首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
年涛  王贵文  范旭强  谭成仟  王松  侯涛  刘之的 《地质论评》2021,67(1):67020019-67020019
综合露头刻度井、数值模拟和物理模拟的实验结果对微电阻率扫描成像测井缝洞解释评价的研究进展进行了总结和探讨,分别包括岩芯归位、缝洞刻度率、岩芯和成像裂缝参数的差异性,以及裂缝宽度和地层孔隙度的计算。岩芯归位确定了缝洞体在地层中的深度和方位。电成像测井对过井眼未充填缝和孔洞发育段的刻度率为100%,而单个孔洞在岩芯和电成像测井中通常无法一一对应。单条裂缝的倾角或井周长度在岩芯和成像测井中具有较高的相关性,而裂缝宽度的相关性一般。数模和物模的结果表明电成像测井裂缝宽度的计算受多种因素影响,当裂缝的视宽度大于0.1 mm时,电成像测井计算的裂缝宽度和裂缝视宽度基本一致,当小于0.1 mm时,电成像测井计算的宽度值误差较大。目前电成像测井通过孔隙度谱法和图像分割法计算地层的孔隙度,但都受限于除孔洞的其他低阻地质体的影响,因此需要加强岩芯刻度的功能。  相似文献   

2.
综合露头刻度井、数值模拟和物理模拟的实验结果对微电阻率扫描成像测井缝洞解释评价的研究进展进行了总结和探讨,分别包括岩芯归位、缝洞刻度率、岩芯和成像裂缝参数的差异性,以及裂缝宽度和地层孔隙度的计算.岩芯归位确定了缝洞体在地层中的深度和方位.电成像测井对过井眼未充填缝和孔洞发育段的刻度率为100%,而单个孔洞在岩芯和电成像...  相似文献   

3.
As part of a study investigating the naturally-occurring fractures in mafic rocks, two holes were drilled 450 m apart through the Palisades dolerite sill in New York. Well-2 is 229 m deep and Well-3 was drilled to 305 m, both penetrating through the sill and into the underlying Triassic sediments of the Newark Basin. Both holes were logged with downhole geophysical tools, including the BHTV, which acoustically images fractures intersecting the well. Understanding the fracture pattern, density, and porosity in the sill is essential for identifying possible zones of active fluid flow and high permeability. Using the BHTV logs, 96 and 203 fractures were digitally mapped within the sill in Well-2 and Well-3, respectively. Most fractures appear to dip steeply (76-78°). There is a shift in fracture orientation, however, and these fractures may or may not be continuous over the short lateral distance between Well-2 and Well-3. The lithology of the sill as identified by drill chips is nevertheless continuous between the holes. Both intersect a 7 m thick olivine-rich layer about 15 m above the bottom of the sill. Several fractures identified in Well-2 have large apparent aperture (>6cm) which correspond to high porosity zones (6-14%) observed in the logs. Resistivity logs were used to compute porosity using Archie's law and match well with the neutron porosity log in Well-2. We use the relationship between porosity and fracture aperture within the sill at Well-2 to infer the porosity in Well-3. High-porosity, large-aperture zones, including the target olivine layer, are identified in both holes. Changes in the temperature gradient log indicate active fluid flow in the sill, although flow appears to be most active in the sediments. Direct field measurements of bulk permeability, hydrologic modeling of fluid flow and calibration of fracture and log porosity will be undertaken in the future.  相似文献   

4.
为了更好地实现对缝洞型储层孔隙结构和孔隙度的精细评价,基于高覆盖率和高分辨率电成像测井的电导率数据,用多尺度形态学滤波方法分离了基质孔、裂缝和溶蚀孔洞,提取了缝洞孔隙度谱。首先分析了电成像测井对裂缝和溶蚀孔洞的响应模式;其次,在简单介绍数学形态学算子的基础上,给出了结构元素选择和滤波算子构造的方法,用于电成像测井数据的噪声压制和缝洞异常电导率信息的提取;再次,基于缝洞发育处电导率异常的边缘检测结果,用椭圆形及不规则多边形函数拟合溶蚀孔洞,用多项式插值函数拟合裂缝边界,继而提取缝洞分布多类属性参数,获得缝洞孔隙度谱;最后,用实测数据对文中算法进行了测试,验证了多尺度数学形态学滤波方法用于电成像测井资料缝洞孔隙度谱计算的有效性。  相似文献   

5.
The onshore Georgina Basin in northern Australia is prospective for unconventional hydrocarbons; however, like many frontier basins, it is underexplored. A well-connected hydraulic fracture network has been shown to be essential for the extraction of resources from the tight reservoirs that categorise unconventional plays, as they allow for economic flows of fluid from the reservoir to the well. One of the fundamental scientific questions regarding hydraulic stimulation within the sub-surface of sedimentary basins is the degree to which local and regional tectonic stresses act as a primary control on fracture propagation. As such, an understanding of present-day stresses has become increasingly important to modern petroleum exploration and production, particularly when considering unconventional hydrocarbon reservoirs. This study characterises the regional stress regime in the Georgina Basin using existing well data. Wellbore geophysical logs, including electrical resistivity image logs, and well tests from 31 petroleum and stratigraphic wells have been used to derive stress magnitudes and constrain horizontal stress orientations. Borehole failure features interpreted from wellbore image and caliper logs yield a maximum horizontal stress orientation of 044°N. Integration of density log data results in a vertical stress gradient of 24.6 MPa km–1. Leak-off and mini-fracture tests suggest that this is the minimum principal stress, as leak-off values are generally shown to be at or above the magnitude of vertical stress. The maximum horizontal stress gradient is calculated to be in the range of 31.3–53.9 MPa km–1. As such, a compressional stress regime favouring reverse/reverse–strike-slip faulting is interpreted for the Georgina Basin.  相似文献   

6.
The Deccan trap basalt, laid down by multiple lava flows during upper Cretaceous to Paleocene times forms the basement of current study in Cambay basin. As such, there is great interest and value in fracture detection and evaluation of fractured basement reservoirs in the Cambay basin. The procedure for identification and evaluation of natural as well as induced fractures in basaltic basement of the Cambay basin is presented in this work. In this study formation micro-imager (FMI) and extended range micro-imager (XRMI) log data for fracture identification is used. The Deccan trap basaltic basement of the study area, comprising five wells in the Tarapur-Cambay block, has potential for holding commercial hydrocarbon due to the presence of fractures and weathered basement. Both image logs (FMI, XRMI) identify three types of fracture including open (conductive), partially open and closed (resistive) fractures, of which open and partially open fractures are important for hydrocarbon accumulation. Fracture dip ranges from 10° to 80°. Image logs have also identified washout, breakout and drilling-induced fracture zones. The strike direction of the open natural fractures for four wells varies from N60°E to N30°E whereas the strike direction of most natural fracture in the fifth well is oriented towards N20°W. The orientations of drilling-induced fractures and breakouts may be interpreted for the in-situ stress direction over the logged interval. Drilling-induced tensile fractures, identified over the depth interval of 1969–1972 m, and borehole breakouts over the interval of 1953–1955 m in one well, suggest an orientation of maximum in-situ horizontal compressive stress (SH) lies in the north-south direction. The azimuths of open natural fractures in the same well vary from north-south to N30°E. It is expected that the direction of fluid flow will be controlled by open natural fractures and therefore would be in a direction parallel to the SH direction, which is orthogonal to the minimum horizontal stress (Sh) direction. The orientations observed are consistent with the present day SH direction in the study area of Cambay basin.  相似文献   

7.
Low-flow indices have been determined from long-term daily streamflow data for 13 catchments in Dongjiang Basin in southern China. The Brutsaert-Nieber method was applied to estimate catchment-scale effective groundwater parameters; representative values were 4.5?×?10?4 ms?1 for the hydraulic diffusivity; 3.19?×?10?5 m2 s?1/2 for the hydraulic desorptivity; 2.27?×?10?4 m s?1 for the hydraulic conductivity; and 0.2617 for the drainable porosity. The response constants correlate well with the total stream length and catchment area. Solutions of the linearised Boussinesq equation were used to guide the development of regional multivariate regression models for estimating low-flow indices from the catchment-scale effective parameters. Results showed that these catchments exhibit similar low-flow characteristics. The 7-day lowest average streamflows with return periods of 10 and 2 years (7Q10 and 7Q2) are highly correlated with the catchment-scale response constants. The low-flow ratio Q95/Q50 (ratio of daily streamflow exceeded 95 and 50% of the time, respectively) varied between 0.3 and 0.5, indicating a high proportion of groundwater in the streamflow. The advantage of the regional regression model is its conceptual basis and use of the catchment-scale effective parameters. The method has the potential to be applied to ungauged catchments for estimating low-flow statistics from stream length and catchment area.  相似文献   

8.
电成像测井资料在裂缝成因分析中的应用   总被引:8,自引:0,他引:8  
以塔里木盆地为例,探讨高分辨率电成像测井资料在裂缝成因分析中的应用。根据电成像测井图像解释,利用裂缝图像的颜色(或灰度)和产状特征,结合岩芯标定和常规测井资料,可以有效地区分构造裂缝与非构造裂缝、张裂缝与剪裂缝,确定裂缝充填与否和充填物的成分,以及裂缝的溶蚀改造程度。利用从电成像测井图像上提取的共轭裂缝的产状信息,还可以恢复裂缝形成时古构造应力场的方向。  相似文献   

9.
Core samples are still today considered as the standard measurement against all other measurements which must be compared. Core analysis usually focuses on the worse portion of the reservoir due to the fact that core recovery has rarely been well in a highly fractured zone; hence, permeability measured from core sample is often not representative. Core analysis is a common method to identify small-scale fractures of the well and permeability and porosity; however, there are some limitations in the core procedure such as it is highly expensive and unidirectional and has a low recovery coefficient in fractured zone. In contrast, there tends to be a mistrust and even a suspicion of those logging instruments that make measurements which threaten to replicate or even replace the “sacred core.” Thus, image logs are more useful to study the subsurface fractures in these such cases and the logs which come closest to achieving this are the high-resolution micro resistivity (OBMI) and acoustic geological imaging (UBI). The core and OBMI-UBI result was matched in order to verify the log measurements. Furthermore, FMI data were integrated with other open-hole logs to derive a permeability curve. As demonstrated in the case studies, it is believed that the permeability in the basement could be reasonably evaluated using this method. As a result, this exercise has proven to be very valuable, not only for demonstrating the value of the log data, but also it has also highlighted some significant limitations of the core in water-based mud and oil-based mud systems.  相似文献   

10.
Soil total porosity is, rather than measured by water desorption method, more often estimated from bulk density (BD) and assumed particle density. Measured and estimated total porosities of even kaolinitic tropical soils (which have low tendency to expand upon wetting) usually differ by an extent that depends on soil structural stability, but such differences are scarcely documented. Seventy samples of coarse-textured soils under different fallow- and cultivation-management systems in the southeastern region of Nigeria were analyzed for texture, mean-weight diameter (MWD) of aggregates, BD and organic matter (OM) concentration. Soil total porosities measured by water desorption method were compared with those estimated from BDs (with particle density fixed at 2.70 g cm?3), after grouping the soils by structural stability, assessed by OM/(silt + clay) for 50 of the samples from fallowed plots (BD > 1.48 g cm?3) and MWD for the rest from cultivated plots (BD < 1.48 g cm?3). The fallowed plots showed a wider stability range than the cultivated plots. Irrespective of land use, structural stability tended to increase with decreasing soil BD. Measured total porosities were consistently higher than their estimated counterparts, with the differences closing up with increasing soil structural stability up till a mean BD of 1.41 ± 0.05 g cm?3 (corresponding to MWD of 2.66 ± 0.12 mm), beyond which the trend reversed. These results suggest that, as the soil structural stability increases, soil particle density decreases while entrapped air and transitory drainage of saturated samples at weighing increase. Estimating total porosity with a fixed particle density of 2.70 g cm?3 appears suitable only in highly stable soils, with BD of ≤1.40 ± 0.08 g cm?3 and/or MWD of ≥2.92 ± 0.05 mm [corresponding to OM/(silt + clay) of ≥16.38 ± 0.28 %].  相似文献   

11.
Fracture Length Estimation from Borehole Image Logs   总被引:1,自引:0,他引:1  
We describe a method to estimate fracture length for circular fractures from borehole image logs. The relative frequency of fractures, which have complete circumference trace on image logs is related to fracture length. A simple functional relationship can be derived for the relative frequency of complete fracture traces in terms of average fracture inclination to borehole, borehole diameter and fracture length. This formulation however, tends to underestimate fracture length because a constant length is assumed. A more accurate length estimate can be obtained by assuming that fracture length is linearly correlated to fracture aperture or spacing. Cumulative frequency distribution of fracture aperture and spacing can be obtained from borehole image logs. The problem then transforms itself to finding the scaling factor between fracture length and aperture (or spacing) from the relative frequency of fractures with complete traces. The product of the scaling factor and average fracture spacing (or aperture) gives the average fracture length.  相似文献   

12.
The present paper provides a case study of the assessment of the potential for CO2 storage in the deep saline aquifers of the Bécancour region in southern Québec. This assessment was based on a hydrogeological and petrophysical characterization using existing and newly acquired core and well log data from hydrocarbon exploration wells. Analyses of data obtained from different sources provide a good understanding of the reservoir hydrogeology and petrophysics. Profiles of formation pressure, temperature, density, viscosity, porosity, permeability, and net pay were established for Lower Paleozoic sedimentary aquifers. Lateral hydraulic continuity is dominant at the regional scale, whereas vertical discontinuities are apparent for most physical and chemical properties. The Covey Hill sandstone appears as the most suitable saline aquifer for CO2 injection/storage. This unit is found at a depth of more than 1 km and has the following properties: fluid pressures exceed 14 MPa, temperature is above 35 °C, salinity is about 108,500 mg/l, matrix permeability is in the order of 3 × 10?16 m2 (0.3 mDarcy) with expected higher values of formation-scale permeability due to the presence of natural fractures, mean porosity is 6 %, net pay reaches 282 m, available pore volume per surface area is 17 m3/m2, rock compressibility is 2 × 10?9 Pa?1 and capillary displacement pressure of brine by CO2 is about 0.4 MPa. While the containment for CO2 storage in the Bécancour saline aquifers can be ensured by appropriate reservoir characteristics, the injectivity of CO2 and the storage capacity could be limiting factors due to the overall low permeability of aquifers. This characterization offers a solid basis for the subsequent development of a numerical hydrogeological model, which will be used for CO2 injection capacity estimation, CO2 injection scenarios and risk assessment.  相似文献   

13.
A methodological procedure is proposed for determining the renewal period (RP), which expresses the ratio of total storage to recharge of carbonate aquifers, and it was applied to the overexploited moderate-size Becerrero carbonate aquifer (southern Spain). To this end, geological and subsurface data—time domain electromagnetic (TEM) soundings and borehole logs—were integrated to construct a three-dimensional (3D) geological model of the aquifer. The interconnected porosity was estimated by analyzing 73 rock samples. The resulting 3D geometrical model makes it possible to quantify the fractions of the aquifer having a confined or unconfined behaviour. Based on the total storage capacity (179?·?106–514?·?106 m3) and available aquifer recharge estimation (4.8?·?106–6.4?·?106 m3/year), an RP between 37 and 106 years is obtained. In view of the RP, an exploitation rate slightly lower than the average recharge of the system is recommended, so that the piezometric level will be stable but below the discharge head that is produced through the springs in natural conditions. The proposed methodology to obtain an aquifer RP and the management strategies designed accordingly are of broad interest, especially for carbonate aquifers, which are abundant in arid and semiarid regions.  相似文献   

14.
Three different types of permeability tests were conducted on 23 intact and singly jointed rock specimens, which were cored from rock blocks collected from a rock cavern under construction in Singapore. The studied rock types belong to inter-bedded meta-sandstone and meta-siltstone with very low porosity and high uniaxial compressive strength. The transient pulse water flow method was employed to measure the permeability of intact meta-sandstone under a confining pressure up to 30 MPa. It showed that the magnitude order of meta-sandstone’s intrinsic permeability is about 10?18 m2. The steady-state gas flow method was used to measure the permeability of both intact meta-siltstone and meta-sandstone in a triaxial cell under different confining pressures spanning from 2.5 to 10 MPa. The measured permeability of both rock types ranged from 10?21 to 10?20 m2. The influence of a single natural joint on the permeability of both rock types was studied by using the steady-state water flow method under different confining pressures spanning from 1.25 to 5.0 MPa, including loading and unloading phases. The measured permeability of both jointed rocks ranged from 10?13 to 10?11 m2, where the permeability of jointed meta-siltstone was usually slightly lower than that of jointed meta-sandstone. The permeability of jointed rocks decreases with increasing confining pressure, which can be well fitted by an empirical power law relationship between the permeability and confining pressure or effective pressure. The permeability of partly open cracked specimens is lower than that of open cracked specimens, but it is higher than that of the specimen with a dominant vein for the meta-sandstone under the same confining pressure. The permeability of open cracked rock specimens will partially recover during the unloading confining pressure process. The equivalent crack (joint) aperture is as narrow as a magnitude order of 10?6 m (1 μm) in the rock specimens under confining pressures spanning from 1.25 to 5.0 MPa, which represent the typical ground stress conditions in the cavern. The in situ hydraulic conductivity measurements conducted in six boreholes by the injection test showed that the in situ permeability of rock mass varies between 10?18 and 10?11 m2. The lower bound of the in situ permeability is larger than that of the present laboratory-tested intact rock specimens, while the upper bound of the in situ permeability is less than that of the present laboratory-tested jointed rock specimens. The in situ permeability test results were thus compatible with our present laboratory permeability results of both intact and jointed rock specimens.  相似文献   

15.
South India is one of the regions in the world that has the highest background radiation levels. In this region, river sediments are used in large quantities as building material. Therefore, the knowledge of the radionuclides distribution in such sediments is important for assessing their potential adverse effects on humans residing in buildings made of sediment material. For this goal, we focus on the determination of the natural radioactivity levels and magnetic properties in sediment samples collected from 33 locations along the southwestern Bharathapuzha river originating from the Anamalai hills. The sediment samples were subdivided into two categories according to particle size. It is observed that the average activity concentrations of 226Ra, 232Th, and 40K in sediment samples varied greatly with granulometric and geological differences. The average values of 226Ra, 232Th, and 40K and its associated radiological hazard parameters for category II samples (particle size between 149 μm and 2 mm) were lower than category I sediment samples (bulk samples). Moreover, the average radionuclide activity concentrations (except for 40K) and the calculated radiation hazard parameters are higher in the lowland region compared to the highland and the midland regions. The mass-specific magnetic susceptibility values ranged widely along the river, as well as between physiographic regions, e.g., average values for category I sediment samples were 950.2 × 10?8, 351.1 × 10?8 and 131.8 × 10?8 m3 kg?1 (for high-, mid- and lowland regions, respectively). Differences between physiographic regions and sediment fractions from both radioactivity determinations and magnetic parameters were analyzed with statistical tests and multivariate analysis, which showed the advantages of using both independent techniques.  相似文献   

16.
裂缝性碳酸盐岩裂缝的双侧向测井响应特征及解释方法   总被引:11,自引:0,他引:11  
裂缝评价是裂缝性碳酸盐岩储层评价的关键, 其常规评价方法受到裂缝发育的不均匀性及储层各向异性的影响而存在诸多困难.采用三维数值算法, 利用宏观各向异性地层模型, 研究不同的裂缝参数条件下双侧向测井响应特征, 由此导出一种用于裂缝孔隙度计算的快速算法.分析表明, 裂缝的双侧向响应同裂缝孔隙度与孔隙流体电导率之间存在明显的线性关系, 裂缝的倾角造成双侧向测井曲线幅度差异的变化; 不同倾斜情况下, 将双侧向测井响应近似表示为岩石基岩电阻率、裂缝孔隙度、裂缝流体电导率的函数, 用于裂缝孔隙度的快速计算.实际资料处理表明, 利用双侧向依据该方法确定的裂缝参数同成像测井资料具有良好的对应性.   相似文献   

17.
18.
Elevated groundwater salinity associated with produced water, leaching from landfills or secondary salinity can degrade arable soils and potable water resources. Direct-push electrical conductivity (EC) profiling enables rapid, relatively inexpensive, high-resolution in-situ measurements of subsurface salinity, without requiring core collection or installation of groundwater wells. However, because the direct-push tool measures the bulk EC of both solid and liquid phases (ECa), incorporation of ECa data into regional or historical groundwater data sets requires the prediction of pore water EC (ECw) or chloride (Cl?) concentrations from measured ECa. Statistical linear regression and physically based models for predicting ECw and Cl? from ECa profiles were tested on a brine plume in central Saskatchewan, Canada. A linear relationship between ECa/ECw and porosity was more accurate for predicting ECw and Cl? concentrations than a power-law relationship (Archie’s Law). Despite clay contents of up to 96%, the addition of terms to account for electrical conductance in the solid phase did not improve model predictions. In the absence of porosity data, statistical linear regression models adequately predicted ECw and Cl? concentrations from direct-push ECa profiles (ECw = 5.48 ECa + 0.78, R 2 = 0.87; Cl? = 1,978 ECa – 1,398, R 2 = 0.73). These statistical models can be used to predict ECw in the absence of lithologic data and will be particularly useful for initial site assessments. The more accurate linear physically based model can be used to predict ECw and Cl? as porosity data become available and the site-specific ECw–Cl? relationship is determined.  相似文献   

19.
Estuaries are important subcomponents of the coastal ocean, but knowledge about the temporal and spatial variability of their carbonate chemistry, as well as their contribution to coastal and global carbon fluxes, are limited. In the present study, we measured the temporal and spatial variability of biogeochemical parameters in a saltmarsh estuary in Southern California, the San Dieguito Lagoon (SDL). We also estimated the flux of dissolved inorganic carbon (DIC) and total organic carbon (TOC) to the adjacent coastal ocean over diel and seasonal timescales. The combined net flux of DIC and TOC (FDIC?+?TOC) to the ocean during outgoing tides ranged from ??1.8±0.5?×?103 to 9.5±0.7?×?103?mol C h?1 during baseline conditions. Based on these fluxes, a rough estimate of the net annual export of DIC and TOC totaled 10±4?×?106?mol C year?1. Following a major rain event (36 mm rain in 3 days), FDIC?+?TOC increased and reached values as high as 29.0 ±?0.7?×?103?mol C h?1. Assuming a hypothetical scenario of three similar storm events in a year, our annual net flux estimate more than doubled to 25 ±?4?×?106?mol C year?1. These findings highlight the importance of assessing coastal carbon fluxes on different timescales and incorporating event scale variations in these assessments. Furthermore, for most of the observations elevated levels of total alkalinity (TA) and pH were observed at the estuary mouth relative to the coastal ocean. This suggests that SDL partly buffers against acidification of adjacent coastal surface waters, although the spatial extent of this buffering is likely small.  相似文献   

20.
Tracing fractures under glacial drift commonly involves costly and often unfeasible (in populated areas) geophysical methods or outcrop surveys, often far from the area of interest. A hypothesis is tested, that the specific capacity data for wells penetrating through glacial drift into a bedrock aquifer display two statistical populations: assuming uniform well construction, the wells with high specific capacity penetrate transmissive fracture zones, while those with low specific capacity encounter non-fractured rock characterized by primary porosity. The hypothesis was tested on 617 wells drilled into the Pennsylvanian Sharon Sandstone, Geauga County, Ohio (USA). Hydraulic conductivity, calculated using the Cooper and Jacob (1946) approximation to Theis’ non-equilibrium radial flow equation, followed quasi-log-normal distribution (geometric mean 9.88?×?10?6 m/s). The lower values presumably correspond to primary porosity, and higher values correspond to bedrock fracture zones. The higher hydraulic conductivity followed two distinct orientations (N34°E, N44°W), corresponding with the regional fracture pattern of the Allegheny Plateau. A variogram showed that the wells within a kilometer of each other correlate and that wells penetrating the thicker glacial blanket have lower hydraulic conductivity and larger drawdown. Cooper and Jacob (1946) A generalized graphical method for evaluating formation constants and summarizing well-field history, Am. Geoph. Union Trans. 27/4:526–534.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号