首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Acid mine drainage (AMD) pollution is considered to be the most serious water pollution problem in mining areas. AMD containing iron sulfates and other components can affect the receiving water bodies. Pyrite oxidation and AMD generation can be considered as important processes that may take place in the wastes produced by coal mining and coal washing operations in the Golestan province (northeast Iran). The study area is characterized by appropriate atmospheric conditions that favor pyrite oxidation and the presence of a large amount of water bodies. This study attempts to consider pyrite oxidation and AMD generation in the Azad shahr–Ramian region. The impact of AMD on the quality of the surface water bodies was investigated by taking samples and analyzing them for hydro-geochemical parameters. Stiff and Piper diagrams were used to represent chemical analyses of water samples. The coal samples taken from different depths at four points on two different coal waste dumps were analyzed to find the fraction of pyrite that remained in the waste particles to investigate the pyrite oxidation process. A computational fluid dynamic package called PHOENICS was used to model pyrite oxidation process numerically. The results obtained from the geochemical analyses of water and coal samples and numerical simulation show pyrite oxidation and acid generation in the region. However, the presence of carbonate rocks raised the pH of the water samples. The drainages of the Razi mine may be recognized as natural alkaline mine drainages.  相似文献   

2.
Solute transport and chemical neutralization (pH 3 to 7) within a shallow heterogeneous aquifer producing acid mine drainage (AMD) are examined at an abandoned surface coal mine in West Virginia. The aquifer is undergoing partial neutralization by mixing with alkalinity from a leaking sludge disposal pond, extending in preferential zones controlled by aquifer heterogeneity. Hydraulic heads interpolated from wells indicate leakage from a central alkaline (pH 7.1, 0.72 meq/L alkalinity) sludge pond is a principal source of recharge. Chemically-conservative sodium, added to AMD during treatment and leaked into the aquifer with the sludge, develops a dispersion plume over a restricted portion of the aquifer that correlates with pH, hydraulic head, and dissolved metals distributions. Concentrations of aluminum, iron, sulfate and acidity display higher concentrations downgradient from the pond as sludge alkalinity is consumed along flow paths. Before reaching springs, most dissolved iron is oxidized and hydrolyzed, likely precipitating in the aquifer as a ferric hydroxide or hydroxysulfate phase. The spatial pattern of iron and aluminum concentrations suggests accelerated oxidation caused by gas transport along the outer slopes of the spoil. Dissolved aluminum concentrations increase with total acidity, suggesting that dissolution of silicate minerals results from acidity released by iron hydrolysis. Neutralization reactions and higher pH are favored in more highly permeable portions of the spoil, where ferrihydrite and aluminum hydroxysulfate minerals (such as basaluminite) are supersaturated. In acid-producing zones at pH < 4.5, jurbanite is near equilibrium and an aluminum-sulfate phase with similar properties may limit aluminum concentrations, but become undersaturated in zones of advancing neutralization. At this particular site, ferrous iron produced by pyrite oxidation is almost completely oxidized over short transport distances, allowing hydrolysis of iron and aluminum should sufficient alkalinity be added to these acid waters.  相似文献   

3.
Groundwater and soil pollution from pyrite oxidation, acid mine drainage generation, and release and transport of toxic metals are common environmental problems associated with the mining industry. Nickel is one toxic metal considered to be a key pollutant in some mining setting; to date, its formation mechanism has not yet been fully evaluated. The goals of this study are 1) to describe the process of nickel mobilization in waste dumps by introducing a novel conceptual model, and 2) to predict nickel concentration using two algorithms, namely the support vector machine (SVM) and the general regression neural network (GRNN). The results obtained from this study have shown that considerable amount of nickel concentration can be arrived into the water flow system during the oxidation of pyrite and subsequent Acid Drainage (AMD) generation. It was concluded that pyrite, water, and oxygen are the most important factors for nickel pollution generation while pH condition, SO4, HCO3, TDS, EC, Mg, Fe, Zn, and Cu are measured quantities playing significant role in nickel mobilization. SVM and GRNN have predicted nickel concentration with a high degree of accuracy. Hence, SVM and GRNN can be considered as appropriate tools for environmental risk assessment.  相似文献   

4.
Solute transport and chemical neutralization (pH 3 to 7) within a shallow heterogeneous aquifer producing acid mine drainage (AMD) are examined at an abandoned surface coal mine in West Virginia. The aquifer is undergoing partial neutralization by mixing with alkalinity from a leaking sludge disposal pond, extending in preferential zones controlled by aquifer heterogeneity. Hydraulic heads interpolated from wells indicate leakage from a central alkaline (pH 7.1, 0.72 meq/L alkalinity) sludge pond is a principal source of recharge. Chemically-conservative sodium, added to AMD during treatment and leaked into the aquifer with the sludge, develops a dispersion plume over a restricted portion of the aquifer that correlates with pH, hydraulic head, and dissolved metals distributions. Concentrations of aluminum, iron, sulfate and acidity display higher concentrations downgradient from the pond as sludge alkalinity is consumed along flow paths. Before reaching springs, most dissolved iron is oxidized and hydrolyzed, likely precipitating in the aquifer as a ferric hydroxide or hydroxysulfate phase. The spatial pattern of iron and aluminum concentrations suggests accelerated oxidation caused by gas transport along the outer slopes of the spoil. Dissolved aluminum concentrations increase with total acidity, suggesting that dissolution of silicate minerals results from acidity released by iron hydrolysis. Neutralization reactions and higher pH are favored in more highly permeable portions of the spoil, where ferrihydrite and aluminum hydroxysulfate minerals (such as basaluminite) are supersaturated. In acid-producing zones at pH < 4.5, jurbanite is near equilibrium and an aluminum-sulfate phase with similar properties may limit aluminum concentrations, but become undersaturated in zones of advancing neutralization. At this particular site, ferrous iron produced by pyrite oxidation is almost completely oxidized over short transport distances, allowing hydrolysis of iron and aluminum should sufficient alkalinity be added to these acid waters.  相似文献   

5.
In the mining environments of the Iberian Pyrite Belt (IPB), the oxidation of sulphide wastes generates acid drainage with high concentrations of SO4, metals and metalloids (Acid Mine Drainage, AMD). These acid and extremely contaminated discharges are drained by the fluvial courses of the Huelva province (SW Spain) which deliver high concentrations of potentially toxic elements into the Gulf of Cádiz. In this work, the oxidation process of mine tailings in the IPB, the generation of AMD and the potential use of coal combustion fly ash as a possible alkaline treatment for neutralization of and metal removal from AMD, was studied in non-saturated column experiments. The laboratory column tests were conducted on a mine residue (71.6 wt% pyrite) with artificial rainfall or irrigation. A non-saturated column filled solely with the pyrite residue leached solutions with an acid pH (approx. 2) and high concentrations of SO4 and metals. These leachates have the same composition as typical AMD, and the oxidation process can be compared with the natural oxidation of mine tailings in the IPB. However, the application of fly ash to the same amount of mine residue in another two non-saturated columns significantly increased the pH and decreased the SO4 and metal concentrations in the leaching solutions. The improvement in the quality of leachates by fly ash addition in the laboratory was so effective that the leachate reached the pre-potability requirements of water for human consumption under EU regulations. The extrapolation of these experiments to the field is a promising solution for the decontamination of the fluvial courses of the IPB, and therefore, the decrease of pollutant loads discharging to the Gulf of Cádiz.  相似文献   

6.
Acid mine drainage predictive testwork associated with the Australian Mineral Industries Research Association (AMIRA) P387A Project: Prediction and Kinetic Control of Acid Mine Drainage (AMD) has critically examined static acid assessment and kinetic information from acid–base accounting techniques, including net acid production potential (NAPP), net acid generation (NAG) and column leach tests. This paper compares results on two waste rock samples that were obtained from the Kaltim Prima Coal mine (KPC) containing significant quantities of fine-grained framboidal pyrite. In agreement with other research, the authors' results indicated that framboidal pyrite is more reactive than euhedral forms due to the greater specific surface area of framboidal pyrite. This is evidenced by optical microscopy of reacted samples. Importantly, the results showed that NAPP testing is biased by the rapid acid generating oxidation of framboidal pyrite prior to, and during the acid neutralisation capacity (ANC) test. This can result in negative ANC values for samples containing significant framboidal pyrite (often “corrected” to zero kg H2SO4/t) when significant ANC is actually present in the sample. NAG testing using H2O2 indicated that samples containing a significant quantity of framboidal pyrite can result in the catalytic decomposition of the H2O2 prior to complete oxidation of the sulfide minerals present, requiring sequential addition of H2O2 for completion. A benefit of the NAG test, however, is that it assesses the net acid generation capacity of the sample without bias towards acid generation as is observed using NAPP methods. The kinetic NAG test also gives information on the reaction sequence of framboidal and euhedral pyrite. Periodic (kinetic) analysis of sub-samples from column leach tests indicated rapid oxidation of the framboidal pyrite compared to the euhedral pyrite, which was correlated with the greater framboidal pyrite surface area.Calculations to determine the sulfide/sulfate acidity derived from the oxidation of framboidal pyrite prior to; and during the ANC test have been developed to provide a better indication of the actual ANC (ANCActual) of the sample. Paste pH values of <pH 4–5 may be one suitable trigger mechanism for the implementation of this new method. This has led to an improved NAPP estimation of total acid production. Together with NAG and column leach testing this improved methodology has resulted in accurate AMD characterisation of samples containing acidic oxidation products and framboidal pyrite.  相似文献   

7.
The dissolution of pyrite is of interest in the formation of acid mine drainage and is a complex electrochemical process. Being able to measure the rate of dissolution of particular pyrite samples under particular conditions is important for describing and predicting rates of AMD generation. Electrochemical techniques offer the promise of performing such measurements rapidly and with small samples. The oxidation of pyrite and the reduction of Fe3+ ions and/or O2 half reactions involved in the pyrite dissolution process were investigated by cyclic voltammetry and steady-state voltammetry using three pyrite materials formed in both sedimentary and hydrothermal environments. For each sample, two kinds of pyrite working electrodes (conventional constructed compact solid electrode, and carbon paste electrode constructed from fine-grained pyrite particles) were employed. Results indicated that for both the hydrothermal and sedimentary pyrite samples the oxidation and reduction half reactions involved in dissolution were governed by charge transfer processes, suggesting that hydrothermal and sedimentary pyrites obey the same dissolution mechanism despite their different formation mechanisms. In addition, the results showed that it is feasible to use a C paste electrode constructed from fine-grained or powdered pyrite to study the pyrite dissolution process electrochemically and to derive approximate rate expressions from the electrochemical data.  相似文献   

8.
Establishing a shallow water cover over tailings deposited in a designated storage facility is one option to limit oxygen diffusion and retard oxidation of sulfides which have the potential to form acid mine drainage (AMD). The Old Tailings Dam (OTD) located at the Savage River mine, western Tasmania contains 38 million tonnes of pyritic tailings deposited from 1967 to 1982, and is actively generating AMD. The OTD was constructed on a natural gradient, resulting in sub-aerial exposure of the southern area, with the northern area under a natural water cover. This physical contrast allowed for the examination of tailings mineralogy and geochemistry as a function of water cover depth across the OTD. Tailings samples (n = 144, depth: ≤ 1.5 m) were collected and subjected to a range of geochemical and mineralogical evaluations. Tailings from the southern and northern extents of the OTD showed similar AMD potential based on geochemical (NAG pH range: 2.1 to 4.2) and bulk mineralogical parameters, particularly at depth. However, sulfide alteration index (SAI) assessments highlighted the microscale contrast in oxidation. In the sub-aerial zone pyrite grains are moderately oxidized to a depth of 0.3 m (maximum SAI of 6/10), under both gravel fill and oxidized covers, with secondary minerals (e.g., ferrihydrite and goethite) developed along rims and fractures. Beneath this, mildly oxidized pyrite is seen in fresh tailings (SAI = 2.9/10 to 5.8/10). In the sub-aqueous zone, the degree of pyrite oxidation demonstrates a direct relationship with cover depth, with unoxidized, potentially reactive tailings identified from 2.5 m, directly beneath an organic-rich sediment layer (SAI = 0 to 1/10). These findings are broadly similar to other tailings storage facilities e.g., Fox Lake, Sherritt-Gordon ZnCu mine, Canada and Stekenjokk mine, Sweden where water covers up to 2 m have successfully reduced AMD. Whilst geotechnical properties of the OTD restrict the extension of the water cover, pyrite is enriched in cobalt (up to 2.6 wt%) indicating reprocessing of tailings as an alternative management option. Through adoption of an integrated mineralogical and geochemical characterization approach for tailings assessment robust management strategies after mine closure can be developed.  相似文献   

9.
The chemolithoautotrophic bacterium, Acidithiobacillus ferrooxidans, commonly occurs in acid mine drainage (AMD) environments where it is responsible for catalyzing the oxidation of pyrite and concomitant development of acidic conditions. This investigation reports on the growth of this bacterial species on the pyrite surface and in the aqueous phase at a pH close to 2 as well as the role of adsorbed lipid in preventing pyrite dissolution. Both acid washed pyrite and acid-washed pyrite coated with lipids were used as substrates in the studies. The choice of lipid, 1,2-bis(10,12-tricosadiynoyl)-sn-Glycero-3-Phosphocholine lipid (23:2 Diyne PC), a phosphocholine lipid, was based on earlier work that showed that this lipid inhibits the abiotic oxidation rate of pyrite. Atomic force microscopy showed that under the experimental conditions used in this study, the lipid formed ~4–20 nm layers on the mineral surface. Surface-bound lipid greatly suppresses the oxidation process catalyzed by A. ferrooxidans. This suppression continued for the duration of the experiments (25 days maximum). Analysis of the bacterial population on the pyrite surface and in solution over the course of the experiments suggested that the pyrite oxidation was dependent in large part on the fraction of bacteria bound to the pyrite surface.  相似文献   

10.
酸性矿山废水(acid mine drainage,AMD)是一类pH低并含有大量有毒金属元素的废水。AMD及受其影响的环境中次生高铁矿物类型主要包括羟基硫酸高铁矿物(如黄铁矾和施威特曼石等)和一些含水氧化铁矿物(如针铁矿和水铁矿等),而且这些矿物在不同条件下会发生相转变,如施氏矿物向针铁矿或黄铁矾矿物相转化。基于酸性环境中生物成因次生矿物的形成会"自然钝化"或"清除"废水中铁和有毒金属这一现象所获得的启示,提出利用这些矿物作为环境吸附材料去除地下水中砷,不但吸附量大(如施氏矿物对As的吸附可高达120mg/g),而且可直接吸附As(III),还几乎不受地下水中其他元素影响。利用AMD环境中羟基硫酸高铁矿物形成的原理,可将其应用于AMD石灰中和主动处理系统中,构成"强化微生物氧化诱导成矿-石灰中和"的联合主动处理系统,以提高AMD处理效果和降低石灰用量。利用微生物强化氧化与次生矿物晶体不断生长的原理构筑生物渗透性反应墙(PRB)并和石灰石渗透沟渠耦联,形成新型的AMD联合被动处理系统,这将有助于大幅度增加处理系统的寿命和处理效率。此外,文中还探讨了上述生物成因矿物形成在AMD和地下水处理方面应用的优点以及今后需要继续研究的问题。  相似文献   

11.
 Annually, an amount of approximately 13 million cubic meters of hard-coal tailings must be disposed of in the German Ruhr Valley. Besides the waste of land in a densily populated region, the disposal of the pyrite-bearing material under atmospheric conditions may lead to the formation of acid mine drainage (AMD). Therefore, alternative disposal opportunities are of increasing importance, one of which being the use of tailings under water-saturated conditions, such as in backfilling of abandoned gravel pits or in the construction of waterways. In this case, the oxidation of pyrite, and hence the formation of AMD, is controlled by the amount of oxygen dissolved in the pore water of tailings deposited under water. In case the advective percolation of water is suppressed by sufficient compaction of the tailings, oxygen transport can be reduced to diffusive processes, which are limited by the diffusive flux of dissolved oxygen in equilibrium with the atmospheric pO2. Calculations of the duration of pyrite oxidation based on laboratory experiments have shown that the reduction of oxygen is mainly controlled by the content of organic substance rather than the pyrite content, a fact that is supported by results from oxidation experiments with nitrate. A "worst case" study has lead to the result that the complete oxidation of a 1.5-m layer of hard-coal tailings deposited under water-saturated conditions would take as much as several hundred thousand years. Received: 6 May 1996 · Accepted: 2 August 1996  相似文献   

12.
13.
嗜酸性氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans)能够在低pH值条件下,迅速将Fe2+氧化并产生大量次生羟基硫酸铁沉淀,从而除去水中可溶性Fe2+。这为富含Fe2+的酸性矿山废水(acid mine drainage,AMD)处理提供了新的思路。本文从晶种刺激和阳离子诱导两个方面,分别研究了固定化载体(硅藻土、石英砂)和具有强诱导能力的成矾离子(K+)对微生物转化酸性体系中Fe2+成次生矿物的影响。结果表明,3种材料均有明显促进可溶性Fe2+向次生矿物转化的作用,且总铁(TFe)沉淀率与3种材料的添加量呈正相关关系。在起始Fe2+浓度为160mmol/L,硅藻土、石英砂和钾离子最大添加量分别为10 g、10 g和80 mmol/L时,经过72 h反应后,TFe沉淀率分别比对照增加了8%、24%和20%。矿物中的Fe、K和S元素含量与溶液中的起始K+浓度有非常密切的关系,随着K+浓度的增大,矿物中的K和S含量逐渐增加,而Fe含量则相应减少。  相似文献   

14.
Acid mine drainage biogeochemistry at Iron Mountain,California   总被引:2,自引:0,他引:2  

The Richmond Mine at Iron Mountain, Shasta County, California, USA provides an excellent opportunity to study the chemical and biological controls on acid mine drainage (AMD) generation in situ, and to identify key factors controlling solution chemistry. Here we integrate four years of field-based geochemical data with 16S rRNA gene clone libraries and rRNA probe-based studies of microbial population structure, cultivation-based metabolic experiments, arsenopyrite surface colonization experiments, and results of intermediate sulfur species kinetics experiments to describe the Richmond Mine AMD system. Extremely acidic effluent (pH between 0.5 and 0.9) resulting from oxidation of approximately 1 × 105 to 2 × 105 moles pyrite/day contains up to 24 g/1 Fe, several g/1 Zn and hundreds of mg/l Cu. Geochemical conditions change markedly over time, and are reflected in changes in microbial populations. Molecular analyses of 232 small subunit ribosomal RNA (16S rRNA) gene sequences from six sites during a sampling time when lower temperature (<32°C), higher pH (>0.8) conditions predominated show the dominance of Fe-oxidizing prokaryotes such as Ferroplasma and Leptospirillum in the primary drainage communities. Leptospirillum group III accounts for the majority of Leptospirillum sequences, which we attribute to anomalous physical and geochemical regimes at that time. A couple of sites peripheral to the main drainage, "Red Pool" and a pyrite "Slump," were even higher in pH (>1) and the community compositions reflected this change in geochemical conditions. Several novel lineages were identified within the archaeal Thermoplasmatales order associated with the pyrite slump, and the Red Pool (pH 1.4) contained the only population of Acidithiobacillus. Relatively small populations of Sulfobacillus spp. and Acidithiobacillus caldus may metabolize elemental sulfur as an intermediate species in the oxidation of pyritic sulfide to sulfate. Experiments show that elemental sulfur which forms on pyrite surfaces is resistant to most oxidants; its solublization by unattached cells may indicate involvement of a microbially derived electron shuttle. The detachment of thiosulfate (S2O32-) as a leaving group in pyrite oxidation should result in the formation and persistence of tetrathionate in low pH ferric iron-rich AMD solutions. However, tetrathionate is not observed. Although a S2O32--like species may form as a surface-bound intermediate, data suggest that Fe3+ oxidizes the majority of sulfur to sulfate on the surface of pyrite. This may explain why microorganisms that can utilize intermediate sulfur species are scarce compared to Fe-oxidizing taxa at the Richmond Mine site.

  相似文献   

15.
Acid mine drainage (AMD) is a widespread environmental problem associated with working and abandoned mining operations. It results from the microbial oxidation of pyrite in the presence of water and air, affording an acidic solution that contains toxic metal ions. Pyrite microencapsulation, utilizing silica coating, is a novel approach for controlling AMD that has been shown to be very effective in controlling pyrite oxidation. The roles of the solution pH and silica concentration in the formation mechanism for the AMD-preventing coating were investigated. A silica coating can be formed from silica solution at pH 7, at which the amount of Fe eluted from pyrite into the solution is small. No coating was formed at other pH values, and the amounts of eluted Fe were larger than at pH 7, especially at pH 11. The silica coating forms from 2,500 to 5,000 mg/L silica solutions, but not from 0 or 1,000 mg/L silica solutions. The coating formation rate was slower in the 2,500 mg/L silica solution than in the 5,000 mg/L silica solution. The formation of silica coating on pyrite surfaces depends on three main steps: formation of Fe(OH)3 on the surface of pyrite, reaction between Fe(OH)3 and silicate in the solution on the pyrite surface, and growth of the silica layer on the first layer of silica. The best pH condition to enable these steps was around 7, and the silica coating formation rate can be controlled by the concentration of silica.  相似文献   

16.
Acid mine/rock drainage (AMD/ARD) is the biggest environmental threat facing the mining industry. This study investigates AMD/ARD possibilities in three mines in the Ashanti Belt, using acid base accounting (ABA) and net acid generation pH (NAGpH) tests. Twenty-eight samples of rock units and mine spoil from these mines were collected for ABA and NAGpH tests. Two tailing dumps at Prestea and Nsuta were confirmed by both methods as acid generating with NAGpH of 4.5 and 4.6 and neutralization potential ratio values of 4.38 and 4.60, respectively. Six other samples are classified as potentially acid generating using a variety of established classification criteria. The rest of the samples either exhibited very low sulphur and carbonate content or had excess carbonate over sulphur. Consistency between results from ABA and NAGpH tests validates these tests as adequate tools for preliminary evaluation of AMD/ARD possibilities in any mining project in the Ashanti Belt.  相似文献   

17.
Experiments were conducted to investigate (i) the rate of O-isotope exchange between SO4 and water molecules at low pH and surface temperatures typical for conditions of acid mine drainage (AMD) and (ii) the O- and S-isotope composition of sulfates produced by pyrite oxidation under closed and open conditions (limited and free access of atmospheric O2) to identify the O source/s in sulfide oxidation (water or atmospheric molecular O2) and to better understand the pyrite oxidation pathway. An O-isotope exchange between SO4 and water was observed over a pH range of 0–2 only at 50 °C, whereas no exchange occurred at lower temperatures over a period of 8 a. The calculated half-time of the exchange rate for 50 °C (pH = 0 and 1) is in good agreement with former experimental data for higher and lower temperatures and excludes the possibility of isotope exchange for typical AMD conditions (T  25 °C, pH  3) for decades.Pyrite oxidation experiments revealed two dependencies of the O-isotope composition of dissolved sulfates: O-isotope values decreased with longer duration of experiments and increasing grain size of pyrite. Both changes are interpreted as evidence for chemisorption of molecular O2 to pyrite surface sites. The sorption of molecular O2 is important at initial oxidation stages and more abundant in finer grained pyrite fractions and leads to its incorporation in the produced SO4. The calculated bulk contribution of atmospheric O2 in the dissolved SO4 reached up to 50% during initial oxidation stages (first 5 days, pH 2, fine-grained pyrite fraction) and decreased to less than 20% after about 100 days. Based on the direct incorporation of molecular O2 in the early-formed sulfates, chemisorption and electron transfer of molecular O2 on S sites of the pyrite surface are proposed, in addition to chemisorption on Fe sites. After about 10 days, the O of all newly-formed sulfates originates only from water, indicating direct interaction of hydroxyls from water with S at the anodic S pyrite surface site. Then, the role of molecular O2 is as proposed in previous studies: acting as electron acceptor only at the cathodic Fe pyrite surface site for oxidation of Fe(II) to Fe(III).  相似文献   

18.
The geochemical and mineralogical study of the Quiulacocha tailings impoundment has shown that the hydrological connection of the three studied mine-waste systems at Cerro de Pasco (Pyrite-rich waste-rock dump Excelsior, old tailings impoundment Quiulacocha, and the active tailings impoundment Ocroyoc) is a critical concern for effective acid mine drainage (AMD) control and mine-waste management. The Quiulacocha tailings covered 114 ha, comprising 79 Mt of tailings, which contained  50 wt.% pyrite, and are located at 4340 m altitude in a tropical puna climate with about 1025 mm/a rainfall and 988 mm/a of evaporation. The tailings were partially overlain by the Excelsior waste-rock dump, which contains about 26,400,000 m3 of waste rocks that cover 94 ha and contained  60 wt.% of pyrite, which origin from a massive pyrite-quartz replacement body. Therefore, these two mine-waste deposits had a direct hydrological connection, resulting in the export of AMD produced at Excelsior towards Quiulacocha. In the Quiulacocha impoundment there are two different types of tailings recognized, that interact with the AMD from Excelsior: 1) Zn–Pb-rich tailings and 2) Cu–As-rich tailings. During the sampling, the Zn–Pb-rich part of Quiulacocha was not producing important excesses of AMD from the oxidation zone, since the pH increased to near neutral values at 1 m depth. The underlying tailings were still able to neutralize the acidity produced in the oxidation zone through sulfide oxidation by the carbonates (mainly dolomite and siderite) contained in the Zn–Pb mineral assemblage. The main source of AMD in this mine-waste system is the Excelsior waste-rock dump. Its acid seepage infiltrates into Quiulacocha forming a Fe–Zn–Pb plume with a pH 5.5–6.1 and containing up to 7440 mg/L Fe, 627 mg/L Zn, and 1.22 mg/L Pb. The plume was detected at 10–13 m depth in the stratigraphy of Quiulacocha tailings. Additionally, the AMD seepage outcropping at the base of the Excelsior waste-rock dump was channeled on the tailings surface into the Quiulacocha pond (pH 2.3), which covered the Cu–As-rich tailings. Infiltration of this Fe(III)-rich AMD increased tailings oxidation in the southwestern part of the impoundment, and subsequently liberated arsenic by enargite oxidation. Additionally, the AMD collected in the Quiulacocha pond was pumped into the active Ocroyoc tailings impoundment, where sulfide oxidation was strongly enhanced by the input of dissolved Fe(III). Therefore, the AMD management and a hydrological separation of the different mine-waste systems could be a first step to prevent further extension of the AMD problem in order to prevent increased sulfide oxidation by Fe(III)-rich solutions.  相似文献   

19.
The waste produced by coal washing process produces many environmental problems. In this study, the pollution problems associated with the waste produced by Alborz Sharghi Coal Washing Plant was investigated by mathematical modeling. The study area is located at 11 km. to Razmjah coal region and 45 km. to Tehran-Mashhad road in the north part od Iran. To achieve the goal, a few samples were taken from different depths at three points on the waste dump in order to investigate pyrite oxidation and pollution generation. The samples were then analysed, using an AA-670 Shimadzu atomic absorption to determine the fraction of pyrite remained within the waste particles. A numerical finite volume model using Phoenics package has been developed to simulate pyrite oxidation and pollution generation from the Alborz Sharghi coal washing waste dump. The pyrite oxidation reaction is described by the shrinking-core model. Gaseous diffusion is the main mechanism for the transport of oxygen through the waste. The results of numerical modelling were compared with the field observations and close agreement was achieved. A simple mathematical model incorporating advection and hydrodynamic dispersion processes was also presented in order to verify the results of geophysical time-laps method showing transportation of the pollutants through the downstream of the waste dump. Both mathematical model and geophysical time-laps method are agreed in the identification of pollutant transport emanated from the waste dump. The results of such investigations can be used for designing an effective environmental management program.  相似文献   

20.
Biological reduction of iron-sulfate minerals, such as jarosite, has the potential to contribute to the natural attenuation of acid mine drainage (AMD) sites. Previous studies of AMD attenuation at Davis Mine, an abandoned pyrite mine in Rowe Massachusetts, provided evidence of iron and sulfate reduction by indigenous bacteria. Jarosite is a large component of the sediment at Davis Mine and may play a role in AMD attenuation. In this study, microcosms were constructed with groundwater and sediment from Davis Mine and amended with glycerol, nitrogen and phosphorus (GNP) and naturally formed natrojarosite. Over time, higher total iron, sulfate, pH and sodium concentrations and lower oxidation–reduction potentials were observed in microcosms amended with GNP and jarosite, compared with unamended microcosms and killed controls. Geochemical modeling predicted jarosite precipitation under microcosm conditions, suggesting that abiotic processes were unlikely contributors to jarosite dissolution. SEM imaging at the jarosite surface showed microbial attachment. Microbial community composition analysis revealed a shift to higher populations of Clostridia, which are known to reduce both iron and sulfate. The results show that jarosite may be utilized as an electron acceptor by iron and/or sulfate reducing bacteria at Davis Mine and its presence may aid in the attenuation of AMD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号