首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The critical state is significant to the mechanical behaviors of granular materials and the foundation of the constitutive relations. Using the discrete element method (DEM), the mechanical behaviors of granular materials can be investigated on both the macroscopic and microscopic levels. A series of DEM simulations under true triaxial conditions have been performed to explore the critical state and dilatancy behavior of granular materials, which show the qualitatively similar macroscopic responses as the experimental results. The critical void ratio and stress ratio under different stress paths are presented. A unique critical state line (CSL) is shown to indicate that the intermediate principal stress ratio does not influence the CSL. Within the framework of the unique critical state, the stress–dilatancy relation of DEM simulations is found to fulfill the state-dependent dilatancy equations. As a microscopic parameter to evaluate the static determinacy of the granular system, the redundancy ratio is defined and investigated. The results show that the critical state is very close to the statically determinate state. Other particle-level indexes, including the distribution of the contact forces and the anisotropies, are carefully investigated to analyze the microstructural evolution and the underlying mechanism. The microscopic analysis shows that both the contact orientations and contact forces influence the mechanical behaviors of granular materials.  相似文献   

2.
秦建敏  迟璐璐 《岩土力学》2013,34(5):1508-1514
剪胀性是颗粒材料在加载过程中表现出来的重要变形特性。以孔隙胞元描述颗粒材料内部结构的最小单元,通过对单个孔隙胞元进行剪切受力分析,探讨了剪切过程中颗粒材料体积的改变对应力比和单个孔隙胞元形状的依赖关系,解释了排列密实的颗粒材料在剪切过程中先压缩后剪胀的微观机制。用离散元数值模拟得到了在双轴剪切过程中单个孔隙胞元形状以及孔隙胞元体积变形的演化过程。离散元数值结果表明,加载过程中孔隙胞元形状由初始各向同性到沿大主应力方向变大变长、体积变形先压缩后膨胀,并且体积变形在加载过程中存在局部化现象,体积变化大的孔隙胞元在较大变形时,排列成倾斜的窄带。综合孔隙胞元的受力分析和离散元数值结果表明,致密排列颗粒材料的剪胀性与微观尺度上孔隙胞元的几何结构及其内部的力链传递方式密切相关。  相似文献   

3.
A novel conceptual model of the mechanics of sands is developed within an elastic–plastic framework. Central to this model is the realization that volume changes in anisotropic granular materials occur as a result of two fundamentally different mechanisms. The first is purely kinematic, dilative, and is the result of the changes in anisotropic fabric. There is also a second volume change in granular media that occurs as a direct response to changes in stress as in a standard elastic/plastic continuum. The inclusion of the two sources of volume change results in three important datum states. When subjected to isotropic strains, the resulting stress state in granular materials is not isotropic but lies upon the kinematic normal consolidation line. There exists a state at which the fabric‐induced volumetric strain rate becomes equal to the stress‐induced volumetric strain rate making the total plastic volumetric strain rate equal to zero. Granular response changes from contractive to dilative at this phase transformation line. The third datum state is the one in which the stress‐induced volumetric strain rate is zero. The sand, however, continues to dilate at this state with the difference between stress and dilation ratio a constant as predicted by Taylor's stress–dilatancy rule. These predictions are shown in accordance with experimental data from a series of drained tests and undrained on Ottawa sand. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
It is well known that soil is inherently anisotropic and its mechanical behavior is significantly influenced by its fabric anisotropy. Hypoplasticity is increasingly being accepted in the constitutive modeling for soils, in which many salient features, such as nonlinear stress-strain relations, dilatancy, and critical state failure, can be described by a single tensorial equation. However, within the framework of hypoplasticity, modeling fabric anisotropy remains challenging, as the fabric and its evolution are often vaguely assumed without a sound basis. This paper presents a hypoplastic constitutive model for granular soils based on the newly developed anisotropic critical state theory, in which the conditions of fabric anisotropy are concurrently satisfied along with the traditional conditions at the critical state. A deviatoric fabric tensor is introduced into the Gudehus-Bauer hypoplastic model, and a scalar-valued anisotropic state variable signifying the interplay between the fabric and the stress state is used to characterize its impact on the dilatancy and strength of the soils. In addition, fabric evolution during shearing can explicitly be addressed. Modifications have also been undertaken to improve the performance of the undrained response of the model. The anisotropic hypoplastic model can simulate experimental tests for sand under various combinations of principle stress direction, intermediate principal stress (or mode of shearing), soil densities, and confining pressures, and the associated drastic effect of different principal stress orientations in reference to the material axes of anisotropy can be well captured.  相似文献   

5.
秦建敏  张洪武 《岩土力学》2010,31(12):3697-3703
存在临界状态是颗粒材料的一个重要特性。基于孔隙胞元的颗粒离散元方法对二维颗粒体进行双轴加载数值试验,在详细分析数值模拟结果的基础上,从微观几何组构的角度揭示了临界状态的存在机制。基于剪胀性原理,提出了以接触价键表征的微观临界状态理论模型,得到了接触价键与塑性剪切应变的关系表达式,理论模型的结果和二维离散元数值模拟得到的结果吻合较好。通过比较不同情况下数值结果和理论模型中的参数,得到以下结论:表征微观临界状态的参数(临界接触价键和达到临界状态所需要的塑性剪切应变)依赖于颗粒体的微观特性,如颗粒形状、表面摩擦性质、颗粒体的围压和初始孔隙比。  相似文献   

6.
This study investigates a simple constitutive model based on the critical state framework and bounding surface (BS) plasticity that is suitable for reconstituted clays over a wide range of overconsolidation ratios under monotonic loading. For heavily overconsolidated (OC) clays, rather than using the conventional Hvorslev line, an empirical surface is introduced into the model formulation based on two image points on the BS. The peak strength and the dilatancy of heavily OC clays can thus be predicted satisfactorily. Comparisons with triaxial test data show that the model well captures the peak strength and the dilatancy of heavily OC clays under monotonic loading.  相似文献   

7.
In the era of high speed trains, it is very important to ensure the stability of rail tracks under adverse conditions including the fouling of ballast. Fouling of ballast from unstable and saturated soft subgrade soil is one of the major reasons for track deterioration. The reported results of a number of large-scale laboratory experiments on the shear behaviour of ballast and fouled ballast are analysed, herein. It was observed that fines have a significant influence on the shear behaviour of ballast. Shear strength increases and dilatancy decreases with the addition of fines. In this paper, a semi-empirical mathematical model has been proposed to capture the dilatancy of ballast fouled with fines during shearing. The empirical constants a, b and c proposed in the model are a function of the fines content Void Contamination Index (VCI). The results of the model have been compared with the laboratory experiments and are found to be in good agreement.  相似文献   

8.
基于颗粒组构特性的散体材料本构模型研究   总被引:1,自引:0,他引:1  
通过散体介质材料单元颗粒排列组构表达的细观结构力学关系,建立了用颗粒密集度、颗粒排列组构关系和颗粒间摩擦特性等非连续介质材料特性参数描述的散体介质材料本构模型,从而实现散体介质材料宏观连续介质描述的等效应力表达.通过该模型可采用数值方法进行散体介质材料准静态情况下的力学特性分析.文中最后基于有限元软件ABAQUS,进行了该本构模型的二次开发.数值算例结果验证了所建立散体介质材料本构模型的适用性.  相似文献   

9.
孙逸飞  沈扬 《岩土力学》2018,39(4):1219-1226
分数阶微分理论在土体静力黏弹性本构模型中得到了广泛应用,然而,其在动力弹塑性模型中的应用尚不多见。为此,基于分数阶微积分理论分析了粗粒料在循环荷载下的变形特性,提出了粗粒料在循环荷载下的分数阶应变率;并以此为基础,进一步建立了粗粒料受静动力荷载作用下的边界面塑性力学本构模型。所提出模型包含10个参数,均可以运用常规三轴试验获得。为了验证所提出模型,选取了几种已有不同文献中的不同粗粒料试验数据进行了模拟,发现,所提出的模型可以较好地模拟粗粒料在静动力加载下的应力-应变行为,对于循环荷载下的长期变形也能较好地预测。  相似文献   

10.
基于材料状态相关剪胀性的土坡稳定分析极限平衡法   总被引:1,自引:0,他引:1  
贾苍琴  黄茂松  王贵和 《岩土力学》2009,30(Z2):149-153
土体剪胀性对土坡稳定性分析的结果有较大的影响,而在传统的极限平衡法中无法考虑土体的剪胀性。以Toyoura砂为例,通过基于材料状态相关临界状态理论的本构模型,确定了摩擦角与剪胀角之间的关系,然后将采用等效摩擦角的方式用于土坡稳定的极限平衡法分析中,提出了一种基于材料状态相关剪胀性的极限平衡法,并通过算例说明在极限平衡法中考虑剪胀角对正确评价土坡稳定性是很重要的。  相似文献   

11.
刘洋  李爽 《岩土力学》2018,39(6):2237-248
基于离散单元法对不同密实度理想散粒体进行了双轴剪切试验的宏微观数值模拟,通过网格剖分将Voronoi多边形表征的loop单元作为散粒介质细观力学结构的基本单元,模拟了剪切过程中不同类型loop单元数量、几何形态和力学特征的演化过程,并重点分析了临界状态时散粒介质的细观力学结构特征。模拟结果显示,初始密实度不同的试样在向临界状态发展的过程中,高阶单元与低阶单元的发展规律完全不同,不同初始密实度试样中同阶loop单元的发展规律也不相同,但同阶loop单元的数量比例、几何形态、颗粒接触力及单元内滑动率最终均达到了各自的临界状态。从细观角度分析,散体介质的临界状态是高阶和低阶loop单元在荷载作用下相互转化的结果,是所有loop单元物理力学状态的综合平均与外在表现,临界状态时不同阶数的loop单元处于一个动态平衡状态,宏观上表现为常剪应力和常体积下剪切变形的不断发展。数值模拟结果也表明,loop细观结构单元包含了丰富的信息,其数量、几何形态、受力特征及接触稳定性的发展与散粒体的强度、剪胀以及临界状态的发展密切相关,可以将其作为散粒介质细观尺度的分析单元。  相似文献   

12.
An approach based on the category of upper bound theorem of limit analysis is proposed in this article to consider the reinforcing effect of one row of anchors on slope stabilization. The shear strength reduction technique is used in the determination of the safety factor of the slope. The effect of anchor reinforcement is assumed to be an external axial force applied on the slope, and in the formulas of kinematic limit analysis, the work rate done by the anchor can be calculated. So, the stability analysis can be conducted without any assumptions on the acting position and decomposition of the axial force of anchors. Results were compared with those obtained using both the limit equilibrium method and numerical method. A parametric study was carried out to illustrate the effect of anchor orientation and position on slope stabilization. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.

卵砾石地层可压缩性低、抗剪强度大,水泥土搅拌桩工法在应用于卵砾石地层时存钻进困难、钻具磨损大等问题。为确定卵砾石地层条件下钻头形式的最优布置,基于离散元法(DEM),对不同切削叶片数量、切削叶片角度、截齿布置形式、钻头中心底部布置形式、机械压力工况下,搅拌桩机钻头钻进卵砾石地层的物理过程进行三维动态仿真模拟,并分析研究了不同钻头布置形式对钻进效果的影响。计算结果表明:钻头切削叶片数量的增加会提高钻进阻转矩,但是会增强钻头的定心能力。设置截齿的钻头钻进阻力矩并无明显提高,但钻进速度有一定程度的提高。钻头切削叶片角度的提高会增加钻进阻力矩,但过低或者过高的切削叶片角度均会降低钻进速度。适当提高钻进压力可提高钻进速度,但须考虑动力装置的功率及扭矩输出能力。三切削叶片、高切削叶片角度、设置三截齿的高效率钻头在应用于北京市某项目卵砾石地层时效果良好,文章提出的方法可以为其他工程的施工机械选型提供参照依据。

  相似文献   

14.
粗粒土的强度、变形特性对土石坝、边坡和路基等工程的安全性与稳定性有着至关重要的影响。针对粗粒土在复杂应力状态下的强度和变形特性,在边界面塑性理论和临界状态理论框架下,通过引入状态参数和动态临界状态线建立了粗粒土状态相关边界面塑性模型。模型不仅能够模拟粗粒土的应变硬化和体积收缩行为,还能描述应变软化和体积膨胀特性。基于ABAQUS的二次开发平台,结合带误差控制的改进欧拉积分算法编写了边界面塑性模型的UMAT子程序。通过设置不同的应变增量步和误差容许值,对改进欧拉积分算法的精确性和收敛性进行了分析。对不同密实状态和围压下粗粒土三轴排水剪切试验进行了模拟,验证了带误差控制的改进欧拉积分算法应用于粗粒土边界面塑性模型的合理性,为进一步工程应用奠定了基础。  相似文献   

15.
The ultimate capacity of anchors is determined using the material point method (MPM). MPM is a so‐called meshless method capable of modelling large displacements, deformations and contact between different bodies. A short introduction to MPM is given and the derivation of the discrete governing equations. The analysis of a vertically loaded anchor and one loaded at 45° is presented. The load–displacement curves are compared to that obtained from experiments and the effect of soil stiffness and anchor roughness is investigated. The results of the vertically loaded anchor are also compared to an analytical solution. The displacement of the soil surface above the anchor was measured and compared to the numerical predictions. Convergence with mesh refinement is demonstrated and the effect of mesh size and dilatancy angle on the shear band width and orientation is indicated. The results show that MPM can model anchor pull out successfully. No special interface elements are needed to model the anchor–soil interface and the predicted ultimate capacities were within 10% of the measured values. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
This paper aims at extending the well‐known critical state concept, associated with quasi‐static conditions, by accounting for the role played by the strain rate when focusing on the steady, simple shear flow of a dry assembly of identical, inelastic, soft spheres. An additional state variable for the system, the granular temperature, is accounted for. The granular temperature is related to the particle velocity fluctuations and measures the agitation of the system. This state variable, as is in the context of kinetic theories of granular gases, is assumed to govern the response of the material at large strain rates and low concentrations. The stresses of the system are associated with enduring, frictional contacts among particles involved in force chains and nearly instantaneous collisions. When the first mechanism prevails, the material behaves like a solid, and constitutive models of soil mechanics hold, whereas when inelastic collisions dominate, the material flows like a granular gas, and kinetic theories apply. Considering a pressure‐imposed flow, at large values of the normal stress and small values of the shear rate, the theory predicts a nonmonotonic shear rate dependence of the stress ratio at the steady state, which is likely to govern the evolution of landslides. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Presently, no displacement-based design methodology exists for helical anchors subjected to tensile or uplift loading. This study investigates the statistical and probabilistic aspects of the load-displacement uncertainty associated with a database of thirty-seven uplift loading tests of helical anchors founded within cohesive soils. Initially, an ultimate resistance model is identified, and the semi-empirical uplift breakout factor statistically characterized. A relationship between ultimate resistance and slope tangent capacity is established, and used to form the basis for normalizing the load-displacement response. Hyperbolic and power law models are statistically evaluated for use in serving as a reference load-displacement model; the hyperbolic curve was selected based on goodness-of-fit statistics. Monte Carlo reliability simulations are used to establish an equivalent-deterministic load factor that associates the selected load factor with a probability of exceeding a pre-determined allowable uplift displacement, given uncertainty in the undrained shear strength, ultimate resistance model, transformation uncertainty, uncertainty in the allowable displacement, and variability in uplift loading. A practical example is provided to show the intended use of this probabilistic helical anchor displacement model.  相似文献   

18.
One of the purposes in this study is to develop a modified micromorphic continuum model for granular materials on the basis of a micromechanics approach. A symmetric curvature tensor is proposed in this model, and a symmetric couple stress tensor is derived conjugating the symmetric curvature tensor. In addition, a correct derivation is presented to obtain the symmetric stress tensor conjugated with the symmetric strain tensor. The modified model provides a complete deformation mode for granular materials by considering the decomposition for motions (displacement and rotation) of particles. Consequently, the macroscopic constitutive relationships and constitutive moduli are derived in expressions of the microstructural information. Furthermore, the balance equations and boundary conditions are obtained for the modified micromorphic model. By considering the extended Drucker-Prager yield criterion, the micromorphic elastoplastic model is developed. Another purpose of this study is to derive the finite element formulation for the developed micromorphic elastoplastic model. Based on the ABAQUS user element (UEL) interface, numerical simulations investigated the load-displacement relationship and the strain localization behavior of granular materials and investigated the influence of microscopic parameters in the micromorphic model on these macroscopic mechanical responses. Numerical results illustrate the presented model's capability of simulating the strain-softening and strain localization behaviors, and the capability of considering the influence of microstructural information on the macroscopic mechanical behaviors of granular materials.  相似文献   

19.
A new approach is proposed for identifying elastic constants for orthotropic material bodies by using the boundary element method. The material parameters which must be determined are two Young's moduli, a shear modulus and two Poisson's ratios. The method is applied to geotechnical engineering problems.  相似文献   

20.
刘东燕  郑志明  侯龙 《岩土力学》2010,31(Z1):23-27
通过自制的新型试验装置进行不同边界情况下的边坡模型变形破坏研究。探讨了边坡模型破坏开始时的坡角(破坏角)与边界条件的关系。试验结果表明,该破坏角会与模型厚度成一定的反比关系,但随着模型厚度超过一定值,边界条件造成的影响将趋于弱化,同时,运用数学手段定量地印证了这种关系形式。另外,还通过试验验证了相比于边界条件而言,破坏角的变化幅度会对模型材料的孔隙率更加敏感。基于所得结果,可对试验装置进行改进,并优化试验手段。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号