首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To examine algae populations, three expeditions (in March 2001, April 2002 and February 2003) were conducted in the Guba Chupa (Chupa Estuary; north-western White Sea), and one cruise was carried out in the open part of the White Sea in April 2003 and in the northern part of the Barents Sea in July 2001. Sea ice algae and phytoplankton composition and abundance and the content of sediment traps under the land-fast ice in the White Sea and annual and multi-year pack ice in the Barents Sea were investigated. The community in land-fast sea ice was dominated by pennate diatoms and its composition was more closely related to that of the underlying sediments than was the community of the pack ice, which was dominated by flagellates, dinoflagellates and centric diatoms. Algae were far more abundant in land-fast ice: motile benthic and ice-benthic species found favourable conditions in the ice. The pack ice community was more closely related to that of the surrounding water. It originated from plankton incorporation during sea ice formation and during seawater flood events. An additional source for ice colonization may be multi-year ice. Algae may be released from the ice during brine drainage or sea ice melting. Many sea ice algae developed spores before the ice melt. These algae were observed in the above-bottom sediment traps all year around. Three possible fates of ice algae can be distinguished: 1) suspension in the water column, 2) sinking to the bottom and 3) ingestion by herbivores in the ice, at the ice-water interface or in the water column.  相似文献   

2.
Temperature conditions in the Barents Sea are determined by the quality and quantity of the inflowing Atlantic water from the west and by processes taking part in the Barents Sea itself, in particular as a consequence of winter cooling and ice formation. The field of inflow to the Barents Sea during the period 1977-1987 has been studied. The surface winter temperatures within the Barents Sea vary in parallel with variations in the deeper layers of the inflowing water masses, whereas the surface temperatures in summer have a different variation pattern which is most likely dependent on the summer heating process.  相似文献   

3.
4.
Primary production of the northern Barents Sea   总被引:7,自引:0,他引:7  
The majority of the arctic waters are only seasonally ice covered; the northern Barents Sea, where freezing starts at 80 to 81°N in September, is one such area. In March, the ice cover reaches its greatest extension (74-75°N). Melting is particularly rapid in June and July, and by August the Barents Sea may be ice free. The pelagic productive season is rather short, 3 to 3.5 months in the northern part of the Barents Sea (north of the Polar Front, 75°N), and is able to sustain an open water production during only half of this time when a substantial part of the area is free of ice. Ice algal production starts in March and terminates during the rapid melting season in June and July, thus equalling the pelagic production season in duration.
This paper presents the first in situ measurements of both pelagic and ice-related production in the northern Barents Sea: pelagic production in summer after melting has started and more open water has become accessible, and ice production in spring before the ice cover melts. Judged by the developmental stage of the plankton populations, the northern Barents Sea consists of several sub-areas with different phytoplankton situations. Estimates of both daily and annual carbon production have been based on in situ measurements. Although there are few sampling stations (6 phytoplankton stations and 8 ice-algae stations), the measurements represent both pelagic bloom and non-bloom conditions and ice algal day and night production. The annual production in ice was estimated to 5.3 g Cm-2, compared to the pelagic production of 25 to 30 g Cm-2 south of Kvitøya and 12 to 15 g Cm-2 further north. According to these estimates ice production thus constitutes 16% to 22% of the total primary production of the northern Barents Sea, depending on the extent of ice-free areas.  相似文献   

5.
Calanus in North Norwegian fjords and in the Barents Sea   总被引:3,自引:0,他引:3  
The Physical environment of a North Norwegian fjord and of the Atlantic and Arctic domains of the Barents Sea are described. The seasonal variation of primary production and biomass of the most important copepod species are described in order to contrast regional differences in the timing of the plankton cycles. Analysis of the seasonal variation in the biomass of six different copepod species in Balsfjorden clearly demonstrate the importance of Calanus finmarchkus as a spring and early summer form, whereas Pseudoculanus acuspes , the most important smaller form, reaches the highest biomass later during the productive season. In the Atlantic part of the Barents Sea, C. finmarchkus is the dominant herbivorous form. The next most important species, Pseudocalanus sp. and M. longa , play a less important role here than in Balsfjorden. In the Arctic domain, the smaller copepod forms appear to have been replaced in trophodynamic terms by the youngest year-group (C-CIII) of C. glacialis , which prevails during the Arctic summer and autumn periods. The coupling between primary producers and Calanus on a seasonal basis is addressed through the grazing and the vertical organisation of the plant-herbivore community. The productivity of these two Calanus species is considered in relation to the seasonal and inter-annual variation in climate; although different mechanisms are utilised, cold periods tend to lower Calanus productivity both in the Arctic and the Atlantic domains of the Barents Sea. Interannual variations in Calanus biomass and productivity are discussed in the perspective of endemic and advective processes.  相似文献   

6.
North Atlantic Water (NAW) is an important source of heat and salt to the Nordic seas and the Arctic Ocean. To measure the transport and variability of one branch of NAW entering the Arctic, a transect across the entrance to the Barents Sea was occupied 13 times between July 1997 and November 1999, and hydrography and currents were measured. There is large variability between the cruises, but the mean currents and the hydrography show that the main inflow takes place in Bjørnøyrenna, with a transport of 1.6 Sv of NAW into the Barents Sea. Combining the flow field with measurements of temperature and salinity, this results in mean heat and salt transports by NAW into the Barents Sea of 3.9×1013 W and 5.7×107 kg s−1, respectively. The NAW core increased in temperature and salinity by 0.7 °C yr−1 and 0.04 yr−1, respectively, over the observation period. Variations in the transports of heat and salt are, however, dominated by the flow field, which did not exhibit a significant change.  相似文献   

7.
Seasonal variations of iceberg distribution in the Barents Sea have been studied on the basis of Russian observations for the period 1933-1990. The maximum southern distribution is observed in January and the minimum in September and October. A significant correlation coefficient of 0.5 is calculated for the relationship between the latitude of the southern ice cover expansion and the corresponding expansion of iceberg distribution. There is a general temporal trend of increased southern locations of iceberg observations during the period considered. Some analyses of iceberg dimensions in the western part of the Barents Sea are based on observations obtained in 1988–1990 under the Ice Data Acquisition Programme (IDAP) and under the Soviet-Norwegian Occanographic Programme (SNOP).  相似文献   

8.
9.
A study of the climatic system in the Barents Sea   总被引:10,自引:0,他引:10  
The climatic conditions in the Barents Sea are mainly determined by the influx of Atlantic Water. A homogeneous wind-driven numerical current model was used to calculate the fluctuations in the volume flux of Atlantic Water to the Barents Sea which are caused by local wind forcing. The study period is from 1970 to 86. When compared with observed variations in temperature, ice coverage, and air pressure, the results show remarkably good agreement between all three parameters. The climate system of the Barents Sea is discussed with emphasis on the interrelations and feedback mechanisms between air, sea, and ice.  相似文献   

10.
Biomass and respiratory ETS activity of microplankton in the Barents Sea   总被引:1,自引:0,他引:1  
The activity of the respiratory electron transport system (ETS) of microplankton was measured in the Central Barents Sea during summer 1988. In vitro ETS activity increased with assay temperature between 0 and 2°C, as reported for other enzyme systems in plankton. The higher in situ activities were observed near the surface (upper 10-25 m) and were associated with chlorophyll a maxima. Respiratory activity in the upper 60 m accounted for 40-60% of the total column respiration. The activities (0-100 m) were lower than oxygen consumption rates reported in the Canadian Arctic, mainly due to lower phytoplankton biomass. They were higher than ETS activity measured in the Weddell Sea (Antarctic Ocean). A high detrital versus total microplankton mass accounted for the low activity related to particulate organic carbon (POC). In general, the levels of respiratory ETS activity were in the range reported for temperate oligotrophic oceanic regions.  相似文献   

11.
12.
CTD profiles from the north–western Barents August 1996, have been analysed and characteristics of have been compared with former analyses and investigations The barotropic and baroclinic modes of the Rossby radius of deformation have been estimated in order to give an estimate in order to give an estimate of the spatial scale of variations. The first baroclinic mode of the Rossby radius of deformation is estimated to be around 3 km. Cold halocline water (CHW) is found in the southern part of the investigation area, supporting a hypothesis that the production of CHW is located in the area around Storbanken, and not closer to the shelf break further north. Another hypothesis is proposed: tidal induced horizontal circulation and vertical currents may explain a northward transport of warmer water across sills and banks in the north–western Barents Sea.  相似文献   

13.
Three observational data sets are used to construct a continuous record (1850-2001) of April ice edge position in the Barents Sea: two sets of Norwegian ice charts (one from 1850 to 1949 and the other from 1966 to 2001) and Soviet aircraft reconnaissance ice extent charts from 1950 to 1966. The 152-year April ice extent series is subdivided into three sub-periods: 1850-1899, 1900-1949 and 1950-2001. For each of these study sub-periods, a mean April ice edge and a set of anomalies (differences in position between a given April and the mean April ice edge) are computed. The calculations show the mean ice edge position retreated north-eastward over the 152-year period, with the greater retreat seen in the changes from the 1850-1899 sub-period to the 1900-1949 sub-period. The distribution of the standard deviation of the ice edge anomaly over the linear distance along the mean ice edge shows no substantial difference between any of the three periods of the study. Within each study period, the maximum variation is observed in the sector bounded by the 25°E and 49° E meridians, which covers the main pathway of the warmer water flow from the Norwegian Sea.  相似文献   

14.
Aerial strip surveys of polar bears in the Barents Sea   总被引:1,自引:0,他引:1  
Aerial strip surveys of polar bears in the Barents Sea were performed by helicopter in winter 1987. The number of bears within 100 m on each side of the helicopter was counted. A total of 263.6 km2 was surveyed and 21 bears were counted. Most of the bears were found in the southern part of the area, which indicates that the southwestern ice edge area in the Barents Sea is a very important winter habitat for polar bears.  相似文献   

15.
Distribution and life history of krill from the Barents Sea   总被引:2,自引:0,他引:2  
Krill from the Barents Sea were studied on six cruises from 1985 to 1989. Thysanoessa inermis and T. longicaudata were the dominant species, while T. raschii and Meganyctiphanes norvegica were rarer in the studied areas. The two dominant species T. inermis and T. longicaudata are mainly found in the Atlantic. Water and they do not to a large extent penetrate into Arctic water masses in the northern Barents Sea. M. norvegica is a more strict boreal species that does not occur as extensively in the Barents Sea as do the Thysanoessa species. The mean population abundance ranged from 1 to 61 individuals m−2 for T. inermis and from 2 to 52 ind. M−2 for T. longicaudata . The mean dry weight biomass of these two species ranged from 14 to 616 and from 19 to 105 mg−2. Length frequency distributions indicate a life span of just over two years for T. inermis and T. longicaudata . Growth took place from about April to autumn with no apparent growth during winter. Maturation and spawning seem to occur after two years for T. inermis and one year for T. longicaudata . Main spawning occurred from May to June coinciding with the spring phytoplankton bloom. Captive spawners of T. inermis (total length 17-22 mm) shed 30-110 eggs per female in a single batch.  相似文献   

16.
Surface wave tomography of the Barents Sea and surrounding regions   总被引:1,自引:0,他引:1  
The goal of this study is to refine knowledge of the structure and tectonic history of the European Arctic using the combination of all available seismological surface wave data, including historical data that were not used before for this purpose. We demonstrate how the improved data coverage leads to better depth and spatial resolution of the seismological model and discovery of intriguing features of upper-mantle structure. To improve the surface wave data set in the European Arctic, we extensively searched for broad-band data from stations in the area from the beginning of the 1970s until 2005. We were able to retrieve surface wave observations from regional data archives in Norway, Finland, Denmark and Russia in addition to data from the data centres of IRIS and GEOFON. Rayleigh and Love wave group velocity measurements between 10 and 150 s period were combined with existing data provided by the University of Colorado at Boulder. This new data set was inverted for maps showing the 2-D group-velocity distribution of Love and Rayleigh waves for specific periods. Using Monte Carlo inversion, we constructed a new 3-D shear velocity model of the crust and upper mantle beneath the European Arctic which provides higher resolution and accuracy than previous models. A new crustal model of the Barents Sea and surrounding areas, published recently by a collaboration between the University of Oslo, NORSAR and the USGS, constrains the 3-D inversion of the surface wave data in the shallow lithosphere. The new 3-D model, BARMOD, reveals substantial variations in shear wave speeds in the upper mantle across the region with a nominal resolution of 1°× 1°. Of particular note are clarified images of the mantle expression of the continent-ocean transition in the Norwegian Sea and a deep, high wave speed lithospheric root beneath the Eastern Barents Sea, which presumably is the remnant of several Palaeozoic collisions.  相似文献   

17.
Sagitta elegans var. arctica , the dominant and locally abundant chaetognath in the Barents sea, was collected from the upper 50 m in Arctic water masses during an ice edge bloom in early summer 1983. In situ sampling was made along a transect at discrete depths with a 375 μm mesh net mounted on a plankton pump. Prey composition and feeding rate were estimated from gut content analyses on preserved specimens combined with data on digestion times from previous studies. No diel variations were found in feeding activity. The diet reflected the composition of available prey in the zooplankton and consisted mainly of nauplii, small copepods (early stages of Calanus, Pseudocalanus, Oithona ) and appendicularians. Prey usually occurred as a single item in the gut.
Mean prey body width related to chaetognath head width yielded a power curve, with a large amount of scatter, showing that chaetognaths in the Barents Sea can use a wide spectrum of prey sizes. Similarly, maximum prey body width was related to chaetognath head width as a power curve, reflecting the existence of an upper prey size limitation due to the chaetognath mouth size. The highest abundance of S. elegans (5 specimens m−3), and the most intense feeding activity, were found within or beneath the maximum zooplankton biomass. Further, distribution and feeding were affected by light intensity, salinity, and the population structure of 5. elegans var. arctica.
Estimated feeding rates ranged between 0.30 and 1.05 prey items per chaetognath day−1. This corresponds to an ingestion of 8-54 μg AFDW day−1, and a consumption of 0.08–0.22% of the zooplankton standing stock day−1. From these rates, the calculated yearly ingestion by S. elegans var. arctica was 3% of the annually secondary production.  相似文献   

18.
An analysis is made of the photosynthesis-irradiance relationships in natural phytoplankton populations in the Barents Sea. The data set comprises 232 experiments carried out during a 10-year period, both in open and ice-covered waters. The variability on the P-I parameters is discussed and examined in relation to the variation in a variety of environmental conditions. The results suggest that in the Barents Sea, as in other Arctic areas, phytoplankton photosynthesis is mainly controlled by physical variables. However, control of the phytoplankton stock, i.e. by zooplankton grazing, seems also to have a considerable indirect influence on P-I parameters, especially after the spring bloom and the depletion of winter nutrients.  相似文献   

19.
Features of the physical oceanographic conditions of the Barents Sea   总被引:15,自引:2,他引:15  
  相似文献   

20.
Uptake rates of NH4+, NO3 and dissolved organic nitrogen (urea) were measured in phytoplankton and in ice algae in the Barents Sea using a 15N-technique. NO3 was the most important nitrogen source for the ice algae (f-ratio = 0.92). The in situ irradiances in the subsurface chlorophyll maximum and in the ice algal communities were low. The in situ NO3 uptake rate in the ice algal communities was light-limited The in situ NO3 and NH4 uptake rates in the subsurface chlorophyll maximum were at times light-limited. It is hypothesised that NH4+ may accumulate in low light in the bottom of the euphotic zone and inhibit the in situ NO3 uptake rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号