首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climate change due to enhanced greenhouse warming has been calculated using the coupled GFDL general circulation model of the atmosphere and ocean. The results of the model for a sustained increase of atmospheric carbon dioxide of 1% per year over a century indicate a marked warming of the upper ocean. Results of the model are used to study the rise in sea level caused by increase in ocean temperatures and associated changes in ocean circulation. Neglecting possible contributions due to changes in the volume of polar ice sheets and mountain glaciers, the model predicts an average rise in sea level of approximately 15 ± 5 cm by the time atmospheric carbon dioxide doubles. Heating anomalies are greatest in subpolar latitudes. This effect leads to a weakening of the ocean thermohaline circulation. Changes in thermohaline circulation redistribute heat within the ocean from high latitudes toward the equator, and cause a more uniform sea level rise than would occur otherwise.  相似文献   

2.
Anthropogenic greenhouse gas emissions may trigger climate threshold responses, such as a collapse of the North Atlantic meridional overturning circulation (MOC). Climate threshold responses have been interpreted as an example of “dangerous anthropogenic interference with the climate system” in the sense of the United Nations Framework Convention on Climate Change (UNFCCC). One UNFCCC objective is to “prevent” such dangerous anthropogenic interference. The current uncertainty about important parameters of the coupled natural – human system implies, however, that this UNFCCC objective can only be achieved in a probabilistic sense. In other words, climate management can only reduce – but not entirely eliminate – the risk of crossing climate thresholds. Here we use an integrated assessment model of climate change to derive economically optimal risk-reduction strategies. We implement a stochastic version of the DICE model and account for uncertainty about four parameters that have been previously identified as dominant drivers of the uncertain system response. The resulting model is, of course, just a crude approximation as it neglects, for example, some structural uncertainty and focuses on a single threshold, out of many potential climate responses. Subject to this caveat, our analysis suggests five main conclusions. First, reducing the numerical artifacts due to sub-sampling the parameter probability density functions to reasonable levels requires sample sizes exceeding 103. Conclusions of previous studies that are based on much smaller sample sizes may hence need to be revisited. Second, following a business-as-usual (BAU) scenario results in odds for an MOC collapse in the next 150 years exceeding 1 in 3 in this model. Third, an economically “optimal” strategy (that maximizes the expected utility of the decision-maker) reduces carbon dioxide(CO2) emissions by approximately 25% at the end of this century, compared with BAU emissions. Perhaps surprisingly, this strategy leaves the odds of an MOC collapse virtually unchanged compared to a BAU strategy. Fourth, reducing the odds for an MOC collapse to 1 in 10 would require an almost complete decarbonization of the economy within a few decades. Finally, further risk reductions (e.g., to 1 in 100) are possible in the framework of the simple model, but would require faster and more expensive reductions in CO2 emissions.  相似文献   

3.
Precipitation: A Parameter Changing Climate and Modified by Climate Change   总被引:2,自引:0,他引:2  
This paper discusses two aspects of climate modeling, the deep water formation in the North Atlantic and precipitation changes due to climate change caused by anthropogenic emissions of greenhouse gases. The deep water formation is strongly influenced by the precipitation, and the precipitation is affected by the concentration of the greenhouse gases in the atmosphere and by the atmospheric and oceanic circulation. The experiments discussed here have been performed independently to test the stability of the thermohaline circulation of the North Atlantic and to investigate changes in precipitation due to anthropogenic greenhouse gas emissions. The precipitation changes in a climate change environment are sufficient in some simulations to decrease the thermohaline circulation noticeably. However, it appears that the amount of freshwater needed to bring the circulation to a collapse is magnitudes larger than the anticipated change in precipitation due to anthropogenic activities within the next 100 years. The precipitation changes, on the other hand, might change regionally quite drastically towards more extreme situations, thereby putting additional stress on vegetation and enhancing soil erosion.  相似文献   

4.
《Climate Policy》2001,1(4):433-449
One of the most controversial conclusions to emerge from many of the first generation of integrated assessment models (IAMs) of climate policy was the perceived economic optimality of negligible near-term abatement of greenhouse gases. Typically, such studies were conducted using smoothly varying climate change scenarios or impact responses. Abrupt changes observed in the climatic record and documented in current models could substantially alter the stringency of economically optimal IAM policies. Such abrupt climatic changes — or consequent impacts — would be less foreseeable and provide less time to adapt, and thus would have far greater economic or environmental impacts than gradual warming. We extend conventional, smooth IAM analysis by coupling a climate model capable of one type of abrupt change to a well-established energy–economy model (DICE). We compare the DICE optimal policy using the standard climate sub-model to our version that allows for abrupt change — and consequent enhanced climate damage — through changes in the strength (and possible collapse) of the North Atlantic thermohaline circulation (THC). We confirm the potential significance of abrupt climate change to economically optimal IAM policies, thus calling into question all previous work neglecting such possibilities — at the least for the wide ranges of relevant social and climate system parameters we consider. In addition, we obtain an emergent property of our coupled social–natural system model: “optimal policies” that do consider abrupt changes may, under relatively low discount rates, calculate emission control levels sufficient to avoid significant abrupt change, whereas “optimal policies” disregarding abrupt change would not prevent this non-linear event. However, there is a threshold in discount rate above which the present value of future damages is so low that even very large enhanced damages in the 22nd century, when a significant abrupt change such as a THC collapse would be most likely to occur, do not increase optimal control levels sufficiently to prevent such a collapse. Thus, any models not accounting for potential abrupt non-linear behavior and its interaction with the discounting formulation are likely to miss an important set of possibilities relevant to the climate policy debate.  相似文献   

5.
We present global warming scenarios computed with an intermediate-complexity atmosphere-ocean-sea ice model which has been extensively validated for a range of past climates (e.g., the Last Glacial Maximum). Our simulations extend to the year 3000, beyond the expected peak of CO2 concentrations. The thermohaline ocean circulation declines strongly in all our scenarios over the next 50 years due to a thermal effect. Changes in the hydrological cycle determine whether the circulation recovers or collapses in the long run. Both outcomes are possible within present uncertainty limits. In case of a collapse, a substantial long-lasting cooling over the North Atlantic and a drying of Europe is simulated.  相似文献   

6.
Global Climatic Impacts of a Collapse of the Atlantic Thermohaline Circulation   总被引:31,自引:3,他引:31  
Part of the uncertainty in predictions by climate models results fromlimited knowledge of the stability of the thermohaline circulation ofthe ocean. Here we provide estimates of the response of pre-industrial surface climatevariables should the thermohalinecirculation in the Atlantic Ocean collapse. For this we have usedHadCM3, an ocean-atmosphere general circulation model that is run without fluxadjustments. In this model a temporary collapse was forced by applying a strong initial freshening to the top layers of the NorthAtlantic. In the first five decades after the collapse surface air temperatureresponse is dominated by cooling of much of the NorthernHemisphere (locally up to 8 °C, 1–2 °C on average) and weakwarming of theSouthern Hemisphere (locally up to 1 °C, 0.2 °C onaverage). Response is strongest around the North Atlantic but significant changesoccur over the entire globe and highlight rapidteleconnections.Precipitation is reduced over large parts of the Northern Hemisphere.A southward shift of the IntertropicalConvergence Zone over the Atlantic and eastern Pacific createschanges in precipitation that are particularly large in South America andAfrica. Colder and drier conditions in much of the Northern Hemisphere reducesoil moisture and net primary productivity of the terrestrial vegetation. Thisis only partlycompensated by more productivity in the Southern Hemisphere.The total global net primary productivity by the vegetation decreases by5%. It should be noted, however, that in this version of the model thevegetation distribution cannotchange, and atmospheric carbon levels are also fixed. After about 100 yearsthe model's thermohaline circulation has largelyrecovered, and most climatic anomalies disappear.  相似文献   

7.
Impacts of thermohaline circulation shutdown in the twenty-first century   总被引:4,自引:1,他引:3  
We discuss climate impacts of a hypothetical shutdown of the thermohaline circulation (‘THC’) in the 2050s, using the climate model HadCM3. Previous studies have generally focussed on the effects on pre-industrial climate. Here we take into account increased greenhouse gas concentrations according to an IS92a emissions scenario. THC shutdown causes cooling of the Northern Hemisphere of -1.7?C, locally stronger. Over western Europe cooling is strong enough for a return to pre-industrial conditions and a significant increase in the occurrence of frost and snow cover. Global warming restricts the increase in sea ice cover after THC shutdown. This lessens the amount of cooling over NW Europe, but increases it over North America, compared to pre-industrial shutdown. This reflects a non-linearity in the local temperature response to THC shutdown. Precipitation change after THC shutdown is generally opposite to that caused by global warming, except in western and southern Europe, where summer drying is enhanced, and in Central America and southeast Asia, where precipitation is also further reduced. Local rise in sea level after THC shutdown can be large along Atlantic coasts (pm; 25,cm), which would add to the rise caused by global warming. Potentially rapid THC shutdown adds to the range of uncertainty of projected future climate change.  相似文献   

8.
Hydrogen is named as possible energy carrier for future energy systems. However, the impact of large-scale hydrogen use on the atmosphere is uncertain. Application of hydrogen in clean fuel cells reduces emissions of air pollutants, but emissions from hydrogen production and leakages of molecular hydrogen could influence atmospheric chemistry. This paper combines a global energy system model and a global atmospheric model to explore the range of impacts of hydrogen on atmospheric chemistry. We found that emissions of molecular hydrogen may range from 0.2 up to 10% (or 25-167 Tg hydrogen/yr) for a global hydrogen energy system. The lower end of this range would in fact be equal to current emissions from fossil fuel combustion. Hydrogen energy use leads to a clear decrease in emissions of carbon monoxide, nitrogen oxides and sulphur dioxide, but large-scale hydrogen production from coal may lead to net increase in emissions of nitrous oxide and volatile organic compound. Compared to a reference scenario, this would lead to positive impacts on surface concentrations of carbon monoxide, nitrogen oxides and ozone. However, if hydrogen leakage would not be minimised it leads to an increase in methane lifetimes and a decrease in stratospheric ozone concentrations.  相似文献   

9.
The possibility of extreme sea-level rise is one of the commonly cited reasons for concern about climate change. Major increases in sea level would likely be driven by the melting or collapse of major ice sheets. This possibility has implications for the social cost of carbon dioxide, which is a key policy value as well as a useful summary measure of damage caused by greenhouse gas emissions.This paper extends earlier work on the importance of low-probability, high-impact events for the social cost of carbon dioxide to incorporate the possibility of extreme sea-level rise.To estimate its impact, an integrated assessment model is used, which allows a probabilistic assessment of climate change damages based on the linkages between the economic and climate systems. In the model, the generic discontinuity damage is replaced with the possibility of large-scale damage from factors that are taken to be correlated with temperature rise and, crucially for this paper, explicit consideration of extreme sea-level rise.Estimates of the amount of increase in the social cost of carbon dioxide that can be expected from incorporating extreme sea-level rise show that the increase is significant, though not especially large in percentage terms.The paper contributes to the literature of how to represent uncertain climate impacts in integrated assessment models and the associated estimation of the social cost of carbon dioxide.  相似文献   

10.
Two ensemble simulations with the ECHAM5/MPI-OM climate model have been investigated for the atmospheric response to a thermohaline circulation (THC) collapse. The model forcing was specified from observations between 1950 and 2000 and it followed a rising greenhouse gases emission scenario from 2001 to 2100. In one ensemble, a THC collapse was induced by adding freshwater in the northern North Atlantic, from 2001 onwards. After about 20 years, an almost stationary response pattern develops, that is, after the THC collapse, global mean temperature rises equally fast in both ensembles with the hosing ensemble displaying a constant offset. The atmospheric response to the freshwater hosing features a strong zonal gradient in the anomalous 2-m air temperature over Western Europe, associated with a strong land–sea contrast. Since Western Europe climate features a strong marine impact due to the prevailing westerlies, the question arises how such a strong land–sea contrast can be maintained. We show that a strong secondary cloud response is set up with increased cloud cover over sea and decreased cloud cover over land. Also, the marine impact on Western European climate decreases, which results from a reduced transport of moist static energy from sea to land. As a result, the change in lapse rate over the cold sea surface temperature (SST) anomalies west of the continent is much larger than over land, dominated by changes in moisture content rather than temperature.  相似文献   

11.
Biofuel’s carbon balance: doubts, certainties and implications   总被引:1,自引:1,他引:0  
In addition to lower carbon dioxide emissions, policies to reduce fossil fuel combustion can yield substantial air quality co-benefits via reduced emissions of co-pollutants such as particulate matter and air toxics. If co-pollutant intensity (the ratio of co-pollutant impacts to carbon dioxide emissions) varies across pollution sources, efficient policy design would seek greater emissions reductions where co-benefits are higher. The distribution of co-benefits also raises issues of environmental equity. This paper presents evidence on intersectoral, intrasectoral and spatial variations in co-pollutant intensity of industrial point sources in the United States, and discusses options for integrating co-benefits into climate policy design to advance efficiency and equity.  相似文献   

12.
Carbon capture and storage (CCS) is increasingly depicted as an important element of the carbon dioxide mitigation portfolio. However, critics have warned that CCS might lead to “reinforced fossil fuel lock-in”, by perpetuating a fossil fuel based energy provision system. Due to large-scale investments in CCS infrastructure, the fossil fuel based ‘regime’ would be perpetuated to at least the end of this century.In this paper we investigate if and how CCS could help to avoid reinforcing fossil fuel lock-in. First we develop a set of criteria to estimate the degree of technological lock-in. We apply these criteria to assess the lock-in reinforcement effect of adding CCS to the fossil fuel socio-technical regime (FFR).In principle, carbon dioxide could be captured from any carbon dioxide point source. In the practice of present technological innovations, business strategies, and policy developments, CCS is most often coupled to coal power plants. However, there are many point sources of carbon dioxide that are not directly related to coal or even fossil fuels. For instance, many forms of bio-energy or biomass-based processes generate significant streams of carbon dioxide emissions. Capturing this carbon dioxide which was originally sequestered in biomass could lead to negative carbon dioxide emissions.We use the functional approach of technical innovations systems (TIS) to estimate in more detail the strengths of the “niches” CCS and Bio-Energy with CCS (BECCS). We also assess the orientation of the CCS niche towards the FFR and the risk of crowding out BECCS. Next we develop pathways for developing fossil energy carbon capture and storage, BECCS, and combinations of them, using transition pathways concepts. The outcome is that a large-scale BECCS development could be feasible under certain conditions, thus largely avoiding the risk of reinforced fossil fuel lock-in.  相似文献   

13.
IPCC AR6报告中控温1.5℃和2℃的低排放情景需要在21世纪中叶以后实现净负CO2排放,这需要在很大程度上依赖CO2移除措施。AR6对CO2移除的主要评估结论如下:CO2移除有潜力从大气中去除CO2(高信度);如果CO2移除量超过CO2排放量,将实现净负CO2排放,降低大气CO2浓度,减缓海洋酸化(高信度);通过CO2移除方法从大气中去除的CO2会部分被海洋和陆地释放的CO2抵消(非常高信度);如果净负CO2排放可以实现并且持续,CO2引起的全球升温趋势将会逐渐扭转,但是气候系统的其他变化(例如海平面升高)仍会在未来的几十年到千年尺度上持续(高信度);不同CO2移除方法会对生物化学循环和气候产生广泛的影响,这些影响会加强或减弱CO2移除的降温潜力,并且影响水资源、食物生产和生物多样性(高信度)。  相似文献   

14.
A new complex earth system model consisting of an atmospheric general circulation model, an ocean general circulation model, a three-dimensional ice sheet model, a marine biogeochemistry model, and a dynamic vegetation model was used to study the long-term response to anthropogenic carbon emissions. The prescribed emissions follow estimates of past emissions for the period 1751–2000 and standard IPCC emission scenarios up to the year 2100. After 2100, an exponential decrease of the emissions was assumed. For each of the scenarios, a small ensemble of simulations was carried out. The North Atlantic overturning collapsed in the high emission scenario (A2) simulations. In the low emission scenario (B1), only a temporary weakening of the deep water formation in the North Atlantic is predicted. The moderate emission scenario (A1B) brings the system close to its bifurcation point, with three out of five runs leading to a collapsed North Atlantic overturning circulation. The atmospheric moisture transport predominantly contributes to the collapse of the deep water formation. In the simulations with collapsed deep water formation in the North Atlantic a substantial cooling over parts of the North Atlantic is simulated. Anthropogenic climate change substantially reduces the ability of land and ocean to sequester anthropogenic carbon. The simulated effect of a collapse of the deep water formation in the North Atlantic on the atmospheric CO2 concentration turned out to be relatively small. The volume of the Greenland ice sheet is reduced, but its contribution to global mean sea level is almost counterbalanced by the growth of the Antarctic ice sheet due to enhanced snowfall. The modifications of the high latitude freshwater input due to the simulated changes in mass balance of the ice sheet are one order of magnitude smaller than the changes due to atmospheric moisture transport. After the year 3000, the global mean surface temperature is predicted to be almost constant due to the compensating effects of decreasing atmospheric CO2 concentrations due to oceanic uptake and delayed response to increasing atmospheric CO2 concentrations before.  相似文献   

15.
 Stable oxygen isotope ratios of ostracod valves in Late Glacial and Holocene sediments of core AS 92-5 from deep lake Ammersee (southern Germany) reflect variations of mean oxygen isotope ratios in past atmospheric precipitation. The record reconfirms the strong similarity of climate evolution in Europe and Greenland during the last deglaciation. For the first time in Europe, we find a 200-year-long negative δ18O-excursion, which is contemporaneous with the strongest negative δ18O-excursion in the Greenland ice around 8.2 ky before present. The 8.2 ky isotopic event on both sides of the North Atlantic ocean is interpreted as a cold period, most probably induced by a perturbation of the North Atlantic thermohaline circulation. We discuss two possible triggering mechanisms: (1) weak forcing (as proposed by Alley et al.), and (2) forcing by a strong and sudden freshwater pulse from the collapse of the Hudson Ice Dome. Received: 27 May 1997 / Accepted: 21 July 1997  相似文献   

16.
《Climate Policy》2001,1(3):309-326
Carbon dioxide emissions from UK energy use have fallen by more than 20% over the last 30 years, and carbon intensity — carbon emissions per unit of GDP — has halved. These reductions have been achieved by a combination of decarbonisation of the energy system and substantial improvements in energy efficiency. Use of natural gas in power generation has been a big factor in recent years, but energy efficiency improvements in households and particularly industry have been more important over a longer period. Government policies designed primarily to address climate change have not been important contributors, until recently.Future reductions in emissions will require more proactive policies. However, they are possible without any economic difficulties, notably by adopting cost-effective energy efficiency measures, using new renewable energy sources and reducing dependence on private cars. These policies will improve economic efficiency. The new UK Climate Change Programme includes policies that combine regulation, investment, fiscal measures and other economic instruments. By working with the grain of other social, environmental and economic policies, they can achieve far more than a carbon tax alone, set at any politically acceptable level. Modelling the costs of emission reductions using a carbon tax as the only instrument would not only massively over-estimate costs, it would bear little resemblance to real world politics.The paper demonstrates that a more diverse set of policy instruments is likely to be an effective and politically acceptable approach in a mature industrial economy. It is concluded that the UK’s Kyoto target of a 12.5% reduction in greenhouse gas emissions is not challenging. The UK Government’s target of reducing carbon dioxide emissions by 20% between 1990 and 2010 is also achievable. By 2010 per capita emissions from the UK will be well below 2.5 tC per year. Claims that some countries, notably the USA, could not reduce per capita emissions below 6 tC per year seem inconsistent with this experience.  相似文献   

17.
金向泽  张学洪 《大气科学》1994,18(Z1):769-779
本文是用简单海一气耦合模型模拟温盐环流在全球增暖事件中作用的研究工作的第一部分。为了建立一个简单海一气耦合模型,我们首先根据Wright和Stoker等人的设计复制出一个包括大西洋、太平洋和南大洋在内的二维温盐环流模式,从等温、等盐和无运动的初始状态出发,在给定的年平均海表强迫下将模式积分了4000年,模拟出了和原作相似的温盐环流。对模拟结果的分析表明,相对于北太平洋而言,北大西洋北部的高盐、低温特点(后者是由两大洋在地理上的差别决定的)是形成当代温盐环流的主要原因;从与温盐环流相联系的海表热通量来看,北大西洋北部是向大气提供热量的主要源地;模式温盐环流对于海表盐度通量的敏感性试验的结果表明,对于纬圈平均的二维模式而言,要想模拟出合理的温盐环流就必须人为地提高北大西洋北部的海表盐度,文章分析了这种作法的物理根据;模式中的对流过程对于温盐环流的维持是至关重要的,对比有无季节循环的试验结果可以看出,虽然温度场的明显的季节变化只出现在模式的最上面两层,但由于引进季节循环后冬季高纬海洋的对流活动加强,后者直接影响到温盐环流,使更多的深海热量上传并向大气释放。这是使海洋温跃层得以保持合理.厚度的一个重要原因。  相似文献   

18.
Empirical investigations have indicated that projections of future atmospheric carbon dioxide concentrations of a quality quite adequate for practical questions regarding the environmental threat of anthropogenic carbon dioxide emissions and its relationship to energy use policy could be made with the simple assumption that a constant fraction of these emissions would be retained by the atmosphere. By analysis of the structural behavior of equations describing the transfer of carbon and carbon dioxide between their several reservoirs we have been able to demonstrate that this characteristic can be explained to result from approximately linear behavior and exponentially growing carbon dioxide release rates, combined with fitting of carbon cycle model parameters to the last twenty years of observed atmospheric carbon dioxide growth. These conclusions are independent of the details of carbon cycle model structure for projections up to 100 years into the future as long as the growth in atmospheric carbon dioxide release rates is sufficiently high, of the order of 1.5% per annum or more, as referenced to p re-industrial (steady state) conditions. At low rates of growth, when the longer response times of the carbon cycling system become important, for most energy use projections the resultant CO2 induced climate changes are small and the uncertainties in predicted atmospheric carbon dioxide level are thus not important. A possible exception to this condition occurs for scenarios of future fossil fuel use rates designed to avoid atmospheric CO2 levels exceeding a chosen threshold. In this instance details of carbon cycle model structure could significantly affect conclusions that might be drawn concerning future energy use policies; however, it is possible that such a result stems from inappropriate specification of a criterion for an environmental threat, rather than from inherent inadequacy of current carbon cycle models. Recent carbon cycle model developments postulate transfer processes of carbon into the deep ocean, large carbon storage reservoir at rates much higher than in the models we have analysed. If the existence of such mechanisms is confirmed, and they are found to be sufficiently rapid and large, some of our conclusions regarding the use of the constant fractional retention assumption may have to be modified. Currently at the Gas Research Institute, 8600 West Bryn, Mawr Ave., Chicago, IL 60631, U.S.A.  相似文献   

19.
We present emissions corridors for the 21st century reducing the risk of collapse of the Atlantic thermohaline circulation (THC) while considering expectations about the socio-economically acceptable pace of emissions reductions. Emissions corridors embrace the range of CO2 emissions that are compatible with normatively defined policy goals or ‘guardrails’. They are calculated along the conceptual and methodological lines of the tolerable windows approach. We investigate the sensitivity of the emissions corridors to key uncertain physical quantities (i.e. climate sensitivity and North Atlantic hydrological sensitivity, emissions of non-CO2 greenhouse gases and sulfate aerosols) as well as to the guardrails. Results indicate a large dependency of the width of the emissions corridor on climate and hydrological sensitivity: for low values of the climate and/or hydrological sensitivity, the corridor boundaries are far from being transgressed by business-as-usual emissions scenarios for the 21st century. In contrast, for high values of both quantities already low non-intervention scenarios leave the corridor in the early decades of this century. The width of the CO2 emissions corridor is also affected by the emissions pathway of non-CO2 greenhouse gases and sulfate aerosols, but to a lesser extent. We further find that the choice of the policy goal strongly influences the shape of the emissions corridor. Pursuit of a more ambitious THC target, for instance, tightens the corridor considerably. More strict expectations concerning the socio-economically admissible pace of emissions reduction (expressed in terms of a maximum emissions reduction rate and a transition time towards a de-carbonizing economy) act in the same direction. This indicates that a trade-off between THC and socio-economic guardrails may be unavoidable in the case of very tight emissions corridors.  相似文献   

20.
Climate change alone influences future levels of tropospheric ozone and their precursors through modifications of gas-phase chemistry, transport, removal, and natural emissions. The goal of this study is to determine at what extent the modes of variability of gas-phase pollutants respond to different climate change scenarios over Europe. The methodology includes the use of the regional modeling system MM5 (regional climate model version)-CHIMERE for a target domain covering Europe. Two full-transient simulations covering from 1991–2050 under the SRES A2 and B2 scenarios driven by ECHO-G global circulation model have been compared. The results indicate that the spatial patterns of variability for tropospheric ozone are similar for both scenarios, but the magnitude of the change signal significantly differs for A2 and B2. The 1991–2050 simulations share common characteristics for their chemical behavior. As observed from the NO2 and α-pinene modes of variability, our simulations suggest that the enhanced ozone chemical activity is driven by a number of parameters, such as the warming-induced increase in biogenic emissions and, to a lesser extent, by the variation in nitrogen dioxide levels. For gas-phase pollutants, the general increasing trend for ozone found under A2 and B2 forcing is due to a multiplicity of climate factors, such as increased temperature, decreased wet removal associated with an overall decrease of precipitation in southern Europe, increased photolysis of primary and secondary pollutants as a consequence of lower cloudiness and increased biogenic emissions fueled by higher temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号