首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The devastation due to storm surge flooding caused by extreme wind waves generated by the cyclones is a severe apprehension along the coastal regions of India. In order to coexist with nature’s destructive forces in any vulnerable coastal areas, numerical ocean models are considered today as an essential tool to predict the sea level rise and associated inland extent of flooding that could be generated by a cyclonic storm crossing any coastal stretch. For this purpose, the advanced 2D depth-integrated (ADCIRC-2DDI) circulation model based on finite-element formulation is configured for the simulation of surges and water levels along the east coast of India. The model is integrated using wind stress forcing, representative of 1989, 1996, and 2000 cyclones, which crossed different parts of the east coast of India. Using the long-term inventory of cyclone database, synthesized tracks are deduced for vulnerable coastal districts of Tamil Nadu. Return periods are also computed for the intensity and frequency of cyclones for each coastal district. Considering the importance of Kalpakkam region, extreme water levels are computed based on a 50-year return period data, for the generation of storm surges, induced water levels, and extent of inland inundation. Based on experimental evidence, it is advocated that this region could be inundated/affected by a storm with a threshold pressure drop of 66 hpa. Also it is noticed that the horizontal extent of inland inundation ranges between 1 and 1.5 km associated with the peak surge. Another severe cyclonic storm in Tamil Nadu (November 2000 cyclone), which made landfall approximately 20 km south of Cuddalore, has been chosen to simulate surges and water levels. Two severe cyclonic storms that hit Andhra coast during 1989 and 1996, which made landfall near Kavali and Kakinada, respectively, are also considered and computed run-up heights and associated water levels. The simulations exhibit a good agreement with available observations from the different sources on storm surges and associated inundation caused by these respective storms. It is believed that this study would help the coastal authorities to develop a short- and long-term disaster management, mitigation plan, and emergency response in the event of storm surge flooding.  相似文献   

2.
Wind waves and elevated water levels together can cause flooding in low-lying coastal areas, where the water level may be a combination of mean sea level, tides and surges generated by storm events. In areas with a wide continental shelf a travelling external surge may combine with the locally generated surge and waves and there can be significant interaction between the propagation of the tide and surge. Wave height at the coast is controlled largely by water depth. So the effect of tides and surges on waves must also be considered, while waves contribute to the total water level by means of wave setup through radiation stress. These processes are well understood and accurately predicted by models, assuming good bathymetry and wind forcing is available. Other interactions between surges and waves include the processes of surface wind-stress and bottom friction as well as depth and current refraction of waves by surge water levels and currents, and some of the details of these processes are still not well understood. The recent coastal flooding in Myanmar (May 2008) in the Irrawaddy River Delta is an example of the severity of such events, with a surge of over 3 m exacerbated by heavy precipitation. Here, we review the existing capability for combined modelling of tides, surges and waves, their interactions and the development of coupled models.  相似文献   

3.
Super typhoon Durian struck the central Philippines on November 30, 2006 and southern coast of Vietnam on December 5, 2006. The reported maximum wind exceeded 250 km/h, and the central pressure was 904 hPa during the peak of the system. The typhoon brought colossal damage, both in terms of lives and in terms of properties to the Philippines and Vietnam while Thailand and Malaysia were slightly affected. The energy from the high-velocity wind and central pressure drop resulted in the generation of storm surges along the coastal region of the Philippines including its surrounding islands as well as parts of southern Vietnam. In this paper, a numerical 2D model is used to study the oceanic response to the atmospheric forcing by 2006 super typhoon Durian in the coastal regions of the Philippines and Vietnam. The initial study of this model aims to provide some useful insights before it could be used as a coastal disaster prediction system in the region of South China Sea (SCS). The atmospheric forcing for the 2D model, which includes the pressure gradient and the wind field, is generated by an empirical asymmetrical storm model. The simulated results of storm surges due to typhoon Durian at two locations lie in the range of observed data/estimates published by the Joint Typhoon Warning Centre (JTWC).  相似文献   

4.
中国近海潮汐变化对外海海平面上升的响应   总被引:1,自引:0,他引:1       下载免费PDF全文
针对外海海平面上升对中国沿海潮波系统和潮汐水位可能带来的影响,通过西北太平洋潮波数学模型对边界海平面上升后潮波变化进行了数值模拟。研究发现边界海平面上升后,在无潮点附近东侧迟角增加,西侧迟角减小;无潮点北侧振幅增加,南侧振幅减小;辽东湾、渤海湾顶、辽东半岛东海域、海州湾至鲁南沿海、苏北沿海、台湾海峡至浙东沿海和南海平均潮差增加,海平面上升0.90 m后潮差最大增幅达0.40 m;长江口、杭州湾至对马海峡、朝鲜西海岸和莱州湾海域潮差减小。随着海平面上升量值的增加,渤海、台湾海峡潮差变化速率相对稳定,黄海、东海和南海站位变化速率有所变动;平均高水位的变化趋势与潮差一致;潮差增加的区域,高水位抬升幅度超过边界海平面上升幅度。海平面上升引起的高水位超幅变化,增加了沿海地区对风暴潮和其他灾害防护的风险。  相似文献   

5.
Modeling the impact of land reclamation on storm surges in Bohai Sea,China   总被引:1,自引:0,他引:1  
Ding  Yumei  Wei  Hao 《Natural Hazards》2017,85(1):559-573

A nested model for the simulation of tides and storm surges in the Bohai Sea, China, has been developed based on the three-dimensional finite-volume coastal ocean model. The larger domain covers the entire Yellow Sea and Bohai Sea with a horizontal resolution of ~10 km, and the smaller domain focuses on the Bohai Sea with a fine resolution up to ~300 m. For the four representative storm surges caused by extratropical storms and typhoons, the simulated surge heights are in good agreement with observations at coastal tide gauges. A series of sensitivity experiments are carried out to assess the influence of coastline change due to land reclamation in recent decades on water levels during storm surges. Simulation results suggest that changes in coastline cause changes in the amplitude and phase of the tidal elevation, and fluctuations of surge height after the peak stage of the storm surges. Hence, for the assessment of the influence of coastline changes on the total water level during storm surges, the amplitudes and phases of both the tidal and surge heights need to be taken into account. For the three major ports in the Bohai Bay, model results suggest that land reclamation has created a coastline structure that favors increasing the maximum water level by 0.1–0.2 m. Considering that during the storm surges the total water level is close to or even exceeds the warning level for these ports, further increasing the maximum water level by 0.1–0.2 m has the potential to cause severe damages and losses in these ports.

  相似文献   

6.
Numerical simulation of typhoon surges along the coast of Taiwan   总被引:1,自引:1,他引:0  
A numerical model has been designed to study the storm surge induced by typhoon along the coast of Taiwan. The governing equations have been expressed in spherical coordinate system, and a finite difference method has been used to solve them. In the system of hydrodynamical equations, the nonlinear advection and lateral eddy viscosity terms are prominent in shallow coastal waters. Air pressure gradient and wind stresses are the driving forces in the model of typhoon surge. The model has been verified with storm surges induced by Typhoons Herb in 1996, and by typhoons Kai-Tak and Bilis in 2000.  相似文献   

7.

Typhoon Lionrock, also known as the national number 1610 in Japan, caused severe flooding in east Japan in August 28–31, 2016, leaving a death toll of 22. With a maximum sustained wind speed of ~?220 km/h from the Joint Typhoon Warning Center’s best track, Lionrock was classified as a category 4 hurricane in Saffir–Simpson Hurricane Wind Scale and as a typhoon in Japan Meteorological Agency’s scale. Lionrock was among unique typhoons as it started its landfall from north of Japan. Here, we studied the characteristics of this typhoon through tide gauge data analysis, field surveys and numerical modeling. Tide gauge analysis showed that the surges generated by Lionrock were in the ranges of 15–55 cm with surge duration of 0.8–3.1 days. Our field surveys revealed that the damage to coastal communities/structures was moderate although it caused severe flooding inland. We measured a maximum coastal wave runup of 4.3 m in Iwaisaki. Such a runup was smaller than that generated by other category 4 typhoons hitting Japan in the past. Our numerical model was able to reproduce the storm surge generated by the 2016 Typhoon Lionrock. This validated numerical model can be used in the future for typhoon-hazard studies along the coast of northeastern Japan. Despite relatively small surge/wave runups in coastal areas, Lionrock’s death toll was more than that of some other category 4 typhoons. We attribute this to various primary (e.g., flooding, surges, waves, strong winds) and secondary (e.g., landslides, coastal erosions, debris flows, wind-blown debris) mechanisms and their combinations and interactions that contribute to damage/death during a typhoon event.

  相似文献   

8.
The ability of the SMARA storm surge numerical prediction system to reproduce local effects in estuarine and coastal winds was recently improved by considering one-way coupling of the air–sea momentum exchange through the wave stress, and best forecasting practices for downscaling. The inclusion of long period atmospheric pressure forcing in tide and tide/surge calculations corrected a systematic error in the surge, produced by the South Atlantic Ocean quasi-stationary pressure patterns. The maximum forecast range for the storm surge at Buenos Aires provided by the real-time use of water level observations is approximately 12 h. The best available water level prediction is the 6-h forecast (nowcast) based on the closest water level observations. The 24-h forecast from the numerical models slightly improves this nowcast. Although the numerical forecast accuracy degrades after the first 48 h, the improvement to the full range observation-based prediction is maintained at the inner Río de la Plata area and extends to the first 3 days at the intermediate navigation channels.  相似文献   

9.
钱塘江河口杭州湾风暴潮溢流计算方法研究   总被引:5,自引:0,他引:5       下载免费PDF全文
建立钱塘江河口杭州湾风暴潮模型,探讨风暴潮出现溢流的计算方法。将可能出现溢流的沿海堤防以及海水侵入的陆地均依照高程概化为计算区域,采用糙率控制潮水的溢流流量,以模型的堤顶单宽流量和根据计算潮位采用宽顶堰公式换算流量的一致性来率定糙率值。在此基础上模拟了风暴潮漫溢堤防的过程,结果表明风暴潮出现溢流后,钱塘江河口杭州湾之间两岸大片的陆地存在淹没风险,沿程潮位由于溢流出现不同程度的降低响应。  相似文献   

10.
The ability of the SMARA storm surge numerical prediction system to reproduce local effects in estuarine and coastal winds was recently improved by considering one-way coupling of the air–sea momentum exchange through the wave stress, and best forecasting practices for downscaling. The inclusion of long period atmospheric pressure forcing in tide and tide/surge calculations corrected a systematic error in the surge, produced by the South Atlantic Ocean quasi-stationary pressure patterns. The maximum forecast range for the storm surge at Buenos Aires provided by the real-time use of water level observations is approximately 12 h. The best available water level prediction is the 6-h forecast (nowcast) based on the closest water level observations. The 24-h forecast from the numerical models slightly improves this nowcast. Although the numerical forecast accuracy degrades after the first 48 h, the improvement to the full range observation-based prediction is maintained at the inner Río de la Plata area and extends to the first 3 days at the intermediate navigation channels.  相似文献   

11.
Shanghai is physically and socio-economically vulnerable to accelerated sea level rise because of its low elevation, flat topography, highly developed economy and highly-dense population. In this paper, two scenarios of sea level rise and storm surge flooding along the Shanghai coast are presented by forecasting 24 (year 2030) and 44 (year 2050) years into the future and are applied to a digital elevation model to illustrate the extent to which coastal areas are susceptible to levee breach and overtopping using previously developed inflow calculating and flood routing models. Further, the socio-economic impacts are examined by combining the inundation areas with land use and land cover change simulated using GeoCA-Urban software package. This analysis shows that levee breach inundation mainly occurs in the coastal zones and minimally intrudes inland with the conservative protection of dike systems designed. However, storm surge flooding at the possible maximum tide level could cause nearly total inundation of the landscape, and put approximately 24 million people in Shanghai under direct risk resulting from consequences of flooding (e.g. contamination of potable water supplies, failure of septic systems, etc.).  相似文献   

12.
Coastal flooding occurs due to storm surges generated by tropical and extra-tropical cyclones on the globe. The meteorological forcing fields for the generation of storm surges are the tangential surface wind stress on the ocean surface and the normal atmospheric pressure gradients associated with the weather systems. The large scale forcing from the cyclones is referred to as the synoptic scale and storm surge prediction from synoptic scale forcing is well developed and is reasonably satisfactory around the world. However, coastal flooding also occurs from weather systems, with forcing on a meso-scale and also from remote forcing. It is proposed here that the term “Storm surge” be used to only refer to coastal flooding from synoptic scale forcing and the terminology “Rissaga” be used for coastal flooding from meso-scale forcing. For flooding due to remote forcing, a new term “Kallakkadal” is proposed.  相似文献   

13.
This study investigated contributory factors to flood hazard around Scotland. There is a need to develop preliminary assessments of areas potentially vulnerable to flooding for compliance with the European Union Directive on the Assessment and Management of Flood Risks (2007/60/EC). Historical accounts of coastal flood events in Scotland, notably in a storm in January 2005, had shown that estimates of risk based on still water levels required further information to identify sites at which waves and surges could combine. Additionally, it was important to add the effect of future sea-level rise and other drivers from published sources. Analysis of multiple years’ tidal data at seven sites, including estuaries, compared recorded water levels at high-return periods to those derived from a spatially interpolated numerical model contained within a publicly available flood risk map. For gauges with the longest records, increases were seen over time that reflected rises in mean sea level. Exposure to wave energy was computed from prevailing wind strength and direction at 36 stations, related to wave fetch and incident wind direction. Although the highest wave exposure was at open coast locations exposed to the long Atlantic fetch, GIS analysis of coastal rasters identified other areas in or close to estuaries that also had high exposure. Projected sea-level change, when added to the surge and wave analyses, gives a spatially extensive structured variable flood risk assessment for future coastal flood hazard to complement the public flood risk map. Such tools can help fulfil the requirements of the EC Directive and may be a useful approach in other regions with high spatial variability in coastal flood risk related to exposure to waves and wind.  相似文献   

14.
In this study, a doubly nested tide?Csurge interaction model was established for the coastal region of Bangladesh. A fine grid model, capable of incorporating all major offshore islands, was nested into a coarse grid model extending up to 15°N latitude of the Bay of Bengal. To take into account the thickly populated small and big islands between Barisal and Chittagong and the extreme bending of the coastline accurately, a very fine grid model for this region was again nested into the fine grid model. Along the northeast corner of this very fine grid model, the Meghna River discharge was taken into account. The boundaries of the coast and islands were approximated through proper stair step, and the model equations were solved by semi?Cimplicit finite difference technique using staggered grid. Appropriate tidal regime over the model domain was generated by forcing the sea level to be oscillatory with the constituent M2 along the southern open boundary of the coarse grid model omitting wind stress. This previously generated tidal regime was introduced as the initial state of the sea for nonlinear tide?Csurge interaction phenomenon. The model was applied to estimate water levels along the coastal region of Bangladesh due to the interaction of tide and surge associated with the storm April 1991, and the results were found to be in a reasonable agreement with those observed. The model was used to investigate the influence of offshore islands on water levels and water levels were found to be significantly influenced by offshore islands.  相似文献   

15.
Response of the coastal regions of eastern Arabian Sea (AS) and Kavaratti Island lagoon in the AS to the tropical cyclonic storm `Phyan??, which developed in winter in the south-eastern AS and swept northward along the eastern AS during 9?C12 November 2009 until its landfall at the northwest coast of India, is examined based on in situ and satellite-derived measurements. Wind was predominantly south/south-westerly and the maximum wind speed (U10) of ~16 m/s occurred at Kavaratti Island region followed by ~8 m/s at Dwarka (Gujarat) and ~7 m/s at Diu (located south of Dwarka) as well as two southwest Indian coastal locations (Mangalore and Malpe). All other west Indian coastal sites recorded maximum wind speed of ~5?C6 m/s. Gust factor (i.e., gust-to-speed ratio) during peak storm event was highly variable with respect to topography, with steep hilly stations (Karwar and Ratnagiri) and proximate thick and tall vegetation-rich site (Kochi) exhibiting large values (~6), whereas Island station (Kavaratti) exhibiting ~1 (indicating consistently steady wind). Rainfall in association with Phyan was temporally scattered, with the highest 24-h accumulated precipitation (~60 mm) at Karwar and ~45 mm at several other west Indian coastal sites. Impact of Phyan on the west Indian coastal regions was manifested in terms of intensified significant waves (~2.2 m at Karwar and Panaji), sea surface cooling (~5°C at Calicut), and moderate surge (~50 cm at Verem, Goa). The surface waves were south-westerly and the peak wave period (T p) shortened from ~10?C17 s to ~5?C10 s during Phyan, indicating their transition from the long-period `swell?? to the short-period `sea??. Reduction in the spread of the mean wave period (T z) from ~5?C10 s to a steady period of ~6 s was another manifestation of the influence of the cyclone on the surface wave field. Several factors such as (1) water piling-up at the coast supported by south/south-westerly wind and seaward flow of the excess water in the rivers due to heavy rains, (2) reduction of piling-up at the coast, supported by the upstream penetration of seawater into the rivers, and (3) possible interaction of upstream flow with river run-off, together resulted in the observed moderate surge at the west Indian coast. Despite the intense wind forcing, Kavaratti Island lagoon experienced insignificantly weak surge (~7 cm) because of lack of river influx and absence of a sufficiently large land boundary required for the generation and sustenance of wave/wind-driven water mass piling-up at the land?Csea interface.  相似文献   

16.
ABSTRACT

This study investigates the storm surge caused by Typhoon Hato, which severely affected Macau, Hong Kong, and other coastal cities in China on 23 August 2017. A typhoon and storm surge coupling model demonstrated that the maximum storm surge height reached nearly 2.5?m along the coast of Macau, while that in Hong Kong was slightly below 2?m. Furthermore, a field survey of urban flooding revealed evidence of a 2.25-m inundation in downtown Macau and a 0.55-m inundation on Lantau Island, Hong Kong, which were likely exacerbated by a combination of storm surge, heavy rainfall, and surface water runoff over a complex hilly terrain. Significant wave overtopping and runup also occurred in beach and port areas. A typhoon track analysis confirmed that several comparably strong typhoons have followed similar ESE to WNW trajectories and made landfall in the Pearl River Delta in the last few decades. Although Hato was not the strongest of these storms, its forward speed of about 32.5?km/h was remarkably faster than those of other comparable typhoons. Higher levels of storm signal warnings were issued earlier in Hong Kong than in Macau, raising questions about the appropriate timing of warnings in these two nearby areas. Our analysis of the storm’s pattern suggests that both regions’ decisions regarding signal issuance could be considered reasonable or at least cannot be simply blamed, given the rapid motion and intensification of Hato and the associated economic risks at stake.  相似文献   

17.
Lu  Yunmeng  Liu  Tiezhong  Wang  Tiantian 《Natural Hazards》2021,106(3):2003-2024

Storm surge induced by hurricane is a major threat to the Gulf Coasts of the United States. A numerical modeling study was conducted to simulate the storm surge during Hurricane Michael, a category 5 hurricane that landed on the Florida Panhandle in 2018. A high-resolution model mesh was used in the ADCIRC hydrodynamic model to simulate storm surge and tides during the hurricane. Two parametric wind models, Holland 1980 model and Holland 2010 model, have been evaluated for their effects on the accuracy of storm surge modeling by comparing simulated and observed maximum water levels along the coast. The wind model parameters are determined by observed hurricane wind and pressure data. Results indicate that both Holland 1980 and Holland 2010 wind models produce reasonable accuracy in predicting maximum water level in Mexico Beach, with errors between 1 and 3.7%. Comparing to the observed peak water level of 4.74 m in Mexico Beach, Holland 1980 wind model with radius of 64-knot wind speed for parameter estimation results in the lowest error of 1%. For a given wind model, the wind profiles are also affected by the wind data used for parameter estimation. Away from hurricane eye wall, using radius of 64-knot wind speed for parameter estimation generally produces weaker wind than those using radius of 34-knot wind speed for parameter estimation. Comparing model simulated storm tides with 17 water marks observed along the coast, Holland 2010 wind model using radius of 34-knot wind speed for parameter estimation leads to the minimum mean absolute error. The results will provide a good reference for researchers to improve storm surge modeling. The validated model can be used to support coastal hazard mitigation planning.

  相似文献   

18.
Yin  Kai  Xu  Sudong  Huang  Wenrui  Li  Rui  Xiao  Hong 《Natural Hazards》2019,95(3):783-804

For the Xiamen coast where typhoon frequently occurs, beaches are subject to severe erosion during typhoons. To investigate storm-induced beach profile changes at Xiamen coast, four inner XBeach models were applied using typhoon Dan as a case study. These numerical simulations utilized hydrodynamic and wave conditions determined from larger-scale outer and middle coupled Delft3D-FLOW and SWAN models. The models were validated against historic measurements of tidal level, storm tide, storm surge and beach profiles, thus showing the accuracy of outer and middle models to provide boundary conditions and the reliability of inner models to reflect beach profile changes during a typhoon process. The applicability of this modeling approach to Xiamen coast was verified. The results also demonstrated that an enormous amount of dune face erosion occurred at the selected beaches during the typhoon Dan process and the slopes in the vicinity of zero elevation for the chosen four beach profiles all turned out to be gentler after typhoon Dan. Nevertheless, these beaches suffered different impact degrees and processes during the typhoon influence period. Compared to swash and collision regimes, overwash and inundation regimes have the ability to alter beach profile rapidly in short time. Post-storm beach profile with and without vegetation indicated that vegetation is capable of protecting coastal beaches to some extent. By running the nested models, the simulated results can be employed in the management of the beach system and the design of beach nourishment projects at Xiamen coast.

  相似文献   

19.
Most of the countries around the North Indian Ocean are threatened by storm surges associated with severe tropical cyclones. The destruction due to the storm surge flooding is a serious concern along the coastal regions of India, Bangladesh, Myanmar, Pakistan, Sri Lanka, and Oman. Storm surges cause heavy loss of lives and property damage to the coastal structures and losses of agriculture which lead to annual economic losses in these countries. About 300,000 lives were lost in one of the most severe cyclones that hit Bangladesh (then East Pakistan) in November 1970. The Andhra Cyclone devastated part of the eastern coast of India, killing about 10,000 persons in November 1977. More recently, the Chittagong cyclone of April 1991 killed 140,000 people in Bangladesh, and the Orissa coast of India was struck by a severe cyclonic storm in October 1999, killing more than 15,000 people besides enormous loss to the property in the region. These and most of the world’s greatest natural disasters associated with the tropical cyclones have been directly attributed to storm surges. The main objective of this article is to highlight the recent developments in storm surge prediction in the Bay of Bengal and the Arabian Sea.  相似文献   

20.
波浪载荷导致黄河口潮坪沉积物垂向运移现场观测研究   总被引:1,自引:0,他引:1  
2005年8月7~8日,现代黄河三角洲刁口地区经历了一次由台风麦莎引起的风暴潮过程。通过对比分析风暴潮前后受保护潮坪滩面沉积物的粒度特征变化情况,发现了风暴潮期间在强烈的波浪载荷导致的渗流作用下,粉质土海床出现了极细粉粒由下向上运移并输出滩面的现象。结合现场试验期间采集到的孔隙水压力监测数据,本文基于海床动力响应的观点分析了其成因机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号