共查询到5条相似文献,搜索用时 15 毫秒
1.
Six locations across mainland Portugal were selected for exposing Parmelia sulcata, for a one-year period (8 months for one site), with simultaneous measurement of total (dry + wet) deposition (one-month periods). The exposed lichens and the total (dry + wet) deposition were analysed for cobalt contents by INAA (instrumental neutron activation analysis) and ICP-MS (inductively coupled plasma mass spectroscopy), respectively. The designated wet deposition was evaluated through the collected water volume; the designated dry deposition was assessed after the (dried) residual mass of the wet deposition. An excellent agreement between Co contents in exposed lichens and the cumulative (1) Co contents in the dry deposition, (2) dry deposition, and (3) wet deposition has been found for the locations with alternate drought and precipitation months, high dry deposition, and high Co contents in the latter. Continuous rainfall was found to hinder the Co accumulation in the lichen due to its release from the lichen and/or lower Co contents in the dry deposition. At three locations, P. sulcata Co contents, after subtraction of the background (before exposure), equalled or exceeded the Co contents in the cumulative dry deposition at the end of the exposure time. The optimal exposure period for this species likely depends on the exposure conditions. 相似文献
2.
Three atmospheric boundary layer(ABL) schemes and two land surface models that are used in the Weather Research and Forecasting(WRF) model, version 3.4.1, were evaluated with numerical simulations by using data from the north coast of France(Dunkerque). The ABL schemes YSU(Yonsei University),ACM2(Asymmetric Convective Model version 2), and MYJ(Mellor–Yamada–Janjic) were combined with two land surface models, Noah and RUC(Rapid Update Cycle), in order to determine the performances under sea-breeze conditions. Particular attention is given in the determination of the thermal internal boundary layer(TIBL), which is very important in air pollution scenarios. The other physics parameterizations used in the model were consistent for all simulations. The predictions of the sea-breeze dynamics output from the WRF model were compared with observations taken from sonic detection and ranging, light detection and ranging systems and a meteorological surface station to verify that the model had reasonable accuracy in predicting the behavior of local circulations. The temporal comparisons of the vertical and horizontal wind speeds and wind directions predicted by the WRF model showed that all runs detected the passage of the sea-breeze front. However, except for the combination of MYJ and Noah, all runs had a time delay compared with the frontal passage measured by the instruments. The proposed study shows that the synoptic wind attenuated the intensity and penetration of the sea breeze. This provided changes in the vertical mixing in a short period of time and on soil temperature that could not be detected by the WRF model simulations with the computational grid used. Additionally, among the tested schemes, the combination of the localclosure MYJ scheme with the land surface Noah scheme was able to produce the most accurate ABL height compared with observations, and it was also able to capture the TIBL. 相似文献
3.
A Two-Dimensional Numerical Study of the Impact of a City on Atmospheric Circulation and Pollutant Dispersion in a Coastal Environment 总被引:3,自引:0,他引:3
Alberto Martilli 《Boundary-Layer Meteorology》2003,108(1):91-119
The urban impact on the sea breeze is studied by means of a mesoscale model with a detailed urban parameterisation. Four simulations are carried out on an idealised two-dimensional flat domain. In the base case, half of the domain is characterised by seaand the other half by rural land. In the urban case, an urban area 10 km wide is added near the shoreline. Simulations are performed for a moist rural soil (weak sea breeze) and for a dry rural soil (strong sea breeze). Results are analysed in order to evaluate the impact of the city on the wind, temperature and turbulent kinetic energy fields. The dispersion of a passive tracer emitted near the coastline is, also, used in the comparison. Results show that the city accelerates the sea-breeze formation in the morning (combinations of urban circulation and sea breeze), but it slows thesea-breeze front penetration. Moreover, the presence of the city enhances the recirculation processes and strongly modifies the pollutant dispersion. These effects are enhanced for a moist rural soil. 相似文献
4.
The changes in the response of near surfaceaerosol properties to land- and sea-breezecirculations, associated with the changes in the prevailing synoptic meteorological conditions, are examined for a tropical coastal station. Aerosol properties are nearly similar in both the breeze regimes (land and sea) during seasons of marine airmass while they are distinct during seasons of continental airmass. As the prevailing winds shift from continental to marine and the ambient weather changes from winter conditions to the humid monsoon season, the submicron mode, which dominated the aerosol mass-size distribution, is largely suppressed and the dominance of the super micron mode increases. During periods of continental air mass (winter), the aerosol loading is significantly higher in the land-breeze regime, (particularly in the submicron range) but as the winds shift to marine, the loading initially becomes insensitive to the breeze regimes and later becomes higher in the sea-breeze regime, particularly in the super micron range. 相似文献
5.
It has been challenging to project the tropical cyclone(TC) intensity,structure and destructive potential changes in a warming climate.Here,we compare the sensitivities of TC intensity,size and destructive potential to sea surface warming with and without a pre-storm atmospheric adjustment to an idealized state of Radiative-Convective Equilibrium(RCE).Without RCE,we find large responses of TC intensity,size and destructive potential to sea surface temperature(SST) changes,which is in line with some previous studies.However,in an environment under RCE,the TC size is almost insensitive to SST changes,and the sensitivity of intensity is also much reduced to 3%?C-1–4%?C-1.Without the pre-storm RCE adjustment,the mean destructive potential measured by the integrated power dissipation increases by about 25%?C-1 during the mature stage.However,in an environment under RCE,the sensitivity of destructive potential to sea surface warming does not change significantly.Further analyses show that the reduced response of TC intensity and size to sea surface warming under RCE can be explained by the reduced thermodynamic disequilibrium between the air boundary layer and the sea surface due to the RCE adjustment.When conducting regional-scale sea surface warming experiments for TC case studies,without any RCE adjustment the TC response is likely to be unrealistically exaggerated.The TC intensity–temperature sensitivity under RCE is very similar to those found in coupled climate model simulations.This suggests global mean intensity projections under climate change can be understood in terms of a thermodynamic response to temperature with only a minor contribution from any changes in large-scale dynamics. 相似文献