首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aerosol optical depth (AOD), Angstrom exponent (AE), and ozone monitoring instrument aerosols index (OMI-AI) data, derived from MODerate Resolution Imaging Spectroradiometer (MODIS) and OMI sensor on board NASA’s Aqua satellite and NASA-Aura satellite platforms, have been analyzed and classified over Baghdad, Iraq, for an 8-year period (2008–2015). In order to give an obvious understanding of temporal inconsistency in the characteristics and classification of aerosols during each season separately, PREDE POM-02 sky radiometer measurements of AOD, carried out during a 2-year period (2014–2015), were compared with MODIS–Aqua AODs. On seasonal bases, MODIS–Aqua AODs corroborate well with ground-based measurements, with correlation coefficients ranging between 0.74 and 0.8 and RMSE ranging from 0.097 to 0.062 during spring and autumn seasons respectively. The overall satellite- and ground-based measurement comparisons showed a good agreement with correlation coefficients of 0.78 and RMSE of 0.066. These results suggest that MODIS–Aqua gives a good estimate of AOD. Analysis of MODIS–Aqua data for the 8-year period showed that the overall mean AOD, AE, and OMI-AI over Baghdad were 0.44?±?0.16, 0.77?±?0.29, and 1.34?±?0.33 respectively. AOD records presented a unique peak which was extended from mid-spring (April) to mid-summer (July) while the AE annual variability indicated a more complicated behavior with minimum values during the period from late spring (May) to early autumn (September). The maximum AOD and OMI-AI values occurred during summer while their minimum values occurred during winter. The AE showed an opposite behavior to that of AOD such that the highest AE values occurred during autumn and winter and the lowest values happened during spring and summer. This behavior may be attributed to the domination of coarse aerosol particles during autumn and winter seasons and fine aerosol particles during spring and summer seasons. A Hybrid Single-Particle Lagrangian Integrated Trajectory model was utilized to determine the source of air mass transport and to recognize the variability of aerosol origin regions. Finally, AOD, AE, and OMI-AI values have been employed to identify several aerosol types and to present seasonal heterogeneity in their contribution based on their origins.  相似文献   

2.
The location of Central Asia,almost at the center of the global dust belt region,makes it susceptible for dust events.The studies on atmospheric impact of dust over the region are very limited despite the large area occupied by the region and its proximity to the mountain regions(Tianshan,Hindu Kush-Karakoram-Himalayas,and Tibetan Plateau).In this study,we analyse and explain the modification in aerosols'phys-ical,optical and radiative properties during various levels of aerosol loading observed over Central Asia utilizing the data collected during 2010-2018 at the AERONET station in Dushanbe,Tajikistan.Aerosol epi-sodes were classified as strong anthropogenic,strong dust and extreme dust.The mean aerosol optical depth(AOD)during these three types of events was observed a factor of~3,3.5 and 6.6,respectively,higher than the mean AOD for the period 2010-2018.The corresponding mean fine-mode fraction was 0.94,0.20 and 0.16,respectively,clearly indicating the dominance of fine-mode anthropogenic aerosol during the first type of events,whereas coarse-mode dust aerosol dominated during the other two types of events.This was corroborated by the relationships among various aerosol parameters(AOD vs.AE,and EAE vs.AAE,SSA and RRI).The mean aerosol radiative forcing(ARF)at the top of the atmosphere(ARFTOA),the bottom of the atmosphere(ARFBOA),and in the atmosphere(ARFATM)were-35±7,-73±16,and 38±17 Wm-2 during strong anthropogenic events,-48±12,-85±24,and 37±15 Wm-2 during strong dust event,and-68±19,-117±38,and 49±21 Wm-2 during extreme dust events.Increase in aerosol loading enhanced the aerosol-induced atmospheric heating rate to 0.5-1.6 K day-1(strong anthropogenic events),0.4-1.9 K day-1(strong dust events)and 0.8-2.7 K day 1(extreme dust events).The source regions of air masses to Dushanbe during the onset of such events are also identified.Our study con-tributes to the understanding of dust and anthropogenic aerosols,in particular the extreme events and their disproportionally high radiative impacts over Central Asia.  相似文献   

3.
《地学前缘(英文版)》2020,11(6):2169-2181
This study provides characteristics of aerosol columnar properties, measured over ten countries in Eastern Europe from 2002 to 2019. Aerosol optical depth (AOD) and Ångström exponent (AE) were obtained with the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6.1 merged Dark Target and Deep Blue aerosol product. The product is validated using ground-based Aerosol Robotic Network (AERONET) situated at Minsk, Belsk, Moldova and Kyiv. The results showed that 76.15% of retrieved AOD data are within the expected error. It was established that 64.2% of AOD points are between 0 and 0.2 and 79.3% of all AE points are over 1. Mean AOD values in the region vary from 0.130 ​± ​0.04 (Moldova) to 0.193 ​± ​0.03 (Czech Republic) with mean value in the region 0.162 ​± ​0.05. Seasonal mean AOD (AE) values were at the maximum during the summer from 0.231 ​± ​0.05 (1.482 ​± ​0.09 in winter) to minimum 0.087 ​± ​0.04 during the winter (1.363 ​± ​0.17 in summer). Gradual AOD reduction is observed in all countries with annual trend from −0.0050 (Belarus) to −0.0029 (Russia). Finally, the relationship between AOD and AE was studied to classify various aerosol types and showed seasonal non-uniformity of their contribution depending on variation in sources. The entire region is under significant impact of various aerosol types, including clean continental (СС), mixed (MX) and anthropogenic/burning (AB) aerosols types that are at 59.77%, 24.72%, and 12.97% respectively. These results form an important basis for further regional studies of air quality and distribution of sources of pollution.  相似文献   

4.
Geochemistry of dust aerosol over the Eastern Pamirs   总被引:1,自引:0,他引:1  
The Pamirs are situated in the inner part of the Asian continent, a region which plays a critical role in Asian dust emission and transport. This study measured the elemental composition of atmospheric dust aerosol samples collected during the period between July 2004 and April 2006 at Mt. Muztagata, Eastern Pamirs, at a high-altitude (38°17′N, 75°01′E, 4430 m). The Muztagata aerosol samples show Ca/Al (∼0.7) and Fe/Al (∼0.7) ratios that are distinguishable from those from other sites. The La/Th ratios (averaging 2.30-2.36) and Th/U ratios (averaging 2.75-3.11) indicate typical eolian deposition. The dust aerosol samples have very similar rare earth element (REE) patterns, with relative enrichment of light REE, a slight depletion of heavy REE, and a strongly negative europium anomaly (δEu values averaging 0.65). The Muztagata dust shows homogeneity of composition during the sampling period, with minor variations due to seasonal effects and possible different air mass, suggesting the possibility of a well-mixed atmospheric background dust on a regional scale. The zonal Westerlies dominate and the longitude circulations are relatively very weak for dust transport dynamics in the Pamirs and Tien Shan regions. Our results demonstrate a distinct difference in elemental composition between dust over the Eastern Pamirs and that over Inilchek, Central Tien Shan, indicating that the Asian dust emission regions have great variations in their chemical properties, and provide a better constraint on the climatic impact of Asian dust.  相似文献   

5.
The paper addresses influence of dust particles on the aerosol loading over the major deserts in the northern hemisphere. The role of dust aerosols in the total aerosol concentration and size distribution of the particles are analysed. It is observed that the aerosol loading is high in the northern hemisphere of which the deserts and adjoining areas in Asia and Africa play a leading role. Over the entire oceanic region, except some parts of the Atlantic Ocean near to the West coast of Africa and the Arabian Sea, aerosol loading is less. The Sahara Desert is the prominent source of dust aerosols throughout the year. The deserts of Asia are also prominent sources of dust aerosols on a global basis. Above 70% of the total aerosol optical depth (AOD) is contributed by the dust particles, reaching to around 90% during spring months March, April and May over the Sahara Desert, which is the major source of dust aerosols. Goddard Chemistry Aerosol Radiation and Transport model is used to estimate the dust aerosol concentration over the deserts of Asia and Africa. The model output almost agrees with the regions of dust loading obtained from the Envisat/SCIAMACHY. Hence, the model is reliable in estimating the dust aerosol loading over the major dust aerosol sources. The major portion of the total dust loading belongs to coarse mode particles.  相似文献   

6.
Intensive measurements were conducted in Xi’an, China before and during a COVID-19 lockdown period to investigate how changes in anthropogenic emissions affected the optical properties and radiative effects of brown carbon (BrC) aerosol. The contribution of BrC to total aerosol light absorption during the lockdown (13%–49%) was higher compared with the normal period (4%–29%). Mass absorption cross-sections (MACs) of specific organic aerosol (OA) factors were calculated from a ridge regression model. Of the primary OA (POA), coal combustion OA (CCOA) had the largest MACs at all tested wavelengths during both periods due to high molecular-weight BrC chromophores; that was followed by biomass burning OA (BBOA) and hydrocarbon-like OA (HOA). For secondary OA (SOA), the MACs of the less-oxidized oxygenated OA (OOA) species (LO-OOA) at λ = 370–590 nm were higher than those of more-oxidized OOA (MO-OOA) during both periods, presumably due to chromophore bleaching. The largest contributor to BrC absorption at the short wavelengths was CCOA during both periods, but BrC absorption by LO-OOA and MO-OOA became dominant at longer wavelengths during the lockdown. The estimated radiation forcing efficiency of BrC over 370–600 nm increased from 37.5 W·g?1 during the normal period to 50.2 W·g?1 during the lockdown, and that enhancement was mainly caused by higher MACs for both LO-OOA and MO-OOA. This study provides insights into the optical properties and radiative effects of source-specific BrC aerosol when pollution emissions are reduced.  相似文献   

7.
Spectral aerosol optical depth (AOD) measurements, carried out regularly from a network of observatories spread over the Indian mainland and adjoining islands in the Bay of Bengal and Arabian Sea, are used to examine the spatio-temporal and spectral variations during the period of ICARB (March to May 2006). The AODs and the derived Ångström parameters showed considerable variations across India during the above period. While at the southern peninsular stations the AODs decreased towards May after a peak in April, in the north Indian regions they increased continuously from March to May. The Ångström coefficients suggested enhanced coarse mode loading in the north Indian regions, compared to southern India. Nevertheless, as months progressed from March to May, the dominance of coarse mode aerosols increased in the columnar aerosol size spectrum over the entire Indian mainland, maintaining the regional distinctiveness. Compared to the above, the island stations showed considerably low AODs, so too the northeastern station Dibrugarh, indicating the prevalence of cleaner environment. Long-range transport of aerosols from tshe adjoining regions leads to remarkable changes in the magnitude of the AODs and their wavelength dependencies during March to May. HYSPLIT back-trajectory analysis shows that enhanced long-range transport of aerosols, particularly from the west Asia and northwest coastal India, contributed significantly to the enhancement of AOD and in the flattening of the spectra over entire regions; if it is the peninsular regions and the island Minicoy are more impacted in April, the north Indian regions including the Indo Gangetic Plain get affected the most during May, with the AODs soaring as high as 1.0 at 500 nm. Over the islands, the Ångström exponent (α) remained significantly lower (~1) over the Arabian Sea compared to Bay of Bengal (BoB) (~1.4) as revealed by the data respectively from Minicoy and Port Blair. Occurrences of higher values of α, showing dominance of accumulation mode aerosols, over BoB are associated well with the advection, above the boundary layer, of fine particles from the east Asian region during March and April. The change in the airmass to marine in May results in a rapid decrease in α over the BoB.  相似文献   

8.
利用太阳光度计CE318资料,对新疆地区3个观测站点(阿克达拉、乌鲁木齐、塔中)所代表的草场、城市和沙漠下垫面的440 nm波长处气溶胶光学厚度(AOD)和440~870 nm之间的Angstrom波长指数(AE)进行了统计分析,结果表明:三个站点的AOD年均值塔中站最大、乌鲁木齐站次之、阿克达拉站最小。其中阿克达拉站点的AOD全年变化不大,其月均值均小于0.3;乌鲁木齐站点AOD则表现出明显的季节性变化,冬春季的AOD月均值是夏秋季节的2.17倍;塔中站全年的AOD表现为单峰型,大值时段主要集中在3-7月。三个站点的AE年均值阿克达拉站最大、乌鲁木齐站次之、塔中站最小。阿克达拉和乌鲁木齐站点的AOD以人为排放等小粒径气溶胶为主,塔中站的AOD主要为沙尘等大粒径气溶胶。从年际变化来看,乌鲁木齐站AOD总体呈下降趋势,塔中站和阿克达拉站AOD总体呈上升趋势。乌鲁木齐霾天气的AOD日均值分布在0.35~1.21之间,塔中站沙尘天气的AOD日均值范围为0.30~2.05。  相似文献   

9.

Large near-field tsunamis pose a significant threat to the Canadian West Coast due to its proximity to the circum-Pacific belt where a significant tsunami-inducing earthquake event from the Cascadia subduction zone is expected. This study investigated the risks associated with such an event in terms of pedestrian evacuation needs and plans for the Town of Tofino, a small community located on the West Coast of Vancouver Island. The population-at-risk within the hazard zone and its ability to evacuate to safety is evaluated using anisotropic path-distance modelling. Mitigation measures, such as vertical evacuation buildings, are quantitatively evaluated. Site-specific inundation modelling was not performed as part of this study; tsunami hazard and safe zones were computed using a range of run-ups varying between 3 and 25 m. It was established that up to 80% of the population is within the maximum hazard zone considered. This evacuation modelling exercise indicates that a maximum of 13% of the population would have insufficient time to reach safety when using a mobility-impaired ambulatory speed. The use of three vertical evacuation buildings can reduce the risk of losing population in this category by 99%. Although some conservative assumptions were used (vertical datum at higher high water, reductions in safe zones by generalization process and mobility-impaired evacuation speeds), the evacuation potential is likely overestimated due to the coarseness of the topographic data used in the evacuation modelling and from an overestimated first wave arrival time. This is the first Canadian study which used anisotropic evacuation modelling to evaluate the vulnerability of a Canadian community to tsunami inundation.

  相似文献   

10.
Determination of dust loading in the atmosphere is important not only from the public health point of view, but also for regional climate changes. The present study focuses on the characteristics of two major dust events for two urban areas in Iran, Kermanshah and Tehran, over the period of 4 years from 2006 to 2009. To detect extreme dust outbreaks, various datasets including synoptic data, dust concentration, reanalysis data and numerical results of WRF and HYSPLIT models were used. The weather maps demonstrate that for these events dusts are mainly generated when wind velocity is high and humidity is low in the lower troposphere and the region is under the influence of a thermal low. The event lasts until the atmospheric stability prevails and the surface wind speed weakens. The thermal low nature of the synoptic conditions of these major events is also responsible for deep boundary layer development with its thermals affecting the vertical dust flux over the region. Trajectory studies show that the dust events originated from deserts in Iraq and Syria and transported towards Iran. The main distinction between the two types of mobilizations seems to affect the dust concentrations in the Tehran urban area.  相似文献   

11.
Dust storms are one of the natural sources for aerosol particles, especially in desert regions. The arid and semi-arid regions around Saudi Arabia are some of the most important sources of global dust. In this paper, we have quantitatively studied the influence of several dust storms on solar radiation components and meteorological variables. Global, direct and diffuse solar radiation data, in addition to measurements of relative humidity, air temperature, precipitable water vapor, aerosol optical depth and an Angstrom exponent for the period between 1999 and 2002, were used for the purpose of this study. During this period, 34 dusty events were selected, and their effects on these parameters were characterized. We have found that, dust storms significantly increase aerosol optical depth and the diffuse radiation and decrease the global and direct solar radiation components and Angstrom exponent. On the other hand, dusty events affect air temperature, relative humidity and precipitable water vapor differently. They intensify these variables in some events and reduce them in others. We have found that the amount of changes in these variables varies from one event to another. Several possibilities, such as the source of the dust storm and the season in which it occurred, have been suggested to explain these variations.  相似文献   

12.
Sediment records from continental shelves and slopes might provide paleoenvironmental information in the highest temporal resolution but are often hampered due to strong erosional and reworking processes. Here, we present a Holocene sedimentary record from an exceptional shelf mud belt depocenter off northern Mauritania, compared to a second sediment core located inside a large canyon system at the adjacent continental slope. Both records are of outstandingly continuous and highest temporal resolution (9 a/cm) and are investigated by sedimentological and geochemical methods.A series of sharply defined, recurrent dust peaks is preserved in the shelf archive. Each event has lasted for a single decade only and seems to coincide with an individual turbidite bed in the canyon. A joint mechanism should, thus, be responsible for both of these deposits and we suggest a regional atmospheric trigger. Only short-lasting Trade wind strengthening would cause such pronounced aridity over western Saharan Africa. The effect would be massive dust export to shelf and slope. Recently developed high resolution aridity and humidity records from western Africa support the existence of these events over the Holocene and identify them as being controlled by the Atlantic system as far south as 19°N.  相似文献   

13.
14.
The spatial and temporal variations in aerosols and precursor gases over oceanic regions have special importance in the estimation of radiative forcing parameters and thereby in the refinement of general circulation models. Extensive observations of the columnar aerosol optical depth (AOD), total column ozone (TCO) and precipitable water content (PWC) have been carried out using the on-line, multi-band solar radiometers onboard ORV Sagar Kanya (Cruise # SK 147B) over Bay of Bengal during 11th–28th August 1999. Aerosol optical and physical properties (optical depth and angstrom parameter) have been estimated at six wavelengths covering from UV to NIR (380–1020 nm) while TCO and PWC have been determined using the UV band around 300 nm and NIR band around 940 nm, respectively. Added, concurrent meteorological and satellite observations during this field phase of BOBMEX-99 have been utilized to investigate spectral-temporal variations of AOD, TCO and PWC in marine environment. The results indicate lower AODs (around 0.4 at characteristic wavelength of 500 nm) and size distributions with abundance of coarse-mode particles as compared to those aerosols of typical land origin. An interesting result that is found in the present study is the significant reduction in AOD at all wavelengths from initial to later part of observation period due to cloud-scavenging and rain-washout effects as well as signature of coastal aerosol loading. The clear-sky daytime diurnal variation of TCO shows gradual increase during post-sunrise hours, broad maximum during afternoon hours and gradual decrease during pre-sunset hours, which is considered to be due to photochemical reactions. The diurnal variation curve of PWC showed maximum (~ 4 cm) during morning hours and gradual decrease (~ 3.5 cm) towards evening hours, which are found to be greater as compared to typical values over land. Another interesting feature observed is that although the PWC values are very high, there was no proportionate or appreciable enhancement in AOD—a feature that can be utilized to infer composition of aerosols over the study region.  相似文献   

15.
Airborne particulate samples (including dust storm period samples) were collected from the Putuo, Qingpu and Minhang districts of Shanghai city from October, 2009 to October, 2010, and also tracked the dust transporting pathways from NW (Northwest) to SE (Southeast) including the cities of Xi’an, Beijing, Zhengzhou and Nantong, as a means of sampling the dust storm particulate matter in the spring of 2010. After measuring the magnetic parameters and the concentrations of particles and heavy metals, their magnetic properties were analyzed to track the source locations of heavy metal pollution during dust storm events, and then combined for backward trajectory analysis. It was found that the slightly polluted dust particles carried many contaminants during dust storm periods when the dust palls were transported by winter monsoon winds from the NW desert region towards the SE. The contaminants were further increased by contributions of fine SP&SD grains derived from local automobile exhausts in Shanghai as well as being enriched also in Northern cities during non-dust storm periods. A significantly positive linear relation was found between the χlf and SIRM of loess and the storm dust, indicating a similar material source for these two kinds of samples. A higher χlf and SIRM in storm dust content compared to loess suggests that storm dust contains not only materials from natural sources, but also those from partly anthropogenic sources. Backward trajectory analysis indicates intuitively the source region of the Shanghai storm dust. These conclusions have important scientific significance for research on long-distance transportation of contaminants (such as heavy metals) adsorbed onto airborne particulate matter during dust storm events.  相似文献   

16.
Synoptic and remote sensing analysis of dust events in southwestern Iran   总被引:2,自引:2,他引:0  
Southwest regions of Iran, due to dry environmental and climatic conditions, have been identified as one of the five major regions in the world. In recent years, large parts of Iran have been affected by suspended particles from the dust storms. The studied area is located in foothills of the Zagros Mountain Range just north of Persian Gulf in southwest of Iran. Dust and other meteorological data were prepared in 3-hour intervals from 12 synoptic weather stations. For tracking dust storms, satellite images of MODIS were used. Atmospheric conditions during the occurrence of dust storms were determined using NCEP reanalysis data. According to the statistical calculations, most storms occurred in the spring and summer. The lowest number of dust events occurred in the fall and winter particularly in December and January, when there are high possibilities of rainfall occurrence and dynamical instability conditions in the north and west of the region. The results illustrated that the highest amounts of hourly dust occurred in the afternoon and the lowest amounts occurred at 00UTC (3.30 am local times). It seems that it is closely related to the heating surface and the occurrence of local dry instabilities. Analyses of data showed that dust amounts (or volumes) in all the stations have two climactic peaks, first between 1982 and 1990 and second between 2005 and 2008 periods. These peaks can be related to a variety of factors including anthropogenic factors such as war, agricultural activities, dam construction, and widespread droughts.  相似文献   

17.
Here we review the methods presently available and expected in the near future for retrieving the tropospheric aerosol properties using remote sensing. Since all aerosol properties cannot be derived from space, measurements performed from the surface of the Earth are used to adjust the parameters that are not directly accessible and to limit the variability of the parameters that present a weaker sensitivity. The aerosol properties derived include the column concentration (expressed by the aerosol optical depth), the size (given by distribution of the aerosol in 2 to 3 size modes or measurement of the Angström coefficient), composition (expressed by the refractive index), shape and vertical profile. The article is restricted to aerosols that are within the troposphere since the techniques used for stratospheric aerosols are very specific.  相似文献   

18.
The effect of increase in relative humidity on the angular variation of scattered light intensity distribution function and on asymmetry factor has been studied theoretically for three sizes of particles which are representative of urban aerosols. The increase in relative humidity causes change in physical properties of the particles, like radius (r) and complex refractive index (n?ik). The study is based on these changes in physical characteristics. It has been found that there are almost negligible changes in the functioni at low humidities (≤40%) for all the three aerosol sizes studied, which may be due to insignificant changes in the physical properties. At higher values, however, the physical parameters as well as the functioni show significant changes. The changes ini are systematic for the particle very small compared to the wavelength of incident radiation but for the particles comparable or larger it is not so. The asymmetry factor changes with the increase in relative humidity, for smaller particle it increases and for two larger particles changes are of fluctuative nature.  相似文献   

19.
The objective of this paper is to derive and analyze the present and future climate projections over the region of wheat production over Iran. In addition, the projected future climate fluctuation results will be used to assist the maximum performance of wheat and to be used as the main basis for planning changes in the farming calendar in Iran. Observed climate (temperature and degree day) changes during the period (1951–2009) will be discussed. Projected future changes up to 2100 based on the MAGICC/SCENGEN 5.3 compound model was utilized. Furthermore, 18 scenarios were used to derive a single GCM model referred to as the United Kingdom Hadley Center Global Environment Model, which will be used to select the worst, best, and average scenario.  相似文献   

20.
Arabian Journal of Geosciences - Dust storms are one of the major environmental disasters in the arid regions of Middle East, occurring in very high frequency. As a result, monitoring dust storms...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号