首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The evolution of close binary systems containing Wolf-Rayet (WR) stars and black holes (BHs) is analyzed numerically. Both the stellar wind from the donor star itself and the induced stellar wind due to irradiation of the donor with hard radiation arising during accretion onto the relativistic component are considered. The mass and angular momentum losses due to the stellar wind are also taken into account at phases when the WR star fills its Roche lobe. It is shown that, if a WR star with a mass higher than ~10M fills its Roche lobe in an initial evolutionary phase, the donor star will eventually lose contact with the Roche lobe as the binary loses mass and angular momentum via the stellar wind, suggesting that the semi-detached binary will become detached. The star will remain a bright X-ray source, since the stellar wind that is captured by the black hole ensures a near-Eddington accretion rate. If the initial mass of the helium donor is below ~5M , the donor may only temporarily detach from its Roche lobe. Induced stellar wind plays a significant role in the evolution of binaries containing helium donors with initial masses of ~2M . We compute the evolution of three observed WR-BH binaries: Cyg X-3, IC 10 X-1, and NGC 300 X-1, as well as the evolution of the SS 433 binary system, which is a progenitor of such systems, under the assumption that this binary will avoid a common-envelope stage in its further evolution, as it does in its current evolutionary phase.  相似文献   

2.
A number of features are detected outside the nebula NGC 6888, within 1.2° (30 pc) of the star WR 136, which can be explained in a two-phase stellar-wind model. These include regions with fine filamentary gas structure that do not contain sources of stellar wind, extended radial “streams,” ultra-compact HII regions with high-velocity gas motions, and high-velocity gas motions outside the envelope of NGC 6888. The two-phase wind consists of a rarefied component and dense compact condensations, or “bullets.” The bullets generate cylindrical shocks in the interstellar gas, resulting in the presence of high-velocity gas up 20–30 pc from the star, outside the cavity formed by the rarified component of the wind.  相似文献   

3.
The narrow-band λ4244 Å continuum light curve of the eclipsing binary V444 Cyg, which has a Wolf-Rayet component, is interpreted assuming that the brightness distribution and absorption in the WN5 star's disk are monotonic, non-increasing, convexo-concave, non-negative functions. The convex and concave parts of these functions correspond to the core of the WN5 star and its extended photosphere and atmosphere, respectively. The radius and brightness temperature of the opaque core of the WN5 star are r WN5 core ? 4R and T br core >52000 K, respectively. The stellar wind is characterized by an accelerated radial outflow. Acceleration of the wind persists at large distances from the center of the star. A crude Lamers-law fit to the reconstructed velocity field in the wind yields an acceleration parameter β=1.58–1.82.  相似文献   

4.
Zhilkin  A. G.  Bisikalo  D. V. 《Astronomy Reports》2019,63(7):550-564

As a rule, the orbits of “hot Jupiter” exoplanets are located close to the Alfven point of the stellar wind of the host star. Many hot Jupiters could be in the sub-Alfven zone, where the magnetic pressure of the stellar wind exceeds the dynamical pressure. Therefore, the magnetic field in the wind should play an extremely important role in the process of stellar wind flowing around the atmosphere of a hot Jupiter. This must be taken into account when constructing theoretical models and interpreting observational data. Analyses show that many typical hot Jupiters should have shockless induced magnetospheres, which have no analogs in the solar system. Such magnetospheres are characterized first and foremost by the fact that there is no bow shock, and the magnetic barrier (ionopause) is formed by induced currents in upper layers of the ionosphere. This conclusion is confirmed here using three-dimensional numerical simulations of the flow of the stellar wind from the host star around the hot Jupiter HD 209458b, taking into account both the intrinsic magnetic field of the planet and the magnetic field in the wind.

  相似文献   

5.
The spin evolution of X-ray pulsars in high-mass X-ray binaries is discussed under various assumptions about the geometry and physical parameters of the accretion flow. The torque applied to the neutron star by the accretion flow and the equilibrium periods of the pulsars are estimated. It is shown that the observed spin evolution of the pulsars can be explained in a scenario in which the neutron star accretes material from a magnetized stellar wind.  相似文献   

6.
We analyze models for quasi-stationary, ultraluminous X-ray sources (ULXs) with luminosities 1038–1040 erg/s exceeding the Eddington limit for a ~1.4M neutron star. With the exception of relatively rare stationary ULXs that are associated with supernova remnants or background quasars, most ULXs are close binary systems containing a massive stellar black hole (BH) that accretes matter donated by a stellar companion. To explain the observed luminosities of ~1040 erg/s, the mass of the BH must be ~40M if the accreted matter is helium and ~60M if the accreted matter has the solar chemical composition. We consider donors in the form of main-sequence stars, red giants, red supergiants, degenerate helium dwarfs, heavy disks that are the remnants of disrupted degenerate dwarfs, helium nondegenerate stars, and Wolf-Rayet stars. The most common ULXs in galaxies with active star formation are BHs with Roche-lobe-filling main-sequence companions with masses ~7M or close Wolf-Rayet companions, which support the required mass-exchange rate via their strong stellar winds. The most probable candidate ULXs in old galaxies are BHs surrounded by massive disks and close binaries containing a BH and degenerate helium-dwarf, red-giant, or red-supergiant donor.  相似文献   

7.
The results of spectral monitoring of the maser source W51M carried out in the water-vapor line at 1.35 cm (22GHz) on the 22-m telescope of the Pushchino Radio Astronomy Observatory in 1981–1998 are reported and interpreted. Long-term variations of the maser flux with a period of 12–13 years are found. W51M may be a rotating and simultaneously expanding toroidal cloud of gas and dust around a young star with a mass of the order of ~15M , with numerous high-velocity jets of maser condensations flowing out in two broad cones along the polar axis of the torus. A stellar wind with a velocity of about 2000–3000 km/s is responsible for the maser pumping.  相似文献   

8.
We have analyzed the evolution of the components of the unique massive binary system WR 20a, which consists of a Wolf-Rayet nitrogen star and an Of star with an extremely small separation. The estimated masses of the components are 83 and 82 M , which are among the highest stellar mass inferred. We have carried out numerical modeling of the evolution of the components, taking into account the mass loss due to the stellar wind inherent to massive stars. In a scenario in which the systemis detached from the time the components reach the main sequence until its present state, the initial component masses are inferred to be close to 110 M , if the initial masses of the stars were equal, or 120 and 100 M , if they were different. Currently, the components are evolved main-sequence stars, whose surfaces are relatively little enriched by helium. The further evolution of the system will result in one of the components filling its Roche lobe and evolution within a common envelope. As a result, the components may coalesce, leading to the formation of a single massive black hole the supernova explosion. Otherwise, depending on the masses of the resulting black holes, either a binary system with two black holes or two free black holes will be formed. In the latter case, gamma-ray bursts will be observed.  相似文献   

9.
Abstract—Currently, hot Jupiters have extended gaseous (ionospheric) envelopes extending far beyond the Roche lobe. The envelopes are loosely bound to the planet and are subject to a strong influence by stellar wind fluctuations. Since hot Jupiters are close to the parent star, the magnetic field of the stellar wind is an important factor which defines the structure of their magnetospheres. For a typical hot Jupiter, the velocity of stellar wind plasma flowing around the atmosphere is close to the Alfvén velocity. Thus, fluctuations of the stellar wind parameters (density, velocity, magnetic field) can affect conditions for the formation of the bow shock around a hot Jupiter, such as transforming the flow from sub-Alfvén to super-Alfvén regime and back. The study results of three-dimensional numerical MHD simulations confirm that, in a hot Jupiter’s envelope located near the Alfvén point of the stellar wind, both the disappearance and appearance of a detached shock can occur under the influence of a coronal mass ejection. The study also shows that this process can affect the observational manifestations of a hot Jupiter, including the radiation flux in the spectrum’s hard region.  相似文献   

10.
Profiles of variable emission lines in the spectra of Wolf-Rayet stars are calculated using a stochastic cloud model for the inhomogeneous atmospheres of early-type stars. The model assumes that most of the line flux is formed in cold, dense condensations (clouds) that move through a rarified inter-cloud medium whose density monotonically decreases outwards. The formation of clouds is taken to be stochastic. Wavelet analysis is used to estimate the parameters of cloud ensembles. The model can reproduce the general pattern of line-profile variability observed in the spectra of Wolf-Rayet stars.  相似文献   

11.
Lin-Sen Li 《Astronomy Reports》2008,52(10):806-810
We examine the influence of mass-loss due to stellar wind using the celestial mechanics of variable mass, and derive first-and second-order solutions, taking into account the decreasing mass due to the stellar wind. The theoretical results show that the semi-major axis exhibits secular and periodic variations in the first-and second-order theory. The orbital eccentricity exhibits periodic, but no secular variation or changes. The longitude of periastron exhibits only periodic variations in the first-order solution, but also secular variations in the second-order solution. The theoretical results are applied to the binary star HD 698, and variability of the orbital elements of this star due to stellar-wind mass loss calculated. Published in Russian in Astronomicheskiĭ Zhurnal, 2008, Vol. 85, No. 10, pp. 896–900. The article was translated by the authors.  相似文献   

12.
We have used the “Scenario Machine” to carry out a population synthesis for close binary systems with the masses of both components and their orbital periods similar to those for the WR20a system. The possible qualitative composition of WR20a, the most massive known binary with non-degenerate components (commonly classified as Wolf-Rayet stars according to their observational parameters), has been studied. Meridional circulation may enrich the envelope of a rapidly rotating main-sequence star in CNO elements. In the most likely model, WR20a consists of a Wolf-Rayet star and a main-sequence star.  相似文献   

13.
Several scenarios for the formation of accretion and decretion disks in single and binary Ae and Be stars are proposed. It is shown that, in order for a rapidly rotating main-sequence Be star to lose mass via a disk, the star’s rotation must be quasi-rigid-body. Estimates show that such rotation can be maintained by the star’s magnetic field, which is probably a relict field. The evolution of single Be main-sequence stars is numerically simulated allowing for mass loss via the stellar wind and rotational mass loss assuming rigid-body rotation. The stellar wind is the factor that determines the maximum mass of Be stars, which is close to 30M . The evolution of Be stars in close binaries is analyzed in the approximation adopted in our scenario. Long gamma-ray bursts can be obtained as a result of the collapse of rapidly rotating oxygen—neon degenerate dwarfs—the accreting companions of Be stars—into neutron stars.  相似文献   

14.
An analysis of the λ4244 Å continuum light curve of the eclipsing variable V444 Cyg is used to reconstruct the velocity law v(r) of the stellar wind of the WR star in terms of Lamers parametric and powerlaw models. Both models are inconsistent with the observed light curve, and can be rejected at the <2% significance level. Departures of the Lamers parametric relation from the empirical v(r) law reconstructed in previous papers from the same λ 4244 Å light curve on sets of concave and convexo-concave functions are statistically significant. The stellar wind of the WN5 star continues to accelerate at a considerable distance from the star’s center. This corresponds to an acceleration parameter β>1 in terms of a coarse Lamers-law approximation for the empirical v(r) field.  相似文献   

15.
Variations of angular velocity of a rotating star on the upper main sequence due to mass loss driven by various mechanisms, like radiation, corpuscule ejection, and stellar wind, are examined. Expressions for the variations of angular velocity are derived by considering a model of a rotating star. The theoretical results show that the angular velocity decreaseswith time due tomass loss. The obtained results are applied to a hot fast-rotating star V1182 Aql (O9 V) and to Y Cyg (B0 V).  相似文献   

16.
Fedorova  A. V.  Tutukov  A. V. 《Astronomy Reports》2022,66(11):925-935
Astronomy Reports - Within the framework of the induced stellar wind (ISW) model, the possible evolution of the X-ray binary system Sco X-1 after the formation of a neutron star in it is simulated...  相似文献   

17.
The evolution of Population I stars with initial masses 60 M M ZAMS ≤ 120 M is computed up to the Wolf-Rayet stage, when the central helium abundance decreases to Y c ≈ 0.05. Several models from evolutionary sequences in the core helium-burning stage were used as initial conditions when solving the equations of radiative hydrodynamics for self-exciting stellar radial pulsations. The low-density envelope surrounding the compact core during the core helium burning is unstable against radial oscillations in a wide range of effective temperatures extending to T eff ~ 105 K. The e-folding time of the amplitude growth is comparable to the dynamical time scale of the star, and, when the instability ceases growing, the radial displacement of the outer layers is comparable to the stellar radius. Evolutionary changes of the stellar radius and luminosity are accompanied by a decrease in the amplitude of radial pulsations, but, at the effective temperature T eff ≈ 105 K, the stellar oscillations are still nonlinear, with a maximum expansion velocity of the outer layers of about one-third the local escape velocity. The period of the radial oscillations decreases from 9 hr to 4 min as stellar mass decreases from M = 28 M to M = 6 M in the course of evolution. The nonlinear oscillations lead to a substantial increase of the radii of the Lagrangian mass zones compared to their equilibrium radii throughout the instability region. The instability of Wolf-Rayet stars against radial oscillations is due to the action of the κ mechanism in the iron-group ionization zone, which has a temperature of T ~ 2 × 105 K.  相似文献   

18.
We consider the formation of massive stars under the assumption that a young star accretes material from the protostellar cloud through its accretion disk while losing gas in the polar directions via its stellar wind. The mass of the star reaches its maximum when the intensity of the gradually strengthening stellar wind of the young star becomes equal to the accretion rate. We show that the maximum mass of the forming stars increases with the temperature of gas in the protostellar cloud T 0, since the rate at which the protostellar matter is accreted increases with T 0. Numerical modeling indicates that the maximum mass of the forming stars increases to ~900 M for T 0 ~ 300 K. Such high temperatures of the protostellar gas can be reached either in dense star-formation regions or in the vicinity of bright active galactic nuclei. It is also shown that, the lower the abundance of heavy elements in the initial stellar material Z, the larger the maximum mass of the star, since the mass-loss rate due to the stellar wind decreases with decreasing Z. This suggests that supermassive stars with masses up to 106 M could be formed at early stages in the evolution of the Universe, in young galaxies that are almost devoid of heavy elements. Under the current conditions, for T 0 = (30–100) K, the maximum mass of a star can reach ~100M , as is confirmed by observations. Another opportunity for the most massive stars to increase their masses emerges in connection with the formation and early stages of evolution of the most massive close binary systems: the most massive stars can be produced either by coalescence of the binary components or via mass transfer in such systems.  相似文献   

19.
We consider the evolution of binary systems formed by a Supermassive Black Hole (SMBH) residing in the center of a galaxy or a globular cluster and a star in its immediate vicinity. The star is assumed to fill its Roche lobe, and the SMBH accretes primarily the matter of this star. The evolution of such a system is mainly determined by the same processes as for an ordinary binary. The main differences are that the donor star is irradiated by hard radiation emitted during accretion onto the SMBH; in a detached system, nearly all the donor wind is captured by the black hole, which strongly affects the evolution of the semi-major axis; it is not possible for companions of the most massive SMBHs to fill their Roche lobes, since the corresponding orbital separations are smaller than the radius of the last stable orbit in the gravitational field of the SMBH. Moreover, there may not be efficient exchange between the orbital angular momentum and the angular momentum of the overflowing matter in such systems. Our computations assumed that, if the characteristic timescale for mass transfer is smaller than the thermal timescale of the star, no momentum exchange occurs. Absorption of incident external radiation in the stellar envelope was treated using the same formalism that was used when computing the radiative transfer in the stellar atmosphere. Numerical simulations show that Roche-lobe overflow is possible for a broad range of initial system parameters. The evolution of semi-detached systems containing a star and a SMBH nearly always ends with the dynamical disruption of the star. Stars with masses close to the solar mass are destroyed immediately after they fill their Roche lobes. During the accretion of matter of disrupted stars, the SMBH can achieve quasar luminosities. If the SMBH accretes ambient gas as well as gas stripped from stars, the star is subject to additional radiation in the detached phase of its evolution, strengthening its stellar wind. This leads to an increase of the semi-major axis and subsequent decrease of the probability of Roche-lobe overflow during the subsequent evolution of the system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号