共查询到20条相似文献,搜索用时 11 毫秒
1.
L. D. De Feiter A. D. Fokker H. P. Th. Van Lohuizen J. Roosen 《Planetary and Space Science》1960,2(4):223-227
On the basis of a 24-hr patrol of solar radio noise established since the beginning of the International Geophysical Year, an identification is attempted of those solar flares which, on account of their associated radio responses, most probably were the cause of a geomagnetic storm. The cases for which we think the identification to be reliable are listed. It has appeared that great integrated intensity of the radio outburst at centimeter, decimeter and meter wavelengths is the primary criterion for identifying the solar flares responsible. Most of these giant radio outbursts, to which we assigned the “radio importance” figure 3 +, belong to the so-called type IV. Only a minor fraction of these events were accompanied by slow-drift bursts of type II. Of the importance 3 + radio outbursts about 60 per cent are clearly associated with the subsequent sudden commencement of a geomagnetic storm. Conversely, about 50 per cent of the sudden commencements of a storm can be related to an important radio event. Some reasons, why in a particular case the storm-outburst association may fail to exist, are mentioned. 相似文献
2.
We studied the causes of recurrent geomagnetic activity by analyzing interplanetary magnetic field and plasma data from Earth-orbiting spacecraft in the interval from November 1973 to February 1974. This interval includes the start of two long sequences of geomagnetic activity and two corresponding corotating interplanetary streams. In general, the geomagnetic activity was related to an electric field which was primarily due to two factors: (1) the ordered, mesoscale pattern of the stream itself and (2) random, smaller-scale fluctuations in the southward component of the interplanetary magnetic field Bz. The geomagnetic activity in each recurrent sequence consisted of two successive stages. The first stage was usually the most intense and it occurred during the passage of the interaction region at the front of a stream. It was related to a V × B electric field which was large primarily because the amplitude of the fluctuations in Bz was large in the interaction region. It is suggested that these large amplitudes of Bz were primarily produced in the interplanetary medium by compression of ambient fluctuations as the stream steepened in transit to 1 A.U. The second stage of geomagnetic activity immediately following the first was associated with the highest speeds in the stream. It was, among other things, related to a V × B electric field which was large mainly because of the high speeds. 相似文献
3.
A. Hewish 《Solar physics》1988,116(1):195-198
A recent study of associations between geomagnetic storms and solar phenomena has found more associations with solar flares than with coronal holes (Garcia and Dryer, 1987). This disagrees with observations of earthbound transients obtained from IPS imaging which showed that nearly all geomagnetically effective disturbances originated from coronal holes at low latitudes. The discrepancy has arisen because the former study failed to take into account the large angular extent of transient eruptions from coronal holes. It is highly probable that the intense geomagnetic storm of February 1986, discussed by Garcia and Dryer, was caused by a low-latitude coronal hole which was present at that time. This answers their question concerning moderately strong flares that apparently cause major storms, while much larger flares often do not; flares may sometimes be associated with eruptions from coronal holes, but only as peripheral events. 相似文献
4.
Solar cycle distribution of great geomagnetic storms 总被引:1,自引:0,他引:1
The distribution properties of great geomagnetic storms (Dst≤−200 nT) and super geomagnetic storms (Dst≤−300 nT) across the
solar cycles (19–23) are investigated. The results show that 73.2% of the great geomagnetic storms took place in the descending
phase of the solar cycles. 72.7% of super geomagnetic storms occurred in the descending phase of the solar cycles. About 83%
of the great geomagnetic storms appeared during the period from the two years before solar cycle peak and the three years
after solar cycle peak time. 90.9% of the super geomagnetic storms appeared between the two years before solar cycle peak
and the three years after solar cycle peak. When a solar cycle is very strong, the phenomenon that great geomagnetic storms
concentrated during the period from the two years before the solar cycle peak time to the three years after the solar cycle
peak time is very prominent. The launch time of space science satellite is suggested according to the distribution properties
of great geomagnetic storms and super geomagnetic storms in solar cycles. 相似文献
5.
We examine the solar cycle distribution of major geomagnetic storms (Dst ≤ -100 nT), including intense storms at the level of- 200 nT< Dst ≤-100 nT, great storms at -300 nT< Dst ≤-200 nT, and super storms at Dst ≤-300 nT, which occurred during the period of 1957-2006, based on Dst indices and smoothed monthly sunspot numbers. Statistics show that the majority (82%) of the geomagnetic storms at the level of Dst ≤-100 nT that occurred in the study period were intense geomagnetic storms, with 12.4% ranked as great storms and 5.6% as super storms. It is interesting to note that about 27% of the geomagnetic storms that occurred at all three intensity levels appeared in the ascending phase of a solar cycle, and about 73% in the descending one. Statistics also show that 76.9% of the intense storms, 79.6% of the great storms and 90.9% of the super storms occurred during the two years before a solar cycle reached its peak, or in the three years after it. The correlation between the size of a solar cycle and the percentage of major storms that occurred, during the period from two years prior to maximum to three years after it, is investigated. Finally, the properties of the multi-peak distribution for major geomagnetic storms in each solar cycle is investigated. 相似文献
6.
During magnetically quiet or slightly disturbed nights, closely correlated oscillations of the geomagnetic field and the F-layer were observed by means of magnetometers and a vertical-icidence continuous-wave Doppler sounder at 3.57 MHz. The magnetic oscillations were mostly Pi2 pulsations with periods from 0.5 to 2 min, and an amplitude of 10?9 T corresponding to a Doppler shift of the order of 0.3 Hz. The observations cannot be explained by a dynamo-motor hypothesis assuming that the magnetic and ionospheric oscillations are caused by alternating E-layer currents, but they agree well with the theory of downgoing hydromagnetic waves. In particular, this theory explains the observed effects due to sporadic E-layer ionization and ion-neutral collisions. The results are found to differ substantially from those of other authors. 相似文献
7.
Meena Pokharia Lalan Prasad Chandrasekhar Bhoj Chandni Mathpal 《Journal of Astrophysics and Astronomy》2018,39(5):53
The aim of this paper is to investigate the association of the geomagnetic storms with the magnitude of interplanetary magnetic field IMF (B), solar wind speed (V), product of IMF and wind speed (\(V \cdot B)\), Ap index and solar wind plasma density (\(n_{\mathrm{p}})\) for solar cycles 23 and 24. A Chree analysis by the superposed epoch method has been done for the study. The results of the present analysis showed that \(V \cdot B\) is more geoeffective when compared to V or B alone. Further the high and equal anti-correlation coefficient is found between Dst and Ap index (? 0.7) for both the solar cycles. We have also discussed the relationship between solar wind plasma density (\(n_{\mathrm{p}})\) and Dst and found that both these parameters are weakly correlated with each other. We have found that the occurrence of geomagnetic storms happens on the same day when IMF, V, Ap and \(V \cdot B\) reach their maximum value while 1 day time lag is noticed in case of solar wind plasma density with few exceptions. The study of geomagnetic storms with various solar-interplanetary parameters is useful for the study of space weather phenomenon. 相似文献
8.
The effect of solar and interplanetary disturbances on geomagnetospheric conditions leading to 121 moderate geomagnetic storms (MGS) have been investigated using the neutron monitor, solar geophysical and interplanetary data during the period 1978–99. Further, the duration of recovery phase has been observed to be greater than the duration of main phase in most of the cases of MGS. It has further been noted that Ap-index increases on sudden storm commencement (SSC) day than its previous day value and acquires maximum value on the day of maximum solar activity. Generally, the decrease in cosmic ray (CR) intensity and Dst begins few hours earlier than the occurrence of MGS at Earth. Furthermore, negative Bz pointing southward plays a key causal role in the occurrence of MGS and the magnitude and the duration of Bz and Bav also play a significant role in the development of MGS. The solar features Hα, X-ray solar flares and active prominences and disappearing filaments (APDFs) which have occurred within lower helio-latitudinal/helio-longitudinal zones produce larger number of MGS. Solar flares seem to be the major cause for producing MGS. 相似文献
9.
I.P. Robertson T.E. Cravens D.G. Sibeck M.R. Collier K.D. Kuntz 《Astronomische Nachrichten》2012,333(4):309-312
On 2001 March 31 a coronal mass ejection pushed the subsolar magnetopause to the vicinity of geosynchronous orbit at 6.6 RE. The NASA/GSFC Community Coordinated Modeling Center (CCMC) employed a global magnetohydrodynamic (MHD) model to simulate the solar wind‐magnetosphere interaction during the peak of this geomagnetic storm. Robertson et al. then modeled the expected soft X‐ray emission due to solar wind charge exchange with geocoronal neutrals in the dayside cusp and magnetosheath. The locations of the bow shock, magnetopause and cusps were clearly evident in their simulations. Another geomagnetic storm took place on 2000 July 14 (Bastille Day). We again modeled X‐ray emission due to solar wind charge exchange, but this time as observed from a moving spacecraft. This paper discusses the impact of spacecraft location on observed X‐ray emission and the degree to which the locations of the bow shock and magnetopause can be detected in images (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
10.
Firstly, semi-empirical distributions of solar wind proton number density and velocity ordered around the Heliospherical Current Sheet (HCS) of the inner heliosphere are considered. Then, the velocity profiles of flare-generated Coronal Mass Ejections (CMEs) running through the inhomogeneous heliosphere are calculated. They show that the velocities strongly depend on flare positions with respect to the HCS. Finally, a specific mutual flare-HCS-Earth location leading to a strong geomagnetic storm is deduced from calculations and supported by a few real events of solar-terrestrial physics. 相似文献
11.
With the aid of the Akasofu's energy coupling function between the solar wind and the magnetosphere, we have made in this paper an analysis of about 20 geomagnetic storms recorded at Beijing during the period of years 1966 to 1972. There is a close correlation between the energy coupling function ? and the geomagnetic indices ap and Kp. All in all an empirical formula as ? ~ 1?2 × 1017ap has been found for the geomagnetic storms occurred in a low latitude station, i.e. Beijing of China. Comparisons of the horizontal component Hmax (in γ) and ?(1018 erg s?1) in Table 1 indicate that the development of storm main phase at Beijing depends very much on the ? values thus involved. Also, these are well illustrated for several individual storms as mentioned in the second section of the paper. In concluding this paper some brief discussions are made and included. It is hoped that geomagnetic observations in the middle and low latitudes from our vast country should make further contributions to the study of solar wind-magnetosphere coupling, including the Akasofu's energy coupling function. 相似文献
12.
S. I. Akasofu 《Solar physics》1981,71(1):175-199
It is shown that major geomagnetic storms (¦Dst¦ > 100) tend to develop at about the time of the passage of the solar current sheet or disk at the location of the Earth, provided this passage is associated with (1) a large impulsive increase of the IMF magnitude B, (2) a negative value of the IMF angle (Theta), and (3) an increasing solar wind speed. The passage occurs in association with the 27-day rotation of the warped current disk or a temporal up-down movement of the latter. The period in which ¦Dst¦/t< 0 during major storms coincides approximately with the period when the solar windmagnetosphere energy coupling function becomes 1019 erg s–1. These conclusions do not depend on the phase of the sunspot cycle.These results may be interpreted as follows: A high speed solar wind flow, originating either from flare regions or coronal holes, tends to push the solar current disk to move upward or downward for either a brief period (1 3 days) or an extended period (2 weeks). A relatively thin region of a large IMF B > 10 is often present near the moving current disk. Waves are also generated on the moving current disk, and some of them cause large changes of . A high value of is found in the region of a large IMF B near the wavy solar current disk, where has a large negative value. 相似文献
13.
A. Grafe 《Planetary and Space Science》1974,22(6):991-1001
For several storms the asymmetry of the magnetic disturbance values at equatorial latitudes has been investigated. Asymmetries were found for which the maximum and minimum depressions of the horizontal intensity occur at midnight and at noon, respectively, (anomalous DS-variation); other asymmetries, where the maximum and minimum depressions were observed in the morning and in the evening, respectively (inverse DS-variation). The DS-variation at equatorial latitudes was discussed in connection with the polar magnetic substorm and the Dst-variation. 相似文献
14.
Particle precipitation in Brazilian geomagnetic anomaly during magnetic storms is investigated using riometer and VLF propagation data. It is found that during large storms the changes in the ionosphere caused by particle precipitation are detectable. There is a good correlation between the behavior of the absorption and the variations of the magnetic field intensity during different phases of a storm. In particular, there seems to be a close relationship between the precipitation of high energy particles and short-period fluctuations of the magnetic field intensity of the order of 5–6 min. During the main phase of the storm, when the field intensity reaches its minimum, the flux of soft electrons also plays a significant role in producing absorption. The nature of precipitation associated with a sudden commencement appears to be more complex; the predominance of low or high energy particle flux may depend on the magnitude of the field increase. The amplitude and phase records of VLF signals also show the effect of the disturbance, but it is difficult to correlate the changes in these records with the features observed on the magnetogram, because only a small part of the propagation path lies in the region of the anomaly. A more detailed analysis of riometer data from different stations and VLF phase and amplitude records for different paths will be helpful in understanding the mechanism of particle precipitation associated with magnetic disturbances. In future experiments it may also be fruitful to look for detectable radiation emitted by the precipitating electrons, for example, Cherenkov and synchrotron radiation. 相似文献
15.
Navin Chandra Joshi Neeraj Singh Bankoti Seema Pande Bimal Pande Kavita Pandey 《New Astronomy》2011,16(6):366-385
This paper presents a correlative study between the peak values of geomagnetic activity indices (Dst, Kp, ap and AE) and the peak values of various interplanetary field (Bt, Bz, E and σB) and plasma (T, D, V, P and β) parameters along with their various products (BV, BzV and B2V) during intense geomagnetic storms (GMSs) for rising, maximum and decay phases as well as for complete solar cycle 23. The study leads to the conclusion that the peak values of different geomagnetic activity indices are in good correlation with Bt, Bz, σB, V, E, BV, BzV and B2V, therefore these parameters are most useful for predicting GMSs and substorms. These parameters are also reliable indicators of the strength of GMSs. We have also presented the lag/lead time analysis between the maximum of Dst and peak values of geomagnetic activity indices, various interplanetary field/plasma parameters for all GMSs. We have found that the average of peak values of geomagnetic activity indices and various field/plasma parameters are larger in decay phase compare to rising and maximum phases of cycle 23. Our analyses show that average values of lag/lead time lie in the ≈?4.00 h interval for Kp, ap and AE indices as well as for Bt, Bz, σB, E, D and P. For a more meaningful analysis we have also presented the above study for two different groups G1 (CME-driven GMSs) and G2 (CIR-driven GMSs) separately. Correlation coefficients between various interplanetary field/plasma parameters, their various products and geomagnetic activity indices for G1 and G2 groups show different nature. Three GMSs and associated solar sources observed during three different phases of this solar cycle have also been studied and it is found that GMSs are associated with large flares, halo CMEs and their active regions are close to the solar equator. 相似文献
16.
S.-I. Akasofu 《Planetary and Space Science》1980,28(9):933-944
This paper summarizes a study of the development of a large number of geomagnetic storms in terms of the solar wind—magnetosphere energy coupling function ε, the AE and Dst indices. It is shown that the maximum magnitude of the main phase decrease (¦Dst¦) is determined primarily by the peak value of ε; for ε < 1019 erg s?1, ~1019 erg s?1, 1019–1020 erg s?1, ? 1020 erg s?1, the maximum values of ¦Dst¦ are < 50γ, ~50γ, ~100γ and ? 200γ, respectively. A few examples for different peak values of ε (and thus of ¦Dst¦) are presented and examined in detail. Substorm activity during storms is well controlled by ε. 相似文献
17.
In this work we present a study of the triggers of intense geomagnetic storms since the launch of the WIND spacecraft, November 1995 until December 2001. Reviewing the signatures of solar wind flow, we looked for two different kinds of interplanetary events associated with intense geomagnetic storms: ejecta and corotating solar wind streams. We also looked for the solar origin related to both events. We provide a list of the solar–terrestrial events during the rising phase of this solar cycle. The paper includes statistical conclusions that shed light onto the paradigm of geomagnetic storms. 相似文献
18.
In this work we present a study of the triggers of intense geomagnetic storms since the launch of the WIND spacecraft, November 1995 until December 2001. Reviewing the signatures of solar wind flow, we looked for two different kinds of interplanetary events associated with intense geomagnetic storms: ejecta and corotating solar wind streams. We also looked for the solar origin related to both events. We provide a list of the solar–terrestrial events during the rising phase of this solar cycle. The paper includes statistical conclusions that shed light onto the paradigm of geomagnetic storms. 相似文献
19.
Calculations of the toroidal eigenmodes of oscillation of the magnetospheric plasma have been important in explaining the nature of Pc3, Pc4 and Pc5 geomagnetic pulsations. In this paper perturbation solutions of the governing equations are presented. These are much more accurate than the WKB approximation which has often been used, and much simpler to compute than the numerical solutions which have been used. A method of including the finite ionospheric conductivity is also presented. 相似文献
20.
Longitude dependent response of the GPS derived ionospheric ROTI to geomagnetic storms 总被引:1,自引:0,他引:1
The local time dependent effects of geomagnetic storm on the ionospheric TEC and Rate of change of TEC Index (ROTI) are studied here using the GPS data for four different low latitude stations: Ogaswara, Japan (24.29?°N, 153.91?°E; Geomagnetic: 17.21?°N, 136.16?°W); Surat, India (21.16?°N, 72.78?°E; Geomagnetic: 12.88?°N, 146.91?°E); Bogota, Colombia (4.64?°N, ?74.09?°E; Geomagnetic: 14.42?°N, 1.67?°W); and Kokee park Waimea, Hawaii, US (22.12?°N, ?159.67?°E; Geomagnetic: 22.13?°N, 91.19?°W). The solar wind velocity and geomagnetic indices: Dst, Kp and IMF Bz are utilized to validate the geomagnetic storms registered during the years 2011 and 2012. Using the GPS based TEC data and computed values of ROTI, the storm induced ionospheric irregularities generation and inhibition has been studied for all stations. The present study suggests that, the F-region irregularities of a scale length of few kilometers over the magnetic equator are locally affected by geomagnetic storms. This study also shows a good agreement (70–84 %) with the Aaron’s criteria (Aarons, Radio Sci., 26:1131–1149, 1991; Biktash, Ann. Geophys., 19:731–739, 2004) as significant absence and enhancement of ROTI was found to be influenced by the local time of the negative peak of Dst index association. 相似文献