首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many studies of foreland basins have recognized a hierarchical organization in the stacking of sequences deposited by axial‐deltaic and alluvial fan systems. The hierarchy is often explained in terms of the competing control of eustasy and pulsed tectonic subsidence and the different frequencies at which these processes operate. Unravelling the relative contributions of tectonic and eustatic controls on the sequence stacking pattern is a fundamental question in foreland basin analysis, yet this is difficult because of the lack of independent stratigraphic evidence. In this study, a three‐dimensional numerical model is presented, which aids in the interpretation of alluvial successions in foreland basins filled by transverse and axial depositional systems, under conditions of variable tectonism and eustatic sea‐level change. The tectono‐sedimentary model is capable of simulating the hierarchical stratigraphic response to both eustatic and tectonic forcing, and is of higher resolution than previous models of foreland basin filling. Numerical results indicate that the onset of tectonic activity is reflected by rapid retrogradation of both depositional systems and by widespread flooding and onlap of carbonate sediments. Syntectonic fluvial patterns on the axial‐deltaic plain are dominated by bifurcating channels, swiftly relocating in response to the general rise in relative sea level induced by flexural subsidence. The resulting surface morphology of the axial delta is convex upwards. Syntectonic eustatic sea‐level fluctuations result in parasequence‐scale packages of retrograding and prograding fan and delta sediments bounded by minor flooding surfaces and type 2 sequence boundaries. Incised channels are rare within the syntectonic parasequences and are formed only during phases of tectonic quiescence when eustatic falls are no longer compensated by the subsidence component in the rise in relative sea level. Suites of amalgamating, axial channels corresponding to multiple eustatic falls delineate the resulting type 1 unconformities. Coarse‐grained, incised‐channel fills are found in the zone between the alluvial fan fringes and the convex‐upward body of the axial delta, as the axial streams tend to migrate towards this zone of maximum accommodation.  相似文献   

2.
四川龙门山马角坝地区石炭纪层序地层及海平面变化研究   总被引:3,自引:0,他引:3  
在沉积学、生物地层学研究之基础上,结合沉积地球化学资料,对龙门山马角坝地区石炭系进行了露头层序地层学研究。首次识别出9个三级层序和若干个四至五级高频层序。在三级层序中,岩关组2个、大塘组3个、威宁组2个、马平组2个,它们均可作区域性对比。其中,四个层序分别与冈瓦纳大陆晚古生代五次冰川事件中四次间冰期-冰期旋回相对应,表明其成因与冰川型全球海平面变化有关。显然,研究区石炭纪层序主要受控于全球海平面升降旋回,具有全球对比意义。  相似文献   

3.
Studies of Quaternary extensional faults indicate that they have instantaneous amounts of throw (0·4 to 4 m), average slip rates (0·05 to 2·8 m kyr−1) and frequency of recurrence (<40 000 years) accounting for the accommodation space required for the accumulation of peritidal carbonate parasequences (PCPs). Hangingwall sites and graben are characterized by fault down-dropping together with regional subsidence, and footwall sites and horsts by fault-related uplift alternating with periods of regional subsidence. The relative sea-level curves generated by these processes operating in a maritime rift setting are used as inputs to a forward stratigraphic modelling program SedTec2000 to simulate how fault-related changes in accommodation space can account for high-frequency PCP formation. Each instantaneous fault slip generates a flooding surface or aggradation in hangingwall and graben settings. High-frequency cycles in hangingwall sites are either symmetric (deepening then shallowing upward) or asymmetric (shallowing-upward). The major factor controlling cycle types is the balance between rates of carbonate accumulation and generation of accomodation space. High-frequency cycles in footwall sites and horsts comprise shallow subtidal facies, with no distinctive bathymetric trends, capped by erosional boundaries generated by footwall uplift. The modelled cycles are of the same thickness, with bathymetric trends and frequency to cycles commonly interpreted to be due to orbitally driven eustatic sea-level changes or autocyclic processes. These numerical experiments demonstrate that high-frequency PCPs can be generated by tectonic, fault-related processes, a hypothesis that is frequently discounted.  相似文献   

4.
鄂尔多斯盆地奥陶系为广泛的陆表海碳酸盐岩沉积,其东部马家沟组岩相特征、岩石组合类型和旋回性丰富多样。通过对本区临汾晋王坟剖面的奥陶系马家沟组地层进行精细测量,笔者从剖面的沉积特征入手,进行沉积环境和沉积微相的分析,并以沉积微相的纵向演变规律为基础,结合准层序向上变浅的本质特征,识别划分野外露头剖面的准层序。研究区马家沟组共识别出32个准层序,可分为两种类型:准层序类型Ⅰ跨越若干微环境,相变向上为浅;准层序类型Ⅱ沉积于同一个微环境,向上有层厚的渐变趋势。两种类型准层序的形成取决于沉积物供给、短周期海平面升降和地层沉降三者之间的关系和相互作用。研究区内的准层序类型Ⅰ发育广泛,较为常见,类型Ⅱ则发育较少。  相似文献   

5.
高分辨露头层序地层学的研究基础──准层序的识别   总被引:10,自引:2,他引:10  
以塔里木盆地西南缘下石炭统和什拉甫组为例,将微相分析及古生态分析应用于准层序研究之中。在此基础之上,分析沉积层序及其内部各体系域、各种界面的沉积特征。同时,根据准层序垂直叠加的特征来寻找沉积层序内部更高级次的旋回,以达到提高沉积层序的分辨率之目的,恢复该地区维宪期多级次古海平面变化特征。强调准层序分析是高分辨露头层序地层学的研究基础。  相似文献   

6.
This paper presents examples of various large tidal sandbodies from the Eocene Roda Sandstone in the southern Pyrenees and the Late Pleistocene and Early Holocene in the East China Sea. An attempt is made to summarize the geometric variability of these large tidal sandbodies in relation to the sediment supply and tidal discharge of the depositional system. Transverse sand bars were developed in low-sinuosity, high-gradient channels with high influxes of coarse sediments and water from fluvial systems. Tidal point bars were formed in meandering low-gradient estuarine channel where tidal influence was stronger and sediment was finer than those of the transverse sand bar. A tidal delta complex was built up at the estuary mouth with an abundant sediment supply and an increased tidal discharge. Tidal sand ridges were formed when relict fluvial or deltaic sands were eroded and reworked by strong tidal currents during subsequent sea-level rise.

Since the sediment supply and the tidal discharge of the depositional system were closely related to the eustatic sea-level change and basin subsidence, i.e. the relative sea-level change, special attention will be given to the relationship between geometric variability of tidal sandbodies and the sequence stratigraphic framework in which various sandbodies occurred. Three orders of eustatic sea-level fluctuations can be recognized. The third-order eustatic sea-level cycle, together with basin subsidence, controlled the development of systems tracts and the occurrence of different tidal sandbodies, such as estuary and tidal flat facies during the late stage of a LSW systems tract (type 1 sequence) or a SM systems tract (type 2 sequence); tidal point bar facies, tidal delta facies or tidal sand-ridge facies during a TR systems tract; estuary facies during an early HS systems tract; and fluvial sand bar facies in a late HS systems tract and the early stage of a SM or LSW systems tract. There are also the fourth-order and fifth-order eustatic fluctuations, which are superimposed on the third-order eustatic changes and have important control on the build-up, abandonment and preservation of composite and single tidal sandbodies, respectively.

Since the deposition of tidal sandbodies is very sensitive to eustatic sea-level changes, recognition of various tidal sandbodies is important in sequence stratigraphy analyses of sedimentary basins and in the facies prediction of clastic sediments in basin modelling.  相似文献   


7.
During early Carboniferous times a major sea-level rise led to the development of an extensive carbonate ramp over what is now South Wales. Differential subsidence and sea-level changes resulted in distinctive facies sequences in the ramp succession and a model is offered which recognizes three distinct geomorpho-tectonic settings; inner, mid- and outer ramp. The inner ramp zone occurs in the more landward part of the province and was an area undergoing little or no subsidence. The sequence is dominated by oolitic grainstones and peritidal limestones representing shoal and back shoal environments. The peritidal units are transgressive deposits consisting of stacked asymmetrical shallowing-up cycles. The sequence contains many subaerial breaks and tectonic uplift resulted in base-level changes and fluvial incision. The mid-ramp zone sequence is intermediate in thickness between the inner and outer ramp successions and consists mainly of bioclastic limestones deposited below fairweather wave base. Sedimentation periodically exceeded sea-level rise and subsidence, and regressive (progradational) oolitic sand bodies developed, the thickest of which are stacked units with up to four individual sand bodies. Storm processes were of major importance in this setting. The outer ramp zone is represented by a thick sequence of muddy bioclastic limestones deposited below storm wave base and major Waulsortian reef-mounds also developed. None of the shallowing phases seen in the other ramp zones can be detected in this sequence. Subsidence and eustatic sea-level rise seem to have been the major controls on deposition but the recognition of eustatic sea-level falls is difficult. The detailed facies model for ramp carbonates presented here may be applicable elsewhere in the geological record.  相似文献   

8.
ABSTRACT The Upper Triassic platform-margin deposits of the Carnian Prealps fail to show the succession of the two global sea-level lowerings predicted for the Norian and Rhaetian by the Haq global sea-level curve. In both cases a relative sea-level rise occurs, a discrepancy that can be explained by an increase in tectonically controlled subsidence, a consequence of the plate-scale rifting in the NW Tethys Gulf preceding oceanic spreading in the Jurassic. Pulses of tectonic subsidence followed by relative quiescence are capable of generating depositional sequences similar in gross geometry and duration to the third-order eustatic cycles of Haq et al . The Late Triassic part of the Exxon global sea-level curve, partly derived from correlatable strata within the same palaeogeographical domain, is likely to reflect pulses of tectonically induced subsidence rather than eustatic sea-level changes.  相似文献   

9.
Dominantly coarse-grained, shallow-marine, metasedimentary rocks of the Early Proterozoic Uncompahgre Group (UG) record periods of shoaling and drowning on different temporal scales that are attributed to episodic long-term oscillations in relative sea-level with superimposed shorter duration excursions in relative sea-level. Long-term events are probably tectonic whereas short-term events are eustatic. The 2–5 km thick Uncompahgre Group consists of 250–600 m thick, dominantly coarse-grained quartzite units (Q1–Q4) and 200–300 m thick mudstone/pelite units (P1–P5). Five depositional systems comprise the Uncompahgre Group. The outer shelf system (OSS) is composed of Bouma-type beds and intercalated mudstones that are transitional vertically to parallel-laminated to wave-rippled sandstones and hummocky cross-stratified sandstones of the inner shelf system (ISS). Trough cross-stratified sandstones comprise the shoreface system (SHS). The tidal inner shelf/shoreface system (TIS/SHS) consists of a complex interlayering of cross-bedded sandstones, thin-bedded conglomerates, mudstones and rippled sandstones. Trough cross-bedded pebbly sandstones and thin- to thick-bedded conglomerates represent the alluvial system (ALLS). Depositional systems in the UG are associated in transgressive and highstand-systems tracts that make up four sequences (1 to 4). Sequence boundaries do not correspond with lithostratigraphic boundaries but are defined by subtle unconformities. The basal Q1–P1 unit (lower sequence 1) consists of ALLS to TIS/ SHS to ISS comprising a transgressive systems tract. A maximum marine incursion is reflected by deposition of OSS facies in stratigraphic units P1–P2. Shoaling in the transition from P2 to the uppermedial portion of Q2 (OSS—ISS—SHS to a thick TIS/SHS—ALLS) records the highstand systems tract of upper sequence 1. A subtle disconformity/paraconformity delineates a type 2 sequence boundary at the top of the highstand systems tract. The drowning to shoaling pattern is replicated in sequence 2 (upper Q2 to P3 to upper medial Q3); sequence 3 (upper Q3 to P4 to upper-medial Q4); and an incomplete sequence 4 (upper Q4 through P5). Thinner shoaling intervals of OSS—ISS—SHS in P3 and in lower Q2, Q3 and Q4 represent parasequences. Sequences of 107 years duration are attributed to periods of increasing and decreasing subsidence rates due to tectonism marginal to the sedimentary basin. Parasequences record shorter duration temporal controls of c. 104 to 105 years related to eustatic oscillations. As a consequence of shoaling and aggradation/ progradation in the highstand systems tract, TIS/SHS and ALLS overlie and are temporally separated from OSS to ISS to SHS. This transition records filling of the basin to sea-level leading to a shelf geometry that was conducive to tidal amplification. A composite relative sea-level curve integrating long-term pulsatory subsidence and short-term eustasy best explains the stratigraphic evolution of the Uncompahgre Group.  相似文献   

10.
The Lower Eocene Ametlla Formation of the Ager Basin, Spanish Pyrenees, is a rapidly deposited shallow marine unit formed in a setting characterized by syn-sedimentary tectonic activity. Mapping of the formation over a distance of 25 km was conducted according to sequence stratigraphical principles with emphasis on facies analysis. Twelve facies, grouped in five facies associations, have been recognized in the Ametlla Formation. The studied succession records a vertical transition from deltaic systems prograding onto a sediment-starved shelf, via estuarine deposits associated with incised valleys, to sandbar complexes in a tidal seaway. In terms of sequence stratigraphy, three scales of genetic sedimentary units were recognized. (1) At the regional scale, elements of two 3rd-order composite sequences (sensu Exxon) have been recognized. These include a 3rd-order highstand sequence set encompassing the lowermost part of the Ametlla Formation and the underlying Passarella Formation, and a 3rd-order transgressive sequence set that constitutes the middle parts of the Ametlla Formation. The sequence sets are separated by an unconformity with up to 35 m of incision that is interpreted as a major sequence boundary. It is argued that the incised valleys associated with this unconformity were infilled during landward-stepping of the shelfal depositional system. Basinwards, the unconformable surface becomes subhorizontal and is overlain by a 2 m thick oyster bed formed in a sediment-starved setting subsequent to flooding of the incised valleys (which still acted as sediment conduits). Sandstones dominate the transgressive sequence set, whereas the highstand sequence set is dominated by siltstones, particularly in the lower part. In the transgressive sequence set, an upward increase in sand content and calibre is observed, relatable to punctuations of the transgressive trend by high-frequency sea-level fluctuations, and to downslope redistribution of sand. (2) At the subregional scale, detailed mapping indicates the presence of five 4th-order sequences. The 4th-order sequence boundaries are associated with sediment bypassing and minimal erosional relief, and were created by forced regressions during periods of relative sea-level fall. Sharp-based sandstones overlying these unconformities are believed to have accumulated during subsequent rise of relative sea-level. Where 4th-order maximum flooding surfaces can be recognized, the sequences may be subdivided into a sandstone-dominated transgressive systems tract and a siltstone-dominated highstand systems tract. (3) At the local scale, 2–9 5th-order parasequences are present within the 4th-order sequences. Superimposed parasequences are separated by flooding surfaces characterized by bioclastic accumulations, pervasive burrowing and extensive calcite cementation. The parasequences are commonly stacked in a landward-stepping manner.  相似文献   

11.
相对海平面变化与南海珠江深水扇系统的响应   总被引:41,自引:2,他引:39  
庞雄  陈长民  施和生  舒誉  邵磊  何敏  申俊 《地学前缘》2005,12(3):167-177
根据微体古生物分析建立起来的珠江口盆地第三系相对海平面曲线,具有与全球海平面变化相一致的三级旋回和不一致的二级旋回。三级海平面升降导致了各沉积层序体系域在宽广陆架和陆坡之间的迁移,研究证实,位于南中国海北缘、珠江口外的陆坡深水区广泛发育第三系多层序叠置的南海珠江深水扇系统。区域性构造作用使得珠江口盆地二级海平面变化与全球海平面变化具有不一致性,并形成与全球海退趋势相反的海侵型海平面曲线。受相对海平面变化的控制,现今处于陆坡深水区的白云凹陷自32Ma南海扩张以来经历了三台阶式的海侵事件,形成了台阶式退积层序组合,具有下粗上细的沉积序列;造就了23.8Ma以前的浅水三角洲-滨岸砂泥岩沉积组合;23.8~10.5Ma的深水扇砂泥岩为主的沉积组合;以及10.5Ma以来主要为远端的细粒沉积为主。  相似文献   

12.
Holocene prograded coastal sequences at Becher/Rockingham, southern Western Australia, contain a detailed record of sea level over the last 6400 yr. Radiocarbon dating and use of a distinct stratigraphic indicator as a sea-level marker permit reconstruction of sea-level history and suggest that the sea was at least 2.5 m above present datum about 6400 yr B.P. before falling to its present level. No evidence was found for eustatic fluctuations of the scale proposed by R. W. Fairbridge [1961, in “Physics and Chemistry of the Earth” (L. H. Ahrens, F. Press, K. Rankema, and S. K. Runcorn, Eds.), Vol. 4, pp. 99–185, Pergamon, Oxford]. The sea-level record preserved on this coast can be explained by hydro-isostasy, tectonism, or eustasy, acting individually or in concert. Without a fixed reference point or analogous data from other locations, a firm conclusion on which mechanism(s) has(have) operated could not be reached. Published sea-level data from this and other coasts are often insufficiently detailed to compare with this study. Application of the techniques of this study to analogous sedimentary sequences elsewhere will provide data of comparable accuracy that would contribute to a more precise understanding of relative sea-level movements in the late Quaternary.  相似文献   

13.
The Mesaverde Group consists of a thick wedge of fluvial, littoral-deltaic and shallow marine clastics shed into the Cretaceous Western Interior Seaway of North America. The western parts of the seaway lay within the strongly subsiding foredeep of the active Sevier fold and thrust belt further to the west. The study area is located east of the axis of maximum subsidence and is thus in a favourable position to record competing effects of eustasy, sediment supply and thrust-load induced subsidence. Facies and sequence analysis carried out on high quality outcrop and well log data led to the recognition of a complex depositional cycle hierarchy within the typical storm- and wave-dominated inner shelf/shoreface/strand plain and delta systems of the Mesaverde. Fourth-order parasequences and parasequence bundles of estimated 100–400 ka duration are the best recognizable, ubiquitous and most useful stratigraphic units. Their arrangement with respect to sequence boundaries, however, varies with their overall stratigraphic position and also differs from the Exxon models. Mesaverde progradation was interrupted by a major transgression that occurred out of phase with the aggradational to progradational stacking trend of third-order sequences. A proposed genetic model relates large-scale (second-order) sequence architecture to tectonics: a Sevier thrust event as well as Laramide uplift within the foredeep controlled non-linear changes in the accommodation/supply ratio. Parasequence stacking patterns and sequence boundary formation, in contrast, were the product of (global?) eustasy enhanced by short-term, perhaps local, changes in the rates of subsidence and detrital influx.  相似文献   

14.
层序地层学的研究不断从盆地规模的层序地层格架和体系域分析向高精度的、微相规模的层序地层分析的方向深化。精细的野外和钻井资料分析表明,贺兰山—桌子山地区的太原组—山西组可划为3个三级层序、6~8个四级层序及20多个准层序。四级层序界面一般是下切的分流河道、潮—河混合水道、近端河口坝或滨面沉积的底部冲刷面,海进初期发育的煤层底界以及盆地方向低水位三角洲前缘底超面等,可以在大范围内追踪,其识别和划分是建立高精度层序地层格架的关键。应用层序地层模拟系统(SSMS)可揭示海平面变化、构造沉降等对层序形成过程的控制。模拟分析表明,对称和不对称的相对海平面变化产生的层序结构存在明显的差异,快速上升后缓慢下降的海平面变化过程可解释区内四级层序的结构特征和聚煤规律。四级层序高水位晚期至海进的转换期有利于形成广泛分布的煤层。  相似文献   

15.
The Fall River Formation is a 45 m thick layer of fluvial-dominated valley-fills and shore-zone strata deposited on the stable cratonic margin of the Cretaceous Western Interior Seaway. Fall River deposits in Red Canyon, in the south-west corner of South Dakota (USA), expose a cross-section of a 3.5 km wide valley-fill sandstone and laterally adjacent marine deposits. The marine deposits comprise three 10 m thick upward-shoaling sequences; each composed of multiple metres-thick upward-coarsening successions. The lower two of these sequences are laterally cut by the valley-fill sandstone, and are capped by metres-thick muddy palaeosols. The upper sequence spans the top of the valley-fill sandstone, and is overlain by the Skull Creek Shale. The 30 m thick valley sandstone is partitioned into four distinct fills by major erosion surfaces, and each of these fills contain many metres-thick channel-form bodies. Deposits in the lower parts of these fills are sheet-like, top-truncated channel bodies, whereas deposits in the upper parts of fills are upward-concave, laterally amalgamated channel bodies, more completely preserved heterolithic channel bodies, or wave-deposited sheets. Each valley-fill basal erosion surface records an episode of valley incision and relative sea-level fall, and the gradual progression from fluvial to more estuarine deposits upwards within each fill records relative sea-level rise. All fills are dominantly channel deposits and are capped by marine flooding surfaces. The dominance of channel deposits, the gradual change to more estuarine facies in the upper parts of fills, and the location of flooding surfaces at valley-fill tops all suggest that sediment supply initially kept pace with relative sea-level rise and valleys filled during late marine lowstand and transgression, not during subsequent highstands. Recently proposed facies models have focused on variations in the relative strength of tide, wave and river currents as controls on valley-fill deposits. However, relative rates of sediment supply and basin accommodation change, and the shift in this ratio along the depositional profile during multiple-scale cycles in relative sea-level, are equally important controls on the style of valley-fill deposits.  相似文献   

16.
Cauvery Basin, a pericratonic rift basin along the Eastern Continental Margin of India, evolved during the breakup of the Eastern Gondwanaland. It exposes both syn-rift and later post-rift passive margin deposits ranging from Barremian to Miocene. The Karai Formation, upper Aptian-lower/middle (?) Turonian represents the oldest passive margin in the Cauvery Basin. It is bounded at both contacts by major sequence boundaries viz. the break-up unconformity and the Turonian tilt event. The present communication deals with the ichnology of the Karai Formation and its integration with sedimentary facies and biostratigraphy to interpret the sea level changes during deposition. A traverse between the villages Karai and Kulakkalnattam was studied in detail for this purpose. Based on the lithological position, characters and internal grain size trends, the Karai Formation is sub-divided into four informal lithologic units; the lower three units, constitute a lithostratigraphic unit known in literature as the Gypsiferous Clay Member, while the uppermost, corresponds to the Sandy Clay Member. At the base, clays of the Karai Formation unconformably onlap onto the Precambrian basement or the fluvial syn-rift deposits across the break-up unconformity. Upper Aptian to middle Cenomanian, units I and II showing the distal Cruziana ichnofacies, deepening of the basin and a retrogradational stacking pattern represent a transgressive system tract (TST). This long phase of transgression is attributed to continuous accommodation created by the post-breakup thermal subsidence. The upper part of unit II (middle Cenomanian) shows condensation, with its top representing the maximum flooding surface (MFS). Upper Cenomanian to lower/middle (?) Turonian, units III and IV characterised by a shift from the distal Cruziana to the Skolithos ichnofacies, an initial aggradational and later deltaic, progradational stacking pattern resulting from a fall in the relative sea level and filling up of accommodation space represent the highstand system tract (HST). A further fall in the relative sea level led to the exposure, incision and erosion of the Karai Formation over which the younger transgressive sequence of the Trichinopoly Group was deposited with an angular unconformity.  相似文献   

17.
18.
The Balfour Formation represents a fully fluvial succession of late Late Permian–earliest Triassic age which accumulated in the foredeep of the Karoo Basin during the overfilled phase of the foreland system. The lack of a coeval marine environment within the limits of the preserved Karoo Basin provides an opportunity to study the stratigraphic cyclicity developed during a time when accommodation was solely controlled by tectonics. The Balfour stratigraphy is composed of a succession of six third-order fluvial depositional sequences separated by subaerial unconformities. They formed in isolation from eustatic influences, with a timing controlled by orogenic cycles of loading and unloading. Sediment accumulation took place during stages of flexural subsidence, whereas the bounding surfaces are related to stages of isostatic uplift. The vertical profile of all sequences displays an overall fining-upward trend related to the gradual decrease in topographic slope during orogenic loading. At the same time, an upward change in fluvial styles can be observed within each sequence, from initial higher to final lower energy systems. The actual fluvial styles in each location depend on paleoslope gradients and the position of the stratigraphic section relative to the orogenic front. Proximal sequences show transitions from braided to meandering systems, whereas more distal sequences show changes from sand-bed to fine-grained meandering systems. The average duration of the Balfour stratigraphic cycles was 0.66 My, i.e. six cycles during 4 My. No climatic fluctuations are recorded during this time, with the long-term climatic background represented by temperate to humid conditions.  相似文献   

19.
Regionally extensive parasequences in the upper McMurray Formation, Grouse Paleovalley, north‐east Alberta, Canada, preserve a shift in depositional processes in a paralic environment from tide domination, with notable fluvial influence, through to wave domination. Three stacked parasequences form the upper McMurray Formation and are separated by allogenic flooding surfaces. Sediments within the three parasequences are grouped into three facies associations: wave‐dominated/storm‐dominated deltas, storm‐affected shorefaces to sheltered bay‐margin and fluvio‐tidal brackish‐water channels. The two oldest parasequences comprise dominantly tide‐dominated, wave‐influenced/fluvial‐influenced, shoreface to bay‐margin deposits bisected by penecontemporaneous brackish‐water channels. Brackish‐water channels trend approximately north‐west/south‐east, which is perpendicular to the interpreted shoreline trend; this implies that the basinward and progradational direction was towards the north‐west during deposition of the upper McMurray Formation in Grouse Paleovalley. The youngest parasequence is interpreted as amalgamated wave‐dominated/storm‐dominated delta lobes. The transition from tide‐dominated deposition in the oldest two parasequences to wave‐dominated deposition in the youngest is attributed mainly to drowning of carbonate highlands to the north and north‐west of the study area, and potentially to relative changes in accommodation space and deposition rate. The sedimentological, ichnological and regional distribution of the three facies associations within each parasequence are compared to modern and Holocene analogues that have experienced similar shifts in process dominance. Through this comparison it is possible to consider how shifts in depositional processes are expressed in the rock record. In particular, this study provides one of few ancient examples of preservation of depositional process shifts and showcases how topography impacts the character and architecture of marginal‐marine systems.  相似文献   

20.
《Sedimentary Geology》2001,139(3-4):171-203
Carbonates in the upper member of the Mesoproterozoic Victor Bay Formation are dominated by lime mud and packaged in cycles of 20–50 m. These thicknesses exceed those of classic shallowing-upward cycles by almost a factor of 10. Stratigraphic and sedimentological evidence suggests high-amplitude, high-frequency glacio-eustatic cyclicity, and thus a cool global climate ca. 1.2 Ga.The Victor Bay ramp is one of several late Proterozoic carbonate platforms where the proportions of lime mud, carbonate grains, and microbialites are more typical of younger Phanerozoic successions which followed the global waning of stromatolites. Facies distribution in the study area is compatible with deposition on a low-energy, microtidal, distally steepened ramp. Outer-ramp facies are hemipelagic lime mudstone, shale, carbonaceous rhythmite, and debrites. Mid-ramp facies are molar-tooth limestone tempestite with microspar-intraclast lags. In a marine environment where stromatolitic and oolitic facies were otherwise rare, large stromatolitic reefs developed at the mid-ramp, coeval with inner-ramp facies of microspar grainstone, intertidal dolomitic microbial laminite, and supratidal evaporitic red shale.Deep-subtidal, outer-ramp cycles occur in the southwestern part of the study area. Black dolomitic shale at the base is overlain by ribbon, nodular, and carbonaceous carbonate facies, all of which exhibit signs of synsedimentary disruption. Cycles in the northeast are shallow-subtidal and peritidal in character. Shallow-subtidal cycles consist of basal deep-water facies, and an upper layer of subtidal molar-tooth limestone tempestite interbedded with microspar calcarenite facies. Peritidal cycles are identical to shallow-subtidal cycles except that they contain a cap of dolomitic tidal-flat microbial laminite, and rarely of red shale sabkha facies or of sandy polymictic conglomerate. A transect along the wall of a valley extending 8.5 km perpendicular to depositional strike reveals progradation of inner-ramp tidal flats over outer- and mid-ramp facies during shoaling. The maximum basinward progradation of peritidal facies coincides with a zone of slope failure that may have promoted the development of the stromatolitic reefs.The sea-level history of the Victor Bay Formation is represented by three hectometre-scale sequences. An initial flooding event resulted in deposition of the lower Victor Bay shale member. Upper-member carbonate cycles were then deposited during highstand. Mid-ramp slumping was followed by late-highstand reef development. The second sequence began with development of an inner-ramp lowstand unconformity and a thick mid-ramp lowstand wedge. A second transgression promoted a more modest phase of reef development at the mid-ramp and shallow-water deposition continued inboard. A third and final transgressive episode eventually led to flooding of the backstepping ramp.Overall consistent cycle thickness and absence of truncated cycles, as well as the high rate and amount of creation of accommodation space, suggest that the periodicity and amplitude of sea-level fluctuation were relatively uniform, and point to a eustatic rather than tectonic mechanism of relative sea-level change. High-amplitude, high-frequency eustatic sea-level change is characteristic of icehouse worlds in which short-term, large-scale sea-level fluctuations accompany rapidly changing ice volumes affected by Milankovitch orbital forcing. Packaging of cyclic Upper Victor Bay carbonates therefore supports the hypothesis of a late Mesoproterozoic glacial period, as proposed by previous workers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号