when it was replaced by a spruce(Picea) and subalpine fir (Abieslasiocarpa) forest under slightly cooler and moister conditions. Themiddle Holocene was warmer-than-present, however, decreasingtemperature and increasing precipitation trends characterize the period fromca. 6000 BP–3000 BP. The transition to modern climate at 3000 BP isevident primarily in the lithostratigraphic record and corresponds with theinitiation of the Tiedemann glacial advance (ca. 3300 BP) in thesouth-coastal mountains of British Columbia. A significant change infossil pollen occurs at ca. 2400 BP and is characterised by an increase in pinepollen accompanied by decreases in alder (Alnus), spruceand fir. This also coincides with an increase in west-sourced exoticwestern hemlock (Tsuga heterophylla) and cedar type(Cupressaceae) pollen possibly transported by regional changes in air masscirculation patterns associated with Aleutian Low dynamics. This studydemonstrates that both lithostratigraphic and biotic proxies are helpful inreconstructing the timing and nature of climate change and that each may havevarying sensitivities to a particular type of change.  相似文献   

9.
The Arcellacean (Thecamoebian) fauna was assessed in five Holocene sediment cores obtained from James and Granite lakes in the Temagami region of northeastern Ontario. In addition, palynological analysis was carried out on two of these cores, one each from James and Granite lakes. The first indication of postglacial colonization by plants was the appearance of rare Cupressaceae pollen, dated to 10,800 yr BP. Plant diversity began to increase by 10,770 yr BP when Pinus spp. and Larix migrated into the area. The first appearance of arcellaceans occurred after 9650 yr BP in assemblages dominated by Centropyxis constricta and opportunistic Centropyxis aculeata. High abundances of charophytes in the cores until 8800 yr BP indicated that macroalgae were proliferating at this time. This deposition is interpreted to have occurred during the draining of an ice-marginal lake following the retreat of the Laurentide Ice Sheet. Based on pollen analysis, warmer conditions associated with the Holocene Hypsithermal prevailed in the area from 6250 to 4115 yr BP. The stable, open Great Lakes – St. Lawrence type forest that developed here at the beginning of the Hypsithermal continues to prevail to the present. The periodic colonization of the lake by beavers (Castor canadensis) acted as a control on water-level and eutrophication through the Holocene. Evidence of eutrophication was indicated in the core samples by the abundance of high levels of the alga Pediastrum and the arcellacean Cucurbitella tricuspis. Eutrophication periodically developed when beavers dammed a site, causing the rate of flow in drainage streams to slow and stagnant conditions occurred. When the site became depleted of the nearby trees, which were preferred by beaver (Betula, Alnus and Populus), the dam would be abandoned, causing the water-level to drop. Stagnant conditions were reduced as flow levels increased, reducing eutrophication and resulting in recovering forest stands. In addition, the lowering water levels would result in encroachment of the forest along the lake shore. This cycle occurred many times in the history of this lake as indicated by fluctuations in the size of arcellacean populations.  相似文献   

10.
Lake Duluti is a small, topographically closed crater lake located on the flanks of Mt Meru, northern Tanzania. Analyses of diatoms in three short sediment cores and four modern samples from Lake Duluti were used to infer past environmental changes. 210Pb and 137Cs activity profiles combined with AMS 14C dates provide the chronological framework. Weak agreement between the 210Pb and 14C records, together with dating uncertainty, precludes construction of precise age models. The modern diatom flora, from plankton and three periphytic habitats, is dominated by Aulacoseira ambigua (Grunow) Simonsen, Gomphonema parvulum (Kützing) Grunow and Nitzschia amphibia Grunow. All three cores display similar stratigraphic succession, but the relative ratio of habitats represented by the diatoms varies substantially between cores. Diatoms indicate that the oldest part of the record is characterized by relatively low lake level and swampy vegetation. In the late nineteenth or early twentieth century there was a rapid lake level rise and the swamp turned into an open-water lake. High lake levels have prevailed since that time.  相似文献   

11.
Geochemistry of a sediment core from Lake Hovsgol, northwest Mongolia provides a continuous, 27-kyr history of the response of the lake and the surrounding catchment to climate change. Principle component (PC) analysis of 19 major and trace elements, total inorganic carbon (TIC), and total organic carbon (TOC) in the bulk sediment samples revealed that the 21 chemical components can be grouped into four assemblages—group-1: Na, Mg, Ca, Sr, and TIC, hosted in carbonate minerals (calcite, dolomite, and magnesian calcite); group-2: Ni, Cu, and Zn, recognized as biophilic trace metals, and TOC; group-3: Al, K, Ti, V, Fe, Rb, Cs, Ba, and Pb, composed of rock-forming minerals; and group-4: Cr, Mn, and As, sensitive to the redox condition of the sediment. The four element assemblages originated from three relevant processes. Group-1 and group-2 components are authigenic products and comprise the end member on the PC-1 score, whose variation reflects changes in the water volume, i.e. the balance between precipitation and evaporation (P/E). Group-3 components from detrital materials of the catchment contribute to the PC-2 score, whose variability indicates erosion/weathering intensity in the drainage basin, which might be controlled by the amount of vegetation cover associated with moisture change. The group-4 components of redox-sensitive elements contribute to the PC-3 score and are not an end member because of their small amount. The first two PC scores suggest a sequential record of paleo-moisture evolution in central Asia. The P/E balance in the Lake Hovsgol region, inferred from the PC-1 score, gradually increased during the glacial/interglacial transition. This resembles climate change of the North Atlantic region on the glacial–interglacial scale, but does not reflect the abrupt climate shifts such as the warm Bølling-Allerød and the cold Younger Dryas of the North Atlantic on the millennial scale. A periodic variation of ~8.7 kyr was observed in the PC-2 score profile of detrital input to Lake Hovsgol over the last glacial and Holocene. The decrease in detrital input coincided with the copious supply of moisture from the Asian monsoon regime and the North Atlantic westerly winds to the Baikal drainage basin, which includes Lake Hovsgol. Our geochemical records from Lake Hovsgol demonstrate that the climate system of interior continental Asia was strongly influenced by change on both Milankovitch and sub-Milankovitch scales.  相似文献   

12.
Stable isotopic compositions and concentrations of total sedimentary sulphur (S) were determined in cores from 6 lakes in the acid-sensitive Muskoka-Haliburton region of south-central Ontario. The isotopic composition of S in deep sediment (> ~ 20 cm) was approximately constant in all lakes, and indicated a pre-industrial δ 34S value between +4.0 and +5.3‰, which is similar to current bulk deposition. Similarly, total S concentrations in deep sediment were relatively low (1.9–5 mg S g−1 dwt) and approximately constant with depth within cores. All lakes exhibited up-core increases in total S and decreases in δ 34S at a depth corresponding to the beginning of industrialization in the Great Lakes region ( ~ 1900), resulting in a generally reciprocal depth pattern between total S concentration and δ 34S ratios. While initial shifts in total S and δ 34S were likely due to enhanced SO4 reduction of newly available anthropogenic SO4, both the magnitude and pattern of up-core S enrichment and shifts in δ 34S varied greatly among lakes, and did not match changes in S deposition post 1900. Differences between lakes in total S and δ 34S were not related to any single hydrologic (e.g., residence time) or physical (e.g., catchment-area-to-lake area ratio) lake characteristic. This work indicates that sediment cores do not provide consistent records of changes in post-industrial S deposition in this region, likely due to redox-related mobility of S in upper sediment.  相似文献   

13.
Human-induced perturbations in the Lake Norrviken catchment, Sweden, over the last 100+ years have left distinctive geochemical imprints in the sediments. Disposal of sewage, industrial, and agricultural run-off into the lake since the end of the nineteenth century changed the trophic status from eutrophic to hyper-eutrophic. The primary organic matter (OM) source in the lake is in situ algal material. Total organic carbon (TOC) concentrations increased near the mid-section of a short sediment core collected from the deepest part of the lake, reflecting elevated epilimnetic productivity and consequent hypolimnetic anoxia. Accompanying shifts to lighter stable organic C and total N isotopic compositions suggest that cyanobacterial productivity increased during this period. The distribution of pigments in the core indicates a shift in the phytoplankton community to a cyanobacteria-dominated system. Moreover, pigments confirm that N2-fixing versus non-N2-fixing phytoplankton varied depending upon the external inputs of N and P. Conditions in the lake improved after sewage input was diverted and the lake is currently mesotrophic.  相似文献   

14.
Journal of Paleolimnology - Analysis of the oxygen isotopic composition (δ18O) of sedimentary carbonates in Turquoise Lake (N50.83°, W121.69°, 807&nbsp;m), southwestern British...  相似文献   

15.
16.
The objective of study was to explore short-term trends of processes that determine land-use change in Sierra Norte of Oaxaca (SNO), Mexico. Land use and land cover changes (LULCC) were estimated in a complex mosaic of vegetation in the SNO from 1980 to 2000, and projected them to 2020 through a Markovian model. SNO is highly vulnerable to climatic change according to a 2050 GCM scenario. However, 3% annual rate of tropical and temperate forest deforestation from agriculture and livestock encroachment, suggest the threat from land-use change is higher than that from climatic change for this study site. Productive land-use strategies are needed to reduce such high deforestation rates for tropical regions. Controlling deforestation would also reduce short-term effects of CO2 emissions to the atmosphere. Because of the necessity to evaluate anthropogenic ecosystem changes, it is imperative to separate short-term influences such as deforestation, from long-term influences such as climatic change.  相似文献   

17.
Chrysophyte cysts preserved in recent and pre-industrial lake sediment samples from 54 Muskoka-Haliburton (Ontario) lakes were used in a paleolimnological study to determine the impact of acidic precipitation and cottage development on water quality. A total of 246 cyst morphotypes were identified. Ecological preferences of cyst morphotypes were determined using multivariate statistical analysis, cluster analysis, and species-environment correlations. Recent cyst assemblages were related to water chemistry and lake morphometric variables using Redundancy Analysis (RDA). The distribution of morphotypes was related to a gradient of acid neutralising capacity (ANC), expressed through the association of variables related to buffering (i.e. longitude, watershed area, and ionic concentration) with the first axis (1 = 0.29). Cyst assemblages were also defined, to a lesser extent (2 = 0.06), by a trophic status gradient, created through the combination of total nitrogen (TN), total phosphorus (TP), volume-weighted cottage density, and lake depth variables. The identification of lakewater pH and trophic status as important determinants of cyst assemblage structure allowed for the reconstruction of acidification and eutrophication related water chemistry changes using fossil cyst assemblages. The reconstruction of pre-industrial (pre-1850) water quality conditions with fossil cyst assemblages indicated that pH significantly decreased in 24.1% of the study lakes and increased in 16.7% of the lakes. Increases in pH in more alkaline drainage basins are attributed to alkalinity generation processes induced by acidic precipitation as has been shown in other studies. Total phosphorus (TP) concentrations significantly declined in 12.9% of the lakes and increased in 16.6% of lakes. Increases in [TP] were linked to cottage development. Decreases in trophic status may be due to landuse changes, the result of the acidification occurring in the area, or warmer and drier climates. A comparison of chrysophyte cyst and diatom water quality inferences show similar trends in pH changes. There is a good agreement between diatom and chrysophyte bioindicators with respect to [TP] changes in oligotrophic lakes (< 10 g/L); however, diatom inferences suggest that lakes with current [TP] values greater than 10 g/L have decreased in trophic status over time, while chrysophyte reconstructions suggest that these same lakes have become more productive systems.  相似文献   

18.
Late Holocene pollen and sediment records from the Lake Tauanui catchment, northern New Zealand, indicate that the lake formed about 5500 years ago following a series of volcanic events in the Tauanui Volcanic Centre. These volcanic events initiated a volcanosere resulting in a mixed conifer-hardwood forest. Dacrydium cupressinum was the dominant tree. Agathis australis was always present. Changes similar to those registered in other Northland pollen diagrams are apparent. At ca 4000 yr B.P., when the climate became cooler and drier than before, a fire occurred in the catchment area causing erosion of the surrounding slopes and some destruction of forest. Fluctuations in abundance of many forest species, including Ascarina lucida, A. australis and D. cupressinum, from ca 3500 yr B.P. indicate repeated disturbance, increasingly so after 1600 yr B.P. Summer droughts and increased frequency of cyclonic winds are suggested as the cause. Major anthropogenic deforestation events defined by palynology occurred across many parts of the New Zealand landscape at ca 700 yr B.P. At Lake Tauanui anthropogenic forest disturbance, radiocarbon dated to ca 1000 yr B.P., is indicated by significant decline in all tree and shrub elements with concomitant increase in pteridophytes, especially Pteridium esculentum. Charcoal concentration increases steadily from the onset of disturbance, and in the final phase after the arrival of Europeans, major clearance of vegetation is indicated. Herbs increase markedly in this period, in diversity and abundance.  相似文献   

19.
Drumlins are enigmatic subglacial landforms that have been interpreted to form by a number of processes, including incremental accumulation of till, erosion of previously deposited sediment, catastrophic meltwater floods, and sediment deformation. However, relatively little is known about the controls on drumlin formation, such as spatially variable glacial processes or substrate characteristics, and how these controls may be identified from variations in drumlin morphology within a single drumlin field. This paper explores a computational method that allows identification of drumlins and extraction of their morphological characteristics from existing topographic digital data for a portion of the Peterborough drumlin field in Ontario, Canada. Spatial and non‐spatial analysis of the form and distribution of drumlins across the study area identifies drumlin characteristics such as size, elongation ratio, symmetry and long axis orientation and shows that drumlins are not randomly distributed across the region and their form characteristics have distinct regional trends. Kernel density analysis is used to identify the regional trends in drumlin characteristics. Factors that appear to influence the form and distribution of drumlins in the study area include sediment thickness, length of time beneath the ice, ice velocity and direction of ice movement. The distribution of particularly well developed asymmetric and elongate drumlins coincides with the location of a broad bedrock low and is interpreted to identify the former location of a fast‐flowing ice stream.  相似文献   

20.
The evolution and current state of landscapes around Lake Teletskoye have not previously been studied in detail. In the valley of the Malye Chily River, which flows into Lake Teletskoye, the timing of dam failure and draining of two moraine-dammed lakes has been identified. Botanical analysis, ash content determination, and radiocarbon dating of two peat profiles provide insight into postglacial evolution of wetlands related to this landscape. We found clear evidence of the disappearance from the peat of higher vascular species that, today, grows mostly in the plains of Siberia. Correlation of the data obtained with the accepted chronology of the Holocene events in the Russian Altai suggests the following stages of postglacial environmental change in the Malye Chily River valley: (1) the continuation of the Late Würm glaciation degradation (before 7000?cal. yr BP); (2) Holocene Climate Optimum (7000–5000?cal. yr BP); (3) Akkem cooling (5000–4200?cal. yr BP); (4) warm period (4200–3700?cal. yr BP); and (5) Historical cooling (3700–1600?cal. yr BP).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号