首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
氮、磷浓度是制约湖泊营养状态和生产力水平的重要环境因子,而氮磷化学计量比是湖泊生态系统的主要指标,因此,判识氮磷比变化趋势及其驱动力对湖泊生态恢复具有重要意义.研究基于19882018年连续观测数据,分析了滇池氮磷浓度和氮磷摩尔比(简称氮磷比)的时空分布演变特征;采用多元线性回归模型分别对滇池草海和外海氮磷比驱动效应进行定量解析,筛选出影响湖体氮磷比变化的潜在驱动因子.结果表明:①19882018年滇池氮磷比呈现显著的线性上升趋势,其中草海和外海氮磷比分别上升1.3和0.7 a^-1.②草海和外海分别在2008年和2004年发生了氮磷比上升突变,突变前上升归因于总氮浓度快速增加,突变后则是由于总磷浓度下降较快.③滇池的氮磷浓度变化主要是受流域氮磷输入负荷、跨流域调水、流域氮磷削减、风速和水位的综合影响,但受控因子在不同区域可能存在差异.④气温是滇池氮磷比变化的主要驱动因子,流域人为氮磷输入差异是滇池氮磷比变化的次要驱动因子.  相似文献   

2.
3.
A137Cs-balance for the catchment of the River Öre in central northern Sweden which received about 30 kBq m–2 of radiocesium from the Chernobyl accident was calculated for the period 1986–1991. Altogether, slightly less than 10% of the total deposition in the catchment was estimated to be exported from the terrestrial parts during this period of time. More than 90% of this loss is transported with the River Öre to the outer sea of the Gulf of Bothnia. The retention in Lake Örträsket which is the only lake along the river course and the Öre Estuary outside the river mouth was thus slightly less than 10%. Nearly all of the radiocesium deposited in the lake is permanently retained in the sediments and successively covered with less radioactive sediment. A considerable export of radiocesium from the estuary to the outer sea takes place due to resuspension and subsequent transport by wind and wave generated currents.  相似文献   

4.
Fluxes of submarine groundwater discharge (SGD) were investigated into two tidal rivers on the north and south shore of Long Island, NY, during July 2015. Ground‐based handheld thermal infrared (TIR) imagery, combined with direct push‐point piezometer sampling, documented spatially heterogeneous small‐scale intertidal seepage zones. Pore waters were relatively fresh and enriched in nitrogen (N) within these small‐scale seeps. Pore waters sampled just 20 cm away, outside the boundary of the ground‐based TIR‐located seepage zone, were more saline and lower in N. These ground‐based TIR‐identified seeps geochemically represented the terrestrial fresh groundwater endmember, whereas N in pore waters sampled outside of the TIR‐identified seeps was derived from the remineralization of organic matter introduced into the sediment by tidal seawater infiltration. A 222Rn (radon‐222) time‐series was used to quantify fresh SGD‐associated N fluxes using the N endmembers sampled from the ground‐based TIR pore water profiles. N fluxes were up‐scaled to groundwater seepage zones identified from high‐resolution airborne TIR imagery using the two‐dimensional size of the airborne TIR surface water anomalies, relative to the N flux from the time‐series sampling location. Results suggest that the N load from the north‐shore tidal river to Long Island Sound is underrepresented by at least 1.6–3.6%, whereas the N load from SGD to a south‐shore tidal river may be up to 9% higher than previous estimates. These results demonstrate the importance of SGD in supplying nutrients to the lower reaches of tidal rivers and suggest that N loads in other tidal river environments may be underestimated if SGD is not accounted for.  相似文献   

5.
Lake Atitlan, one of the most important lakes not only in Central America but in the whole world, is facing serious problems with increasing water pollution. Over the last several decades, the uncontrolled nutrient input into the lake has lead to high P levels and low N:P ratios, initiating cyanobacterial blooms. The first bloom occurred in December of 2008, followed by more extensive bloom in October 2009. The blooms are formed by cyanobacteria from the rare planktic Lyngbya hieronymusii/birgei/robusta complex. Based on the species morphology, the Atitlan population corresponds to L. robusta and this is the first case of reported bloom of this species worldwide. Remote sensing images documented that at the maximum bloom development, 40% of the 137 km2 of the lake area were covered by dense patches of Lyngbya, with the chlorophyll a concentration reaching over 100 μg L−1. The only toxins detected in the 2009 bloom were trace levels of cylindrospermopsin and saxitoxin with 12 and 58 ng g−1, respectively. The nitrogen fixation followed a pattern expected in non-heterocytous cyanobacteria, i.e., the nitrogenase activity was minimal during the day, while during the night the activity reached 2.2 nmol C2H4 μg Ch a−1 h−1. Delta 15N of −0.86‰ was well in the range given for nitrogen fixing organisms. The cell C, N and P content was 36.7%, 5.9% and 0.9%, respectively, resulting in the molar ratio of 105:14.4:1. A well designed and executed lake monitoring program, strict control of nutrient input into the lake, and public education are the necessary prerequisites for potential prevention of even more severe blooms than the one from 2009.  相似文献   

6.
The southwestern Adirondack region of New York receives among the highest rates of atmospheric nitrogen (N) deposition in the USA. Atmospheric N deposition to sensitive ecosystems, like the Adirondacks, may increase the acidification of soils through losses of exchangeable nutrient cations, and the acidification of surface waters associated with enhanced mobility of nitrate (NO3?). However, watershed attributes, including surficial terrestrial characteristics, in‐lake processing, and geological settings, have been found to complicate the relationships between atmospheric N deposition and N drainage losses. We studied two lake‐watersheds in the southwestern Adirondacks, Grass Pond and Constable Pond, which are located in close proximity (~26 km) and receive similarly high N deposition, but have contrasting watershed attributes (e.g. wetland area, geological settings). Since the difference in the influence of N deposition was minimal, we were able to examine both within‐ and between‐watershed influences of land cover, the contribution of glacial till groundwater inputs, and in‐lake processes on surface water chemistry with particular emphasis on N solutes and dissolved organic carbon (DOC). Monthly samples at seven inlets and one outlet of each lake were collected from May to October in 1999 and 2000. The concentrations of NO3? were high at the Grass Pond inlets, especially at two inlets, and NO3? was the major N solute at the Grass Pond inlets. The concentrations of likely weathering products (i.e. dissolved Si, Ca2+, Mg2+, Na+) as well as acid neutralizing capacity and pH values, were also particularly high at those two Grass Pond inlets, suggesting a large contribution of groundwater inputs. Dissolved organic N (DON) was the major N solute at the Constable Pond inlets. The higher concentrations of DON and DOC at the Constable Pond inlets were attributed to a large wetland area in the watershed. The DOC/DON ratios were also higher at the Constable Pond inlets, possibly due to a larger proportion of coniferous forest area. Although DON and DOC were strongly related, the stronger relationship of the proportion of wetland area with DOC suggests that additional factors regulate DON. The aggregated representation of watershed physical features (i.e. elevation, watershed area, mean topographic index, hypsometric‐analysis index) was not clearly related to the lake N and DOC chemistry. Despite distinctive differences in inlet N chemistry, NO3? and DON concentrations at the outlets of the two lakes were similar. The lower DOC/DON ratios at the lake outlets and at the inlets having upstream ponds suggest the importance of N processing and organic N sources within the lakes. Although an inverse relationship between NO3? and DOC/DON has been suggested to be indicative of a N deposition gradient, the existence of this relationship for sites that receive similar atmospheric N deposition suggest that the relationship between NO3? and the DOC/DON ratio is derived from environmental and physical factors. Our results suggest that, despite similar wet N deposition at the two watershed sites, N solutes entering lakes were strongly affected by hydrology associated with groundwater contribution and the presence of wetlands, whereas N solutes leaving lakes were strongly influenced by in‐lake processing. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
We investigated the relative distribution of allochthonous (i.e., terrigenous) organic matter in the complex, continuous, river–fjord–sound–channel–gulf system of Chile’s North Patagonia (41.5–46.5°S) in order to establish whether this organic matter can reach the open ocean or whether it is largely retained near its fluvial sources. Grain size distribution, total organic carbon and total nitrogen contents, and carbon stable isotope contents (δ13C) were quantified in 53 surface sediment samples collected during the CIMAR Fiordos cruises 1, 4, 8, and 10, as were salinity and silicic acid concentrations in the surface waters. A principal component analysis segregated the Chiloé and Aysén interior seas into two zones: (i) the continental fjords, with sediment enriched in allochthonous organic matter, having higher C:N molar ratios (10–14) and lower δ13C composition (?23‰ to ?27‰); and (ii) the channels and gulfs, with a prevalent autochthonous marine source, having lower C:N values (6–10) and higher δ13C composition (?20‰ to ?23‰). Estuarine waters with low salinity (2–30) and high silicic acid (10–90 μM) were associated with high C:N ratios and low δ13C in surface sediments, meaning that terrestrial organic matter was transported up to the mouth of the continental fjords. A two-source mixing model confirmed that allochthonous (terrestrial) organic matter contents (50–90%) associated with local river discharges were present within the continental fjords. On the contrary, autochthonous (marine) organic matter was prevalent (50–90%) at the sites in the marine influenced channels, sounds, and gulfs.  相似文献   

8.
Elemental carbon and nitrogen levels and isotope ratios were assessed in different biological compartments of a Northwest (NW) Mediterranean bay to trace the various sources of nutrient input from natural (river runoffs) and anthropogenic (harbor outflows, fish farms and urban sewage outfall) sources. Samples from transplanted mussels and natural sea grass communities (Posidonia oceanica leaves and epiphytes) were harvested from different locations throughout the bay during the touristic summer and rainy seasons. The results from the nitrogen analysis revealed that sewage and harbor outflow promote higher nitrogen levels, enrichment of 15N in the tissues, and a higher seasonal variability in sea grass and epiphytes. In mussel tissues, the δ15N was also influenced by sewage and harbor outflow, whereas δ13C was influenced by terrestrial inputs. These results suggest that natural and anthropogenic nutrient inputs have a temporary and localized influence and affect the sensitivity of natural isotopic ratios to changes in hydrologic conditions, especially to rain and tourism.  相似文献   

9.
《Continental Shelf Research》2007,27(3-4):338-358
Thirty-three surface sediment samples from cross-shelf transects on the northern Adriatic shelf were collected in December 2000, soon after a 100-yr flood of the Po River, in order to determine the distribution of organic carbon (OC) along the main sediment dispersal system. To evaluate the temporal variability, stations were re-occupied eight times at seasonal intervals until June 2003. Downcore sediment profiles from two sites characterized by high flood deposit thicknesses were also examined to assess the OC variability within the flood layer. In December 2000, the highest contents of OC (up to 1.24 wt%) were measured in front of the main distributary mouths (Pila, Tolle and Gnocca-Goro) where the greatest thicknesses of the flood deposit were recorded. However, the influence of the Po di Gnocca-Goro sediment supply on the OC surface distribution declined after ∼1.5 years from the fall-2000 river flood, probably because these mouths are less active when the water discharge is lower. The δ13C of organic matter was used to trace the dispersal of fluvial OC on the continental shelf. The δ13C values ranged from −25.9‰ to −23.1‰. The fraction of fluvially derived organic particles decreased with increasing water depth according to a radial dispersal pattern around the Po River delta. This pattern persisted in all cruises. δ13C values increased progressively until April 2002, suggesting an increasing marine contribution to the OC content but decreased again following a second minor flood event in November 2002. The molar C/N ratio was on average 10.0±1.6, with slightly lower values in southern and central areas.Assuming contributions from three OC end-members (terrestrial, riverine and marine), a mixing model based on δ13C and the ratio of N to C (statistically more robust than C/N; Goñi, M.A., Teixeir, M.J., Perkley, D.W., 2003. Sources and distribution of organic matter in a river-dominated estuary (Winyah Bay, SC, USA). Estuarine, Coastal and Shelf Science 57, 1023–1048) was applied in order to quantitatively assess the OC sources for Po shelf sediments. δ13C is significantly and positively correlated with the marine OC fraction. The terrestrial fraction is inversely correlated with N/C, while the riverine fraction is positively correlated with N/C. The terrestrial OC source was the most abundant end-member (>70%) showing only little temporal variability regardless of the Po River water discharge. Temporal and spatial changes in OC composition suggest that: (a) the Po River prodelta is always dominated from terrestrial OC input; (b) the Po della Pila supplies most terrestrial OC, whilst other tributaries (e.g., Po di Gnocca-Goro) are secondary sources. However, these mouths are as important as the Po della Pila in affecting the riverine OC signature; (c) offshore, biological primary production raises the marine OC contribution.At two sites on the Po River prodelta, the 2000-flood deposit shows slight but consistent compositional changes of organic matter (N/C and δ13C) which can help to recognize other flood events in the sedimentary record. The OC budget for the 2000-flood deposit accounts for a terrestrial+riverine OC supply of 68–162 Gg (109 g) against an OC deposition of 106–162 Gg (excluding the marine fraction), which implies a rapid and efficient sedimentation of the flood material, and scarce or negligible export out the study area. Flood events may thus enhance terrestrial carbon burial, whereas marine carbon arrives more slowly and may be largely mineralized at the sediment–water interface.  相似文献   

10.
《Continental Shelf Research》2008,28(18):2535-2549
Extensive physical and biological measurements were made of the surface sediments within the shallow, semi-urbanised Coombabah Lake in southern Moreton Bay, Australia. Sediment bulk parameters (C/N ratios, δ13C and δ15N) and fatty acid biomarkers were used to determine distributions and sources of organic matter in the intertidal sediments. The determination of organic matter sources within coastal and estuarine settings is important in understanding the roles of organic matter as energy and nutrient sources. Spatial variability of biomarker values within the sediments were interpreted by thematic maps employing the Krigging algorithm. Grain size analysis indicated the lake was dominated by mud (<63 μm) in the southern (landward) and sand (>63 μm) in the northern (seaward) lake regions, respectively. Surface sediment organic C and N values ranged from 0.12% to 1.76% and 0.01% to 0.12% dry weight, respectively, and C/N ratios averaged 16.3±3.19%. Sedimentary δ13C values ranged from −26.1‰ to −20.9‰, with an average value of −23.9±1.0‰. Sedimentary δ15N values ranged from +1.7‰ to +4.8‰, with an average value of +2.8±0.8‰. Bulk sediment parameters suggested that sedimentary organic matter is provided predominantly by allochthonous sources in the form of fringing mangroves. Thirty-nine individual fatty acids were identified using gas chromatography–mass spectrometry. The mean contributions of long chain fatty acids (LCFAs), polyunsaturated fatty acids (PUFAs), saturated fatty acids (SAFAs) and bacterial fatty acids (BAFAs) were, respectively, 13.9±11.4%, 7.6±4.1%, 53.6±8.6% and 18.2±4.6% of the identified fatty acid methyl esters (FAMEs), with BAFAs occurring in all sampled sediments. Fatty acid compositions varied throughout lake sediments, which indicated spatial differences in autochthonous and allochthonous organic matter sources, including terrestrial and planktonic (i.e. zooplankton, diatoms and other algal species) sources. The contribution of organic matter from shoreline mangroves was confirmed by the presence of LCFAs and 18:2ω6 and 18:3ω3, which are markers for mangroves in this ecosystem. BAFAs were identified in increased proportions in sediments adjacent to urban developments and dominated by mud. Grain size was identified as a dominant factor in the fatty acid compositions and contributing values to FAME pool. Spatial patterns of C/N ratios, δ13C and δ15N values, and fatty acid biomarker contributions illustrated that there is a greater contribution of autochthonous and labile organic matter to the sedimentary organic matter pool in the northern (marine entrance) sediments compared to the more allochthonous sourced organic matter of the southern region of the lake. This study details the distribution and sources of organic matter within Coombabah Lake and illustrates the usefulness of a multiple biomarker approach in discriminating organic matter sources within estuarine environments.  相似文献   

11.
The stoichiometric composition of lake water chemistry affects nutrient limitation among phytoplankton. I show how TN:TP and DIN:TP ratios vary in oligotrophic lakes of Europe and the USA affected by different amounts of N deposition, and evaluate whether the DIN:TP ratio is a better indicator than the TN:TP ratio for discriminating between N and P limitation of phytoplankton. Data were compiled from boreal and low to high alpine lakes, and comprise epilimnetic lake water chemistry data (106 lakes) and results from short-term nutrient bioassay experiments (28 lakes). A large share (54%) of the oligotrophic lakes in the study had low TN:TP mass ratios (<25). DIN:TP ratios showed higher variability than TN:TP ratios. Variability in DIN:TP ratios was related to N deposition, but also to catchment characteristics. Data from short-term bioassay experiments with separate addition of N and P showed that the DIN:TP ratio was a better indicator than the TN:TP ratio for N and P limitation of phytoplankton. Phytoplankton shift from N to P limitation when DIN:TP mass ratios increase from 1.5 to 3.4. High DIN:TP ratios, indicating P limitation of phytoplankton, were generally found in alpine lakes with low to moderate N deposition and in boreal lakes with high to very high amounts of N deposition.  相似文献   

12.
This study aimed to understand changes in the biogeochemical processing of organic matter (OM) in response to multiple stressors (e.g., littoral area expansion, wastewater input, and hydrological regulation) in East Dongting Lake (Central China) over the past 60 years, using analyses of total organic carbon (TOC), total nitrogen (TN), C/N ratios, δ13C, δ15N, and diatoms from 2 sediment cores collected from the littoral and central parts of the lake. OM mainly originated from phytoplankton and C3 plant‐derived soil OM based on the ranges of C/N ratios (from 7 to 11) and δ13C (between ?27‰ and ?23‰). Littoral area expansion due to siltation caused an increasing influx of terrestrial soil OM in the 1980s and the 1990s, subsequently lowering δ13C values and rising C/N ratios in both sediment cores. Meanwhile, higher δ15N was linked to a high influx of isotopically heavy nitrate from urban and agricultural wastewaters. After 2000, slight decreases in TOC and TN in the littoral area were attributable to reducing inputs of external OM, likely linked to declining sediment influx from the upper reaches resulting from the Three Gorges Dam impoundment. Contrasting increases in TOC, TN, and C/N ratios in the central part indicated a high influx of terrestrial soil OM due to the declining distance from the shoreline with littoral area expansion. Declining δ15N values after 2000 indicated an increase in N2‐fixing cyanobacteria with eutrophication. Changes in diatom assemblages in both the littoral and central zones reflected nutrient enrichment and hydrological alterations. These results indicate that littoral expansion, declining riverine influx, and anthropogenic nutrient inputs are potential driving forces for the biogeochemical processing of OM in floodplain lakes. This study provides sedimentary biogeochemical clues for tracking past limnological conditions of floodplain lakes that are subjected to increasing disturbances from hydrological regulation and eutrophication.  相似文献   

13.
The offset between AMS radiocarbon ages obtained on bulk lake sediments and the true age of deposition was evaluated at four sites in Northern Chilean Patagonia. Our results show that the bulk radiocarbon ages are systematically older by 300 to 1100 years. In this region free of carbonate and carbonaceous rocks, we argue that this difference results from variable inputs of terrestrial organic carbon from the Holocene soils that cover the lake watersheds. For the four studied lakes, the age offset is clearly related to the fraction of terrestrial carbon preserved in the lake sediments, which was estimated using the N/C ratio of the bulk organic matter. We propose that N/C measurements can be used to significantly improve chronologies based on radiocarbon dating of bulk lake sediments.  相似文献   

14.
15.
Most terrestrial allochthonous organic matter enters river networks through headwater streams during high flow events. In headwaters, allochthonous inputs are substantial and variable, but become less important in streams and rivers with larger watersheds. As allochthonous dissolved organic matter (DOM) moves downstream, the proportion of less aromatic organic matter with autochthonous characteristics increases. How environmental factors converge to control this transformation of DOM at a continental scale is less certain. We hypothesized that the amount of time water has spent travelling through surface waters of inland systems (streams, rivers, lakes, and reservoirs) is correlated to DOM composition. To test this hypothesis, we used established river network scaling relationships to predict relative river network flow-weighted travel time (FWTT) of water for 60 stream and river sites across the contiguous United States (3090 discrete samples over 10 water years). We estimated lentic contribution to travel times with upstream in-network lake and reservoir volume. DOM composition was quantified using ultraviolet and visible absorption and fluorescence spectroscopy. A combination of FWTT and lake and reservoir volume was the best overall predictor of DOM composition among models that also incorporated discharge, specific discharge, watershed area, and upstream channel length. DOM spectral slope ratio (R2 = 0.77) and Freshness Index (R2 = 0.78) increased and specific ultraviolet absorbance at 254 nm (R2 = 0.68) and Humification Index (R2 = 0.44) decreased across sites as a function of FWTT and upstream lake volume. This indicates autochthonous-like DOM becomes continually more dominant in waters with greater FWTT. We assert that river FWTT can be used as a metric of the continuum of DOM composition from headwaters to rivers. The nature of the changes to DOM composition detected suggest this continuum is driven by a combination of photo-oxidation, biological processes, hydrologically varying terrestrial subsidies, and aged groundwater inputs.  相似文献   

16.
We evaluated wind as the main structuring force in driving phycoperiphyton structure, community composition and succession in a warm, polymictic shallow lake in southern Brazil. Mangueira Lake is continuously mixed due to its exposure to wind, and during cold fronts the wind changes from the dominant NE direction to a SSW direction. Our question was: could changes in wind forces induce phycoperiphyton succession and determine population structure? To answer this question, we studied the phycoperiphyton successional response to a change in wind forces under three different situations: on clean macrophyte leaves in an open site (Open) and in an enclosed site protected from the wind (Enclosure), and the Natural community growing on uncleaned macrophyte leaves in an open site. Cold fronts improved nutrient availability and changed the algal community. The phycoperiphyton natural community was dominated by Epithemia spp bound in gross masses of green filaments during cold fronts. However, the wind direction typically changes when cold fronts are over (NE-E) and wind blowing from the off-shore direction dislodged the attached algae biomass and pushed it toward to lake shore, inducing community changes. The macrophyte bank exhibited rapid colonization and acted as a refuge for phycoperiphyton, providing habitat heterogeneity, whereas the enclosure acted as a buffer against wind forces, delaying the succession derived from settlement of loosely adhered algae. Furthermore, in the enclosure, the succession only started after a strong disturbance (rain and wind > 10 m s−1) in which lake water flooded the mesocosm inducing colonization. Phycoperiphyton showed resilience and recovered rapidly after the disturbance, when the rain supplied inocula and wind favored colonization with growth forms that take advantage of local conditions, depending of wind dynamics.  相似文献   

17.
From 2011 to 2019, mercury (Hg) stores and fluxes were studied in the small forested catchment Lesní potok (LES) in the central Czech Republic using the watershed mass balance approach together with internal measurements. Mean input fluxes of Hg via open bulk deposition, beech throughfall and spruce throughfall during the periodwere 2.9, 3.9 and 7.6 μg m−2 year−1, respectively. These values were considerably lower than corresponding deposition Hg fluxes reported in the early years of the 21st century from catchments in Germany. Current bulk precipitation inputs at unimpacted Czech mountainous sites were lower than those in Germany. The largest Hg inputs to the catchment were via litterfall, averaging 22.6 and 17.8 μg m−2 year−1 for beech and spruce stands. The average Hg input, based on the sum of mean litterfall and throughfall deposition, was 23.0 μg m−2 year−1, compared to the estimated Hg output in runoff of 0.5 μg m−2 year−1, which is low compared to other reported values. Thus, only ~2% of Hg input is exported in stream runoff. Stream water Hg was only weakly related to dissolved organic carbon (DOC) but both concentrations were positively correlated with water temperature. The estimated total soil Hg pool averaged 47.5 mg m−2, only 4% of which was in the O-horizon. Thus Hg in the O-horizon pool represents 72 years of deposition at the current input flux and 3800 years of export at the current runoff flux. Age-dating by 14C suggested that organic soil contains Hg from recent deposition, while mineral soil at 40–80 cm depth contained 4400-year old carbon, suggesting the soil had accumulated atmospheric Hg inputs through millennia to reach the highest soil Hg pool of the soil profile. These findings suggest that industrial era intensification of the Hg cycle is superimposed on a slower-paced Hg cycle during most of the Holocene.  相似文献   

18.
19.
The fate of inflows into lakes has been extensively studied during summer stratification but has seen relatively little focus during the weak winter stratification, with or without ice-cover. Field observations are presented of groundwater inflow into a shallow bay of a subarctic lake. Atmospheric forcing of the bay during the study period was extremely variable and coincided with spring ice-cover break-up. Two dominant wind regimes were identified; (1) weak wind-forcing (wind speed <5 m s−1 or land-fast ice-cover), and (2) strong wind-forcing (wind speed >5 m s−1 and open water). At a relatively constant temperature of ~3.3°C, the groundwater inflow was closer to the temperature of maximum density than the water in the main body of the lake, which during the observed winter stratification is ~1.2°C. During weak wind-forcing, the stratification within Silfra Bay approximated two-layers as this denser groundwater formed a negatively buoyant underflow. A calculated underflow entrainment rate of 2.8 × 10−3 agrees well with other underflow studies. During strong wind-forcing, the water column out to the mouth of the bay became weakly stratified as the underflow was entrained vertically by wind-stirring. Observed periods of mixing can be predicted to occur when turbulent kinetic energy (TKE) production by wind stirring integrated over the underflow hydraulic residence time in the bay exceeds the potential energy associated with the stratification. A decrease of ice cover, as observed in the studied subarctic lake over the last decade, will result in the underflow being more frequently exposed to the strong wind-forcing regime during winter, thereby altering the winter distribution of groundwater inflow within the lake.  相似文献   

20.
The influence of riverine inputs on biogeochemical cycling and organic matter recycling in sediments on the continental shelf off the Rhône River mouth (NW Mediterranean Sea) was investigated by measuring sediment oxygen uptake rates using a combination of in situ and laboratory techniques. Four stations were investigated during two cruises in June 2001 and June 2002, with depths ranging from 9 to 192 m and over a distance to the Rhône River mouth ranging from 4 to 36 km. Diffusive oxygen uptake (DOU) rates were determined using an in situ sediment microprofiler and total oxygen uptake (TOU) rates were measured using sediment core incubations. There was good agreement between these two techniques which indicates that the non-diffusive fraction of the oxygen flux was minimal at the investigated stations. DOU rates ranged from 3.7±0.4 mmol O2 m−2 d−1 at the continental shelf break to 19.3±0.5 mmol O2 m−2 d−1 in front of the Rhône River mouth. Sediment oxygen uptake rates mostly decreased with increasing depth and with distance from the Rhône mouth. The highest oxygen uptake rate was observed at 63 m on the Rhône prodelta, corresponding to intense remineralization of organic matter. This oxygen uptake rate was much larger than expected for the increasing bathymetry, which indicates that biogeochemical cycles and benthic deposition are largely influenced by the Rhône River inputs. This functioning was also supported by the detailed spatial distribution of total organic carbon (TOC), total nitrogen (TN) and C/N atomic ratio in surficial sediments. Sediments of the Rhône prodelta are enriched in organic carbon (2–2.2%) relative to the continental shelf sediments (<1%) and showed C/N ratios exceeding Redfield stoichiometry for fresh marine organic matter. A positive exponential correlation was found between DOU and TOC contents (r2=0.98, n=4). South-westward of the Rhône River mouth, sediments contained highly degraded organic matter of both terrestrial and marine origin, due to direct inputs from the Rhône River, sedimentation of marine organic matter and organic material redeposition after resuspension events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号