首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Palaeomagnetic techniques for estimating the emplacement temperatures of volcanic deposits have been applied to pyroclastic and volcaniclastic deposits in kimberlite pipes in southern Africa. Lithic clasts were sampled from a variety of lithofacies from three pipes for which the internal geology is well constrained (the Cretaceous A/K1 pipe, Orapa Mine, Botswana, and the Cambrian K1 and K2 pipes, Venetia Mine, South Africa). The sampled deposits included massive and layered vent-filling breccias with varying abundances of lithic inclusions, layered crater-filling pyroclastic deposits, talus breccias and volcaniclastic breccias. Basalt lithic clasts in the layered and massive vent-filling pyroclastic deposits in the A/K1 pipe at Orapa were emplaced at >570°C, in the pyroclastic crater-filling deposits at 200–440°C and in crater-filling talus breccias and volcaniclastic breccias at <180°C. The results from the K1 and K2 pipes at Venetia suggest emplacement temperatures for the vent-filling breccias of 260°C to >560°C, although the interpretation of these results is hampered by the presence of Mesozoic magnetic overprints. These temperatures are comparable to the estimated emplacement temperatures of other kimberlite deposits and fall within the proposed stability field for common interstitial matrix mineral assemblages within vent-filling volcaniclastic kimberlites. The temperatures are also comparable to those obtained for pyroclastic deposits in other, silicic, volcanic systems. Because the lithic content of the studied deposits is 10–30%, the initial bulk temperature of the pyroclastic mixture of cold lithic clasts and juvenile kimberlite magma could have been 300–400°C hotter than the palaeomagnetic estimates. Together with the discovery of welded and agglutinated juvenile pyroclasts in some pyroclastic kimberlites, the palaeomagnetic results indicate that there are examples of kimberlites where phreatomagmatism did not play a major role in the generation of the pyroclastic deposits. This study indicates that palaeomagnetic methods can successfully distinguish differences in the emplacement temperatures of different kimberlite facies.  相似文献   

2.
The Peperino Albano (approximately 19–36 ka old) is a phreatomagmatic pyroclastic flow deposit, cropping out along the slopes of the associated Albano maar (Colli Albani volcano, Italy). The deposit exhibits lateral and vertical transitions from valley pond to veneer facies, as well as intracrater facies. We present the results of a paleomagnetic study of thermal remanent magnetization (TRM) of the lithic clasts of the Peperino Albano ignimbrite that provide quantitative estimates of the range of emplacement temperatures across the different facies of the ignimbrite. Emplacement temperatures estimated for the Peperino Albano ignimbrite range between 240° and 350°C, with the temperatures defined in the intracrater facies being generally lower than in the valley pond and veneer facies. This is possibly due to the large size of the sampled clasts in the intracrater facies which, when coupled with low temperature at the vent, were not completely heated throughout their volume during emplacement. The emplacement temperatures derived from the paleomagnetic results are in good agreement with the presence of un-burnt plants at the base of the ignimbrite, indicating that the temperature of the pyroclastic flow was lower than the temperature of ignition of wood. Paleomagnetic results from the Peperino Albano confirm the reliability of the paleomagnetic approach in defining the thermal history of pyroclastic flow deposits.  相似文献   

3.
Palaeomagnetic data from lithic clasts collected at 46 sites within layers 1 and 2 of the 1.8-ka Taupo ignimbrite, New Zealand, have been used to determine the palaeotemperatures and thermal structure of the deposit on its emplacement. Equilibrium temperatures from sites less than 30–40 km from vent are 150–300 °C, whereas at greater distances site equilibrium temperatures increase up to 400–500 °C. This variation is seen in both layer 1 and 2 deposits, with values for layer 1 being somewhat cooler, and with its increase in temperature occurring at a greater distance from vent. A temperature maximum at ~50 km from vent coincides with a zone of pink thermal-oxidation colouration of pumices previously inferred to reflect higher emplacement temperatures. Additional palaeomagnetic data collected by us and others from pumice clasts show comparable temperature variations, but these temperature estimates are shown here to be due to a chemical remanence and unreliable for accurate temperature estimates. Cooler temperatures in proximal parts of the ignimbrite are consistent with admixture of >20% cold lithic clasts at source and interaction with the pre-eruption Lake Taupo. The similar, but offset, increases in equilibrium temperatures for medial and distal layers 1 and 2 are consistent with both layers being deposited from the same flow. However, any proximal deposits left by the later, hotter material must have been subsequently eroded, or be so thin that our collection failed to sample them. Radial asymmetries in equilibrium temperatures as well as other physical parameters suggest that the deposit emplacement temperature is primarily determined at source, rather than by interaction with air during transport. These data support previous interpretations that a concentrated basal flow played a dominant role in emplacement and deposition of the Taupo ignimbrite.Editorial responsibility: T. Druitt  相似文献   

4.
 Coarse, co-ignimbrite lithic breccia, Ebx, occurs at the base of ignimbrite E, the most voluminous and widespread unit of the Kos Plateau Tuff (KPT) in Greece. Similar but generally less coarse-grained basal lithic breccias (Dbx) are also associated with the ignimbrites in the underlying D unit. Ebx shows considerable lateral variations in texture, geometry and contact relationships but is generally less than a few metres thick and comprises lithic clasts that are centimetres to a few metres in diameter in a matrix ranging from fines bearing (F2: 10 wt.%) to fines poor (F2: 0.1 wt.%). Lithic clasts are predominantly vent-derived andesite, although clasts derived locally from the underlying sedimentary formations are also present. There are no proximal exposures of KPT. There is a highly irregular lower erosional contact at the base of ignimbrite E at the closest exposures to the inferred vent, 10–14 km from the centre of the inferred source, but no Ebx was deposited. From 14 to <20 km from source, Ebx is present over a planar erosional contact. At 16 km Ebx is a 3-m-thick, coarse, fines-poor lithic breccia separated from the overlying fines-bearing, pumiceous ignimbrite by a sharp contact. This grades downcurrent into a lithic breccia that comprises a mixture of coarse lithic clasts, pumice and ash, or into a thinner one-clast-thick lithic breccia that grades upward into relatively lithic-poor, pumiceous ignimbrite. Distally, 27 to <36 km from source Ebx is a finer one-clast-thick lithic breccia that overlies a non-erosional base. A downcurrent change from strongly erosional to depositional basal contacts of Ebx dominantly reflects a depletive pyroclastic density current. Initially, the front of the flow was highly energetic and scoured tens of metres into the underlying deposits. Once deposition of the lithic clasts began, local topography influenced the geometry and distribution of Ebx, and in some cases Ebx was deposited only on topographic crests and slopes on the lee-side of ridges. The KPT ignimbrites also contain discontinuous lithic-rich layers within texturally uniform pumiceous ignimbrite. These intra-ignimbrite lithic breccias are finer grained and thinner than the basal lithic breccias and overlie non-erosional basal contacts. The proportion of fine ash within the KPT lithic breccias is heterogeneous and is attributed to a combination of fluidisation within the leading part of the flow, turbulence induced locally by interaction with topography, flushing by steam generated by passage of pyroclastic density currents over and deposition onto wet mud, and to self-fluidisation accompanying the settling of coarse, dense lithic clasts. There are problems in interpreting the KPT lithic breccias as conventional co-ignimbrite lithic breccias. These problems arise in part from the inherent assumption in conventional models that pyroclastic flows are highly concentrated, non-turbulent systems that deposit en masse. The KPT coarse basal lithic breccias are more readily interpreted in terms of aggradation from stratified, waning pyroclastic density currents and from variations in lithic clast supply from source. Received: 21 April 1997 / Accepted: 4 October 1997  相似文献   

5.
 The evolution of the Somma-Vesuvius caldera has been reconstructed based on geomorphic observations, detailed stratigraphic studies, and the distribution and facies variations of pyroclastic and epiclastic deposits produced by the past 20,000 years of volcanic activity. The present caldera is a multicyclic, nested structure related to the emptying of large, shallow reservoirs during Plinian eruptions. The caldera cuts a stratovolcano whose original summit was at 1600–1900 m elevation, approximately 500 m north of the present crater. Four caldera-forming events have been recognized, each occurring during major Plinian eruptions (18,300 BP "Pomici di Base", 8000 BP "Mercato Pumice", 3400 BP "Avellino Pumice" and AD 79 "Pompeii Pumice"). The timing of each caldera collapse is defined by peculiar "collapse-marking" deposits, characterized by large amounts of lithic clasts from the outer margins of the magma chamber and its apophysis as well as from the shallow volcanic and sedimentary units. In proximal sites the deposits consist of coarse breccias resulting from emplacement of either dense pyroclastic flows (Pomici di Base and Pompeii eruptions) or fall layers (Avellino eruption). During each caldera collapse, the destabilization of the shallow magmatic system induced decompression of hydrothermal–magmatic and hydrothermal fluids hosted in the wall rocks. This process, and the magma–ground water interaction triggered by the fracturing of the thick Mesozoic carbonate basement hosting the aquifer system, strongly enhanced the explosivity of the eruptions. Received: 24 November 1997 / Accepted: 23 March 1999  相似文献   

6.
Paleomagnetic data from lithic clasts collected from Mt. St. Helens, USA, Volcán Láscar, Chile, Volcán de Colima, Mexico and Vesuvius, Italy have been used to determine the emplacement temperature of pyroclastic deposits at these localities and to highlight the usefulness of the paleomagnetic method for determining emplacement temperatures. At Mt. St. Helens, the temperature of the deposits (T dep ) at three sites from the June 12, 1980 eruption was found to be ≥532°C, ≥509°C, and 510–570°C, respectively. One site emplaced on July 22, 1980 was emplaced at ≥577°C. These new paleomagnetic temperatures are in good agreement with previously published direct temperature measurements and paleomagnetic estimates. Lithic clasts from pyroclastic deposits from the 1993 eruption of Láscar were fully remagnetized above the respective Curie temperatures, which yielded a minimum T dep of 397°C. Samples were also collected from deposits thought to be pyroclastics from the 1913, 2004 and 2005 eruptions of Colima. At Colima, the sampled clasts were emplaced cold. This is consistent with the sampled clasts being from lahar deposits, which are common in the area, and illustrates the usefulness of the paleomagnetic method for distinguishing different types of deposit. T dep of the lower section of the lithic rich pyroclastic flow (LRPF) from the 472 A.D. deposits of Vesuvius was ~280–340°C. This is in agreement with other, recently published paleomagnetic measurements. In contrast, the upper section of the LRPF was emplaced at higher temperatures, with T dep ~520°C. This temperature difference is inferred to be the result of different sources of lithic clasts between the upper and lower sections, with the upper section containing a greater proportion of vent-derived material that was initially hot. Our studies of four historical pyroclastic deposits demonstrates the usefulness of paleomagnetism for emplacement temperature estimation.  相似文献   

7.
Summary The application of the progressive thermal demagnetization procedure of volcanic rock debris has been frequently used to determine the emplacement temperatures of pyroclastic deposits and thus to characterize the nature of these volcanic deposits. This debris consists of a mixture of juvenile fragments derived from the explosive fragmentation of erupting magma and an assortment of lithic clasts derived mainly from the walls of a volcanic conduit, as well as from the ground. The temperature at which the clasts were deposited can be estimated by analyzing its remanent magnetization. To do this, oriented samples of clasts are subjected to progressive thermal demagnetization and the directions of the resulting remanent vectors provide the necessary information. Clasts of basalt, andesite, limestone, pumice and homebricks have previously been used to estimate the emplacement temperatures of pyroclastic deposits. According to our data, clasts of red sandstones also seem to be good carriers of thermoremanent magnetization. We have carried out a paleomagnetic study on a Quaternary, lithic-rich, massive, pyroclastic deposit from the Puig d'Adri volcano (Catalan Volcanic Zone), which contains a large number of red sandstone clasts. It is concluded that the studied deposit cannot be considered as a lahar or as a pyroclastic surge deposit, considering both the emplacement temperature and the morphological features.Presented at 3rd Biennial Meeting on New Trends in Geomagnetism, Smolenice Castle, West Slovakia, June 22–29, 1992  相似文献   

8.
This study investigates the types of subaqueous deposits that occur when hot pyroclastic flows turbulently mix with water at the shoreline through field studies of the Znp marine tephra in Japan and flume experiments where hot tephra sample interacted with water. The Znp is a very thick, pumice-rich density current deposit that was sourced from subaerial pyroclastic flows entering the Japan Sea in the Pliocene. Notable characteristics are well-developed grain size and density grading (lithic-rich base, pumice-rich middle, and ash-rich top), preponderance of sedimentary lithic clasts picked up from the seafloor during transport, fine ash depletion in coarse facies, and presence of curviplanar pumice clasts. Flume experiments provide a framework for interpreting the origin and proximity to source of the Znp tephra. On contact of hot tephra sample with water, steam explosions produced a gas-supported pyroclastic density current that advanced over the water while a water-supported density current was produced on the tank floor from the base of a turbulent mixing zone. Experimental deposits comprise proximal lithic breccia, medial pumice breccia, and distal fine ash. Experiments undertaken with cold, water-saturated slurries of tephra sample and water did not produce proximal lithic breccias but a medial basal lithic breccia beneath an upper pumice breccia. Results suggest the characteristics and variations in Znp facies were strongly controlled by turbulent mixing and quenching, proximity to the shoreline, and depositional setting within the basin. Presence of abundant curviplanar pumice clasts in submarine breccias reflects brittle fracture and dismembering that can occur during fragmentation at the vent or during quenching. Subsequent transport in water-supported pumiceous density currents preserves the fragmental textures. Careful study is needed to distinguish the products of subaerial versus subaqueous eruptions.  相似文献   

9.
Pyroclastic deposits exposed in the caldera walls of Santorini Volcano (Greece), contain several prominent horizons of coarse-grained andesitic spatter and cauliform volcanic bombs. These deposits can be traced around most of the caldera wall. They thicken in depressions and are intimately associated with ignimbrite and co-ignimbrite lithic lag breccias. They are interpreted as a proximal facies of pyroclastic flow deposits. Evidence for a flow origin includes the presence of a fine-grained pumiceous matrix, flow deformation of ductile spatter clasts, exceedingly coarse grain sizes several kilometres from any plausible vent, imbrication of flattened spatter clasts, intimate interbedding with normal pyroclastic flow deposits and the presence of inversely graded basal layers. The deposits contain hydrothermally altered, rounded lithic ejecta including gabbro nodules. The andesitic ejecta and the fine matrix are typically moderately to poorly vesicular indicating that magmatic gas had a subordinate role in the eruptive process. The andesitic clasts contain abundant angular lithic inclusions and some clasts are themselves formed of pre-existing agglutinate. We propose that these eruptions occurred when external water gained access to the vents, causing large-scale explosions which formed pyroclastic flows rich in coarse, semifluid but poorly vesicular ejecta. We postulate that large volumes of coarse pyroclastic ejecta and degassed lava accumulated in a deep crater prior to being disrupted by these large explosions to form pyroclastic flows.  相似文献   

10.
 Pyroclastic flows generated in the 19–20 April 1993 eruption of Lascar Volcano, Chile, produced spectacular erosion features. Scree and talus were stripped from the channels and steep slopes on the flanks of the volcano. Exposed bedrock and boulders suffered severe abrasion, producing smoothed surfaces on coarse breccias and striations and percussion marks on bedrock and large boulders. Erosional furrows developed with wavelengths of 0.5–2 m and depths of 0.1–0.3 m. Furrows commonly nucleated downstream of large boulders or blocks, which are striated on the upstream side, and thereby produced crag-and-tail structures. Erosive features were produced where flows accelerated through topographic restrictions or where they moved over steep slopes. The pyroclastic flows are inferred to have segregated during movement into lithic-rich and pumice-rich parts. Lithic-rich deposits occur on slopes up to 14°, whereas pumice-rich deposits occur only on slopes less than 4°, and mainly at the margins and distal parts of the 1993 fan. The lithic-rich deposits contain large (up to 1 m) lithic clasts eroded from the substrate and transported from the vent, whereas pumice-rich deposits contain only small (typically <2 cm) lithic clasts. These observations suggest that lithic clasts segregated to the base of the flows and were responsible for much of the erosive phenomena. The erosive features, distribution of lithic clasts and deposit morphology indicate that the 1993 flows were highly concentrated avalanches dominated by particle interactions. In some places the flows slid over the bedrock causing abrasion and long striations which imply that large blocks were locked in fixed positions for periods of about 1 s. However, shorter striae at different angles, impact marks, segregation of the deposits into pumice- and lithic-rich parts, and mixing of bedrock-derived lithic clasts throughout the deposits indicate that clasts often had some freedom of movement and that jostling of particles allowed internal mixing and density segregation to occur within the flows. Received: 15 July 1996 / Accepted: 15 January 1997  相似文献   

11.
 Volcanic breccias form large parts of composite volcanoes and are commonly viewed as containing pyroclastic fragments emplaced by pyroclastic processes or redistributed as laharic deposits. Field study of cone-forming breccias of the andesitic middle Pleistocene Te Herenga Formation on Ruapehu volcano, New Zealand, was complemented by paleomagnetic laboratory investigation permitting estimation of emplacement temperatures of constituent breccia clasts. The observations and data collected suggest that most breccias are autoclastic deposits. Five breccia types and subordinate, coherent lava-flow cores constitute nine, unconformity-bounded constructional units. Two types of breccia are gradational with lava-flow cores. Red breccias gradational with irregularly shaped lava-flow cores were emplaced at temperatures in excess of 580  °C and are interpreted as aa flow breccias. Clasts in gray breccia gradational with tabular lava-flow cores, and in some places forming down-slope-dipping avalanche bedding beneath flows, were emplaced at varying temperatures between 200 and 550  °C and are interpreted as forming part of block lava flows. Three textural types of breccia are found in less intimate association with lava-flow cores. Matrix-poor, well-sorted breccia can be traced upslope to lava-flow cores encased in autoclastic breccia. Unsorted boulder breccia comprises constructional units lacking significant exposed lava-flow cores. Clasts in both of these breccia types have paleomagnetic properties generally similar to those of the gray breccias gradational with lava-flow cores; they indicate reorientation after acquisition of some, or all, magnetization and ultimate emplacement over a range of temperatures between 100 and 550  °C. These breccias are interpreted as autoclastic breccias associated with block lava flows. Matrix-poor, well-sorted breccia formed by disintegration of lava flows on steep slopes and unsorted boulder breccia is interpreted to represent channel-floor and levee breccias for block lava flows that continued down slope. Less common, matrix-rich, stratified tuff breccias consisting of angular blocks, minor scoria, and a conspicuously well-sorted ash matrix were generally emplaced at ambient temperature, although some deposits contain clasts possibly emplaced at temperatures as high as 525  °C. These breccias are interpreted as debris-flow and sheetwash deposits with a dominant pyroclastic matrix and containing clasts likely of mixed autoclastic and pyroclastic origin. Pyroclastic deposits have limited preservation potential on the steep, proximal slopes of composite volcanoes. Likewise, these steep slopes are more likely sites of erosion and transport by channeled or unconfined runoff rather than depositional sites for reworked volcaniclastic debris. Autoclastic breccias need not be intimately associated with coherent lava flows in single outcrops, and fine matrix can be of autoclastic rather than pyroclastic origin. In these cases, and likely many other cases, the alternation of coherent lava flows and fragmental deposits defining composite volcanoes is better described as interlayered lava-flow cores and cogenetic autoclastic breccias, rather than as interlayered lava flows and pyroclastic beds. Reworked deposits are probably insignificant components of most proximal cone-forming sequences. Received: 1 October 1998 / Accepted: 28 December 1998  相似文献   

12.
We distinguish three eruptive units of pyroclastic flows (T1, T2, and T3; T for trass) within the late Quaternary Laacher See tephra sequence. These units differ in the chemical/mineralogical composition of the essential pyroclasts ranging from highly differentiated phonolite in T1 to mafic phonolite in T3. T1 and T2 flows were generated during Plinian phases, and T3 flows during a late Vulcanian phase. The volume of the pyroclastic flow deposits is about 0.6 km3. The lateral extent of the flows from the source vent decreases from > 10 km (T1) to < 4.5 km (T3). In the narrow valleys north of Laacher See, the total thickness of the deposits exceeds 60 m.At least 19 flow units in T1, 6 in T2, and 4 in T3 can be recognized at individual localities. Depositional cycles of 2 to 5 flow units are distinguished in the eruptive units. Thickness and internal structure of the flow units are strongly controlled by topography. Subfacies within flow units such as strongly enriched pumice and lithic concentration zones, dust layers, lapilli pipes, ground layers, and lithic breccias are all compositionally related to each other by enrichment or depletion of clasts depending on their size and density in a fluidized flow. While critical diameters of coarse-tail grading were found to mark the boundary between the coarse nonfluidized and the finer fluidized grain-size subpopulations, we document the second boundary between the fluidized and the very fine entrained subpopulations by histograms and Rosin-Rammler graphs. Grain-size distribution and composition of the fluidized middle-size subpopulations remained largely unchanged during transport.Rheological properties of the pyroclastic flows are deduced from the variations in flow-unit structure within the valleys. T1 flows are thought to have decelerated from 25 m/s at 4 km to < 15 m/s at 7 km from the vent; flow density was probably 600–900 kg/m3, and viscosity 5–50 P. The estimated yield strength of the flows of 200– > 1000 N/m2 is consistent with the divergence of lithic size/distance curves from purely Newtonian models; the transport of lithics must be treated as in a Bingham fluid. The flow temperature probably decreased from T1 (300°–500°C) to T3 (<200°C).A large-scale longitudinal variation in the flow units from proximal through medial to distal facies dominantly reflects temporal changes during the progressive collapse of an eruption column. Only a small amount of fallout tephra was generated in the T1 phase of eruption. The pyroclastic flows probably formed from relatively low ash fountains rather than from high Plinian eruption columns.  相似文献   

13.
Lithic-rich breccias are described from within a sequence of young (2000–3000 yrs B.P.) scoria and ash flow deposits erupted from Mount Misery and an older pumice and ash flow deposit (ignimbrite) on St. Kitts. Cross sections constructed through pyroclastic flow fans in well-exposed sea cliffs 4–6 km from the vent show that the lithic breccias are lensoid deposits which seem to occur as channel-shaped accumulations (up to > 20 m thick and > 150 m wide) within flow units. The best-developed example infills a deeply incised channel cut into older flow units. The coarsest lithic breccias are clast supported and fines depleted and grade laterally and vertically through finer-grained, matrix-supported breccias into scoria and ash flow deposits. Coarse scoria-concentration zones mainly occur at the tops of scoria and ash flow units but also at the bases, and gas-segregation pipes are common. The lithic breccias are a type of body-concentration deposit as they pass laterally into normal scoria and ash flow deposits and, where best developed, clearly occur above a reversely graded basal shear zone or layer. Grain-size studies indicate the lithic breccias and parent flows are strongly fines depleted and were highly fluidized. We suggest this may be a feature of many Lesser Antillean pyroclastic flows because of increased turbulence-induced fluidization resulting from a high degree of surface roughness caused by the steep (up to 40 °) irregular slopes, densely vegetated sinuous gullies of the tropical volcanoes, and ingestion and ignition of large amounts of lush vegetation. Accumulation of batches of lithics concentrated in the highly fluidized flows began at the break in slope where flows moved from gullies across hydraulic jumps onto the outer coastal flanks. The accumulations of breccias continued to move and be channelled down the central parts of the flows. Initially, on crossing onto the lower slopes, some of these flows seem to have had very powerfully erosive, nondepositional heads, and in the extreme example a deep channel as long as 1–2 km may have cut through underlying flow units at least as far as the present coastline. Much of the overriding remainder of the flow then drained away laterally. Thin, fine-grained ash flow deposits may form a marginal overbank facies to the pyroclastic flow fans.  相似文献   

14.
Thermal remanent magnetization analyses were carried out on ceramic fragments and lithic clasts embedded in the first pumice fall deposits of the Minoan eruption. The aim of this study is to estimate the equilibrium temperature after deposition of these pyroclastic fall deposits and their thermal effect on the pre-Minoan surface. A total of 30 samples from 22 independent ceramic fragments and 20 samples from 14 lithic clasts have been studied. Samples were collected from the Megalochori Quarry, located at the southern part of Santorini island. Stepwise thermal demagnetization reveals that the ceramics were mostly re-heated at temperatures around 140–180°C; in few ceramics a higher temperature component is also present, probably related to the original heating or the use of the ceramics before the eruption. Thermal demagnetization of the lithic clasts shows similar results with slightly higher re-heating temperatures, around 180–240°C. The estimated temperatures represent the equilibrium temperatures obtained after the deposition of the pumice fall and show that the pyroclastic fall deposits at a distance of around 6 km from the eruption vent maintained a temperature high enough to re-heat the buried ceramics at temperatures around 140–180°C.  相似文献   

15.
Stratigraphic studies on the active and potentially active volcanoes of the Lesser Antilles have revealed two main types of andesitic pyroclastic deposit. One with dense clasts in a poorly vesicular ash represents nuée ardente eruptions of Pelean type and the other group of vesicular pumice and ash represent both Plinian airfall and ash-pumice flow eruptions. The pumiceous deposits can be divided into airfall lapilli, airfall ash, crystal-pumice surge, ashpumice flow and ash hurricane types. No pumice eruptions have been witnessed in the Lesser Antilles during the period of written history although the stratigraphy of archaeological sites shows they occurred in pre-Columbian times. Detailed stratigraphic studies of Mt. Pelée, Martinique, and the Quill, St. Eustatius, show that, throughout their history, pumice eruptions have alternated with nuée ardente eruptions with approximately equal frequency. The widespread occurrence of pumiceous deposits on many of the West Indian volcanoes and the frequent alternations in the stratigraphic sections suggest the high probability that they will be witnessed in the future. On Martinique, some on the late prehistoric pumiceous pyroclastic flow deposits (the ash hurricanes) have been traced 20 km from the central vent to the out-skirts of Fort de France, indicating that they are the major hazard in the Lesser Antilles. Measured stratigraphic sections show that the Pelean type nuée ardente deposits are separated from the pumiceous pyroclastic deposits by others of intermediate vesicularity and appearance. The presence of such deposits of intermediate vesicularity could provide a future warning of impending change in pyroclastic style. As no such deposits formed on Mt. Pelée this century the present «safer» episode of nuée ardente (Pelean type) activity is expected to continue.  相似文献   

16.
The Shinjima Pumice is a fines-depleted pumice lapilli tuff emplaced several thousands years ago at about 100–140 m below sea level. This 40-m-thick deposit comprises many poorly defined flow units, which are 1–10 m thick, diffusely stratified and showing upward-coarsening of pumice clasts with a sharp to transitional base. Parallel to wavy diffuse stratifications are commonly represented by alignment of pumice clasts, especially in the lower half of the flow units. Pumice clasts of block to coarse-lapilli size commonly have thermal-contraction cracks best developed on the surfaces, demonstrating that they were hot but cooled down to the ambient temperatures prior to their emplacement. These features are suggestive of the direct origin of the Shinjima Pumice from subaqueous eruptions. A theoretical consideration on the behavior of subaqueous eruption plumes and hot and cold pumice clasts suggests that subaqueous eruption plumes commonly collapse by turbulent mixing with the ambient water and are transformed into water-logged mass flows.  相似文献   

17.
The juvenile content of phreatomagmatic deposits contains both first-cycle juvenile clasts derived from magma at the instant of eruption, and recycled juvenile clasts, which were fragmented and first ejected by earlier explosions during the eruption, but fell back or collapsed into the vent. Recycled juvenile clasts are similar to accessory and accidental lithics in that they contribute no heat to further magma: water interaction, but previously no effective criteria have been defined to separate them from first-cycle juvenile clasts. We have investigated componentry parameters (vesicularity, clast morphology and extent of mud-coating) which, in specific circumstances, can distinguish between first-cycle juvenile clasts, involved in only one explosion, and such recycled juvenile clasts. Phreatomagmatic fall deposits commonly show gross grainsize and sorting characteristics identical to deposits of purely dry or magmatic eruptions. However the abundance of non-juvenile clasts in pyroclastic deposits is a sensitive indicator of the involvement of external water. If this component is calculated including recycled juvenile clasts with accidental and accessory clasts the contrast is even more striking. Data from a Holocene maar deposit in Taupo Volcanic Zone, New Zealand, suggest that the first-cycle juvenile component of the deposits is less than one-third of that determined by simple juvenile:lithic:crystal componentry.  相似文献   

18.
A model is presented for the emplacement of intermediate volume ignimbrites based on a study of two 6 km3 volume ignimbrites on Roccamonfina Volcano, Italy. The model considers that the flows were slow moving, and quickly deflated from turbulent to non-turbulent conditions. Yield strength and density increased whereas fluidisation decreased with time and runout of the pyroclastic flows. In proximal locations, on the caldera rim, heterogeneous exposures including discontinuous lithic breccias, stratified and cross-stratified units interbedded with massive ignimbrite suggest deposition from turbulent flows. In medial locations thick, massive ignimbrite occurs associated with three types of co-ignimbrite lithic breccia which we interpret as being emplaced by non-turbulent flows. Multiple grading of different breccia/lithic concentration types within single flow units indicates that internal shear occurred producing overriding or overlapping of the rear of the flow onto the slower-moving front part. This overriding of different parts of non-turbulent pyroclastic flows could be caused by at least two different mechanisms: (1) changes in flow regime, such as hydraulic jumps that may occur at breaks in slope; and (2) periods of increased discharge rate, possibly associated with caldera collapse, producing fresh pulses of lithic-rich material that sheared onto the slower-moving part of the flow in front.We propose that ground surge deposits enriched in pumice compared with their associated ignimbrite probably formed by a flow separation mechanism from the top and front of the pyroclastic flow. These turbulent clouds moved ahead of the non-turbulent lower part of the flow to form stratified pumice-rich deposits. In distal regions well-developed coarse, often clast-supported, pumice concentrations zones and coarse intra-flow-unit lithic concentrations occur within the massive ignimbrite. We suggest that the flows were non-turbulent, possessed a relatively high yield strength and may have moved by plug flow prior to emplacement.  相似文献   

19.
Estimates of pyroclastic flow emplacement temperatures in the Cerro Galán ignimbrite and Toconquis Group ignimbrites were determined using thermal remanent magnetization of lithic clasts embedded within the deposits. These ignimbrites belong to the Cerro Galán volcanic system, one of the largest calderas in the world, in the Puna plateau, NW Argentina. Temperature estimates for the 2.08-Ma Cerro Galán ignimbrite are retrieved from 40 sites in 14 localities (176 measured clasts), distributed at different distances from the caldera and different stratigraphic heights. Additionally, temperature estimates were obtained from 27 sample sites (125 measured clasts) from seven ignimbrite units forming the older Toconquis Group (5.60–4.51 Ma), mainly outcropping along a type section at Rio Las Pitas, Vega Real Grande. The paleomagnetic data obtained by progressive thermal demagnetization show that the clasts of the Cerro Galán ignimbrite have one single magnetic component, oriented close to the expected geomagnetic field at the time of emplacement. Results show therefore that most of the clasts acquired a new magnetization oriented parallel to the magnetic field at the moment of the ignimbrite deposition, suggesting that the clasts were heated up to or above the highest blocking temperature (T b) of the magnetic minerals (T b = 580°C for magnetite; T b = 600–630°C for hematite). We obtained similar emplacement temperature estimations for six out of the seven volcanic units belonging to the Toconquis Group, with the exception of one unit (Lower Merihuaca), where we found two distinct magnetic components. The estimation of emplacement temperatures in this latter case is constrained at 580–610°C, which are lower than the other ignimbrites. These estimations are also in agreement with the lowest pre-eruptive magma temperatures calculated for the same unit (i.e., 790°C; hornblende–plagioclase thermometer; Folkes et al. 2011b). We conclude that the Cerro Galán ignimbrite and Toconquis Group ignimbrites were emplaced at temperatures equal to or higher than 620°C, except for Lower Merihuaca unit emplaced at lower temperatures. The homogeneity of high temperatures from proximal to distal facies in the Cerro Galán ignimbrite provides constraints for the emplacement model, marked by a relatively low eruption column, low levels of turbulence, air entrainment, surface–water interaction, and a high level of topographic confinement, all ensuring minimal heat loss.  相似文献   

20.
The deposition temperature of the pyroclastic density current (PDC) deposits emplaced during the AD 472 Pollena eruption (Somma-Vesuvius, Italy) has been investigated using the thermal analysis of the magnetic remanence carried by lithic clasts embedded within the deposits. A total of 310 lithic clasts were collected from all the PDC units in the Pollena stratigraphic succession, at different distances from the inferred vent and at different stratigraphic levels. The temperature reached by each individual clast during residence in the PDC was estimated through stepwise thermal demagnetization, with the values from all clasts collected at each site being used to infer the deposition temperature (T dep). Although the sedimentological features of these PDC deposits show some variation, the deposition temperature typically falls in the range 300 to 320°C, with a maximum range of 260 to 360°C. The fairly uniform temperature observed in both the dune bedded and massive deposits points to homogeneity in attainment of T dep for the different deposits and suggests similarity in the depositional regime of the different PDCs and/or in heat transfer to lithic fragments. Similarity in depositional regime was also favoured by the limited control exerted by topography on the distribution of these PDCs, with the northern wall of the Somma caldera that did not act as a morphological barrier. As a result the currents were capable of moving away from the vent, without topographic disturbances and, thus, significant variations in the cooling regime. Because the Pollena eruption is considered similar to the maximum expected event at Somma-Vesuvius, the characteristics of its deposits best simulate the likely maximum hazard for the Vesuvius region. In this regard, Pollena produced hot, dilute PDCs which were able to travel up to 12 km from the vent maintaining high temperatures across this distance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号