首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

We analyze autocorrelations and power spectra of the time series of monthly mean data characterizing sea surface temperature anomalies in the equatorial Pacific in the years 1920–2013 and show that the rhythms of El Niño–Southern Oscillation can be interpreted as the responses of the climate system to the external quasi-periodic forcing generated by the motions of the Earth’s pole. We conclude that the ENSO phenomenon has no prediction limits.

  相似文献   

2.
The Sultanate of Oman is located in the south-eastern part of the Arabian Peninsula and covers the larger part of the southern coasts of the Arabian Peninsula in both arid and semi-arid environments except for the southern part which is swept by the monsoon affecting the Arabian Sea during the period from June to September. The summer rainfall over Oman shows year-to-year variability, and this is caused by oceanic and atmospheric influences. In the present study, we tried to explore the influence of El Niño on the rainfall over Oman using different data sets. The empirical orthogonal function (EOF) technique employed to the zonal wind at 850 hPa for the 30-year period shows that the second and third modes of EOF are showing high variability over the Oman regions. The corresponding PCs were subjected to FFT analysis, and it showed a peak about 5–6 years. In addition to this, the zonal wind over the Oman regions is correlated with the global zonal wind and found a significant correlation (1 % significant level). It has already been proved that the wind and rainfall during summer monsoon is in phase. Moreover, the spectral analysis of rainfall at Masirah station and the Niño3.4 index show the similar mode of variability indicating a direct relationship. The correlation between rainfall and the Niño3.4 index is also showing a positive significant value, and therefore, it can be concluded that the El Niño in the Pacific favours rainfall over the Oman region.  相似文献   

3.
4.
Analysis of 20-year time series of water levels in the northeastern Gulf of Mexico has revealed that meteotsunamis are ubiquitous in this region. On average, 1–3 meteotsunamis with wave heights >0.5 m occur each year in this area. The probability of meteotsunami occurrence is highest during March–April and June–August. Meteotsunamis in the northeastern Gulf of Mexico can be triggered by winter and summer extra-tropical storms and by tropical cyclones. In northwestern Florida most of the events are triggered by winter storms, while in west and southwest Florida they appear both in winter and summer. Atmospheric pressure and wind anomalies (periods <6 h) associated with the passage of squalls originated the majority of the observed meteotsunami events. The most intense meteotsunamigenic periods took place during El Niño periods (1997–1998, 2009–2010 and 2015–2016). Meteotsunamis were also active in 2005, a year characterized by exceptionally intense tropical cyclone activity. Meteotsunami incidence varied yearly and at periods between 2 and 5 years. Results from cross-wavelet analysis suggested that El Niño and meteotsunami activity are correlated at annual and longer-period bands.  相似文献   

5.
We analyzed directed couplings between the variations in the global surface temperature and modes of the natural climatic variability: the El NiñoLa Niña (ENSO) quasi-periodical phenomena and the long-period Atlantic Mutidecadal Oscillation (AMO) based on the data for 1870–2014. According to the quantitative estimates based on the monthly and annual mean data, the initial data, and the 10-year mean remote data, the most pronounced impact of the ENSO on the global surface temperature and the AMO was found. A weaker bidirectional coupling between the global surface temperature and the AMO is also pronounced. The analysis using running windows revealed an alternating effect of the ENSO and AMO on the variations in the global surface temperature related to the AMO phases.  相似文献   

6.
A simple mechanical model explaining the long-period (about 100-year) variations in the Earth’s rotational velocity is proposed. This model takes into account the gravitational interaction of the mantle with the solid core of the Earth and the fact that the core rotation leads that of the mantle. Well-known Earth parameters provide estimates of the gravitational torque that support the proposed model. The mathematical problem involved reduces to the classical problem of a nonlinear oscillator exposed to a constant torque. The well-known parameters of the core-mantle system result in a stable equilibrium and a stable limiting cycle on the phase cylinder of this oscillator. This equilibrium corresponds to a single angular velocity for the mantle and solid core, with no long-period oscillations in the length of the day. The limiting cycle corresponds to the core rotation leading the mantle rotation. In this case, the ellipsoidality of the gravitationally interacting bodies provides a periodic interchange of kinetic angular momentum between the mantle and solid core that results in long-period variations in the length of the day. The proposed model does not support the formerly widespread opinion that the core rotates more slowly than the mantle.  相似文献   

7.
Meteorological impacts of El Niño events of 1982–1983 and 1997–1998 were observed in locations throughout the world. In southern Brazil, El Niño events are associated with increased rainfall and higher freshwater discharge into Patos Lagoon, a large coastal lagoon that empties into the Atlantic Ocean. Based on interdecadal meteorological and biological data sets encompassing the two strongest El Niño events of the last 50 yr, we evaluated the hypothesis that El Niño-induced hydrological changes are a major driving force controlling the interannual variation in the structure and dynamics of fishes in the Patos Lagoon estuary. High rainfall in the drainage basin of the lagoon coincided with low salinity in the estuarine area during both El Niño episodes. Total rainfall in the drainage basin was higher (767 versus 711 mm) and near-zero salinity conditions in the estuarine area lasted about 3 mo longer during the 1997–1998 El Niño event compared with the 1982–1983 event. Hydrological changes triggered by both El Niño events had similar relationships to fish species composition and diversity patterns, but the 1997–1998 event appeared to have stronger effects on the species assemblage. Although shifts in species composition were qualitatively similar during the two El Niño events, distance between El Niño and non-El Niño assemblage multivariate centroids was greater during the 1996–2000 sampling period compared with the 1979–1983 period. We provide a conceptual model of the principal mechanisms and processes connecting the atmospheric-oceanographic interactions triggered by the El Niño phenomena and their effect on the estuarine fish assemblage.  相似文献   

8.
During study of the physical nature and potential precursor features of the El Ni?o phenomenon in the Pacific, it was found that a negative large-scale temperature anomaly on the Indian Ocean surface may be one of its significant precursors. This anomaly appears prior to the occurrence of El Ni?o and is accompanied by growth in atmospheric pressure. It gradually extends eastwards along the equator until the zone of planetary convection in the area of the Indonesian Region. The west wind that emerges on the eastern peripherals of the mentioned pressure anomaly leads to reversal of the Pacific segment of the Walker equatorial atmospheric circulation and to a subsequent change in the zonal thermal dipole polarity in the tropical zone of the Pacific (the latter means culmination of the El Ni?o phenomenon). In addition to the mentioned thermobaric anomaly in the Indian Ocean, other obvious signs of large-scale pressure anomalies have been found in the global atmospheric pressure field; these anomalies may be interpreted as manifestations of the intradecadal global oscillation in the dynamics of the modern climatic system. It is suggested that the whole known complex of events related to the El Ni?o phenomenon in the Pacific is a consequence and a regional link of the planetary structure of this global atmospheric phenomenon.  相似文献   

9.
We consider the correlation between seismicity, variations in the length of day, and geomagnetic jerks. We found that the jerks precede with in-phase variations in the number of strong earthquakes with М > 6.5 and the rate of the length of day in the range of periods of 5–8 years.  相似文献   

10.
The several reactivations of the landslide of Ain El Hammam (AEH) after each important weather event compel us to look closely at its triggering factors and predict its mechanisms and its evolution at the longer term. In this sense, the prediction of the slope behavior becomes necessary. This paper presents a numerical model of the AEH landslide using Plaxis® software. This model considers hydraulic effects such as precipitation and pore pressure even in the unsaturated parts. Soil and rock behaviors are described with proper elasto-plastic models named Hardening Soils and Jointed Rocks. The first model takes into account hardening on isotropic and deviatoric mechanism as well as a non-associated flow rule. The second model considers a non-isotropic elasticity with perfect plasticity along with given sliding directions. The hydraulic and mechanical models are coupled with an effective stress concept. To detect unstable areas in the landslide, we developed a Matlab® program to take into account the Hill’s bifurcation criterion, which is based on sign of the second-order work. It has been proved that this criterion allows detecting all failure modes that can appear in rate-independent materials and especially the ones that develop before the plasticity limit criterion. From such computations, we can predict the shape and position of slip surface responsible of the actual ground movement of the slope. To validate the numerical results, analysis of field measurement is included. We use high resolution of electrical tomography to delineate the geometry and position of failure surface and approve our results.  相似文献   

11.
12.
We have studied the structural evolution of the dust envelope of V4334 Sgr, starting with the onset of its condensation in 1997. A model with complete cloud cover, with the optical depth growing until the end of 1999, gives the best fit to the photometric data in the optical and IR. The inner radius of the dust layer remained virtually constant, whereas its thickness increased due to expansion. The deep minimum in the visual light curve of V4334 Sgr in October 1998 is attributed to the arrival at the dust-grain condensation zone of a density discontinuity in the circumstellar envelope. The discontinuity was probably formed early in 1997 due to an increase in the mass-loss rate by a factor of about four, possibly associated with an increase in the luminosity of V4334 Sgr during its transformation into a carbon star. After this luminosity increase, the mass-loss rate was $\dot M \approx 2 \times 10^{ - 6} M_ \odot /yr$ . In the summer of 1999, the mass of the dust envelope was $M_{dust} \approx 2 \times 10^{ - 7} M_ \odot (M_{gas} \approx 4 \times 10^{ - 6} M_ \odot)$ . In the complete-cloud-cover model, the envelope consists of graphite grains with a gr=0.05 µm, to ~85% per cent in terms of the number of grains. The remaining ~15 per cent of the grains have sizes a gr=0.1 and 0.25 µm. To reproduce the small hump in the spectral energy distribution of V4334 Sgr near 11 µm, some silicon carbide grains must be added to the graphite mixture. Their contribution to the V optical depth is ≤4%. The first deep minimum in the visual light curve could also be reproduced using a model in which the dust cloud has condensed along the line of sight, but a detailed analysis of the resulting characteristics of the cloud and envelope indicates that this model is improbable.  相似文献   

13.
Air quality transcends all scales with in the atmosphere from the local to the global with handovers and feedbacks at each scale interaction. Air quality has manifold effects on health, ecosystems, heritage and climate. New insights into the characterisation of both natural and anthropogenic emissions are reviewed looking at both natural (e.g. dust and lightning) as well as plant emissions. In the phosphate mining area (El Guettar–M’Dilla basin: Southwestern Tunisia), several diseases have been known as cancer, respiratory, allergies, cardiovascular, dental fluorosis, stress, etc. These diseases are directly related with the installation of the industrial sector of the CPG (from 1896) and the deforestation and the ecosystem degradation (fauna and flora).  相似文献   

14.
Ultramafic–mafic- and ultramafic-hosted Cu (Co, Ni, Au) volcanogenic massive sulfide (VMS) deposits from ophiolite complexes of the Main Uralian Fault, Southern Urals, are associated with island arc-type igneous rocks. Trace element analyses show that these rocks are geochemically analogous to Early Devonian boninitic and island arc tholeiitic rocks found at the base of the adjacent Magnitogorsk volcanic arc system, while they are distinguished both from earlier, pre-subduction volcanic rocks and from later volcanic products that were erupted in progressively more internal arc settings. The correlation between the sulfide host-rocks and the earliest volcanic units of the Magnitogorsk arc suggests a connection between VMS formation and infant subduction-driven intraoceanic magmatism.  相似文献   

15.
Studies on denudation processes and soil loss rates can provide insight into the landscape evolution, climate change, and human activities, as well as on land degradation risk. The aims of this study were to analyze the space–time distribution of denudation processes and evaluate the soil loss changes occurred during the period 1955–2016 by using an approach integrating geomorphological, geospatial and modeling analysis. The study area is a representative stream catchment of the Crati Valley (Calabria, southern Italy), which is affected by severe erosion processes. The combined use of aerial photographs interpretation, field survey, geostatistics, and GIS processing has allowed to characterize the types of denudation processes and land use change in space and time. Revised universal soil loss equation implemented in GIS environment was used to estimate the space–time pattern of soil loss and the soil erosion rates for each investigated year. The results showed that from 1955 to 2016, the study area was highly affected by denudation processes, mainly related to landslides and water erosion (slope wash erosion and gully erosion). Comparison of denudation processes maps showed that the total area affected by erosion processes has increased by about 31% and the distribution of geomorphic processes and their space–time evolution resulted from the complex interrelation between geoenvironmental features and human activities. The main land use changes concerned a decrease in areas covered by woodland, scrubland and pasture and an increase in croplands and barren lands that favored erosion processes. The most susceptible areas to soil loss in both years were mapped, and the mean soil loss rates for the study area were 6.33 Mg ha?1 y?1 in 1955 and 10.38 Mg ha?1 y?1 in 2016. Furthermore, the soil loss in 2016 has increased by about 64% compared to 1955. Finally, the results showed that integrating multi-temporal analysis of denudation processes, land use changes and soil loss rates might provide significant information on landscape evolution which supports decision makers in defining soil management and conservation practices.  相似文献   

16.
Vitrinite reflectance was measured in Late Carboniferous to Triassic shales, siltstones and marls of the Karawanken Range. Thermal models of the central South-Karawanken Range were calibrated on the basis of these data. They suggest an eroded overburden of more than 3,200 m of Jurassic to Cretaceous sediments and a heat flow in the range of 42 to 60 mW m?2 during the time of maximum subsidence. Because the reconstructed thermal history of the South-Karawanken Range is very similar to the thermal history of the Generoso basin (western Southern Alps), these data provide strong evidence for a deep basinal position of the Southern Karawanken Range during Jurassic to Cretaceous times. A vitrinite reflectance anomaly at the northern margin of the South-Karawanken Range is explained by advective heat transport during the Oligocene. The heat source for the anomalies at the western margin of the Seeberg Rise and in the area between the Periadriatic Lineament and the Donat Fault Zone is unknown. Vitrinite reflectance in Late Triassic sediments indicates the South-Karawanken Range and the South-Zala Unit of the Pannonian basement as exotic blocks in the Sava Composite Unit. This is explained by Miocene displacement of structural units, which were derived from different paleogeographical segments of the Permo-Mesozoic western Tethyan margin.  相似文献   

17.
New high-precision minor element analysis of the most magnesian olivine cores (Fo85–88) in fifteen high-MgO (Mg#66–74) alkali basalts or trachybasalts from the Quaternary backarc volcanic province, Payenia, of the Andean Southern Volcanic Zone in Argentina displays a clear north-to-south decrease in Mn/Feol. This is interpreted as the transition from mainly peridotite-derived melts in the north to mainly pyroxenite-derived melts in the south. The peridotite–pyroxenite source variation correlates with a transition of rock compositions from arc-type to OIB-type trace element signatures, where samples from the central part of the province are intermediate. The southernmost rocks have, e.g., relatively low La/Nb, Th/Nb and Th/La ratios as well as high Nb/U, Ce/Pb, Ba/Th and Eu/Eu* = 1.08. The northern samples are characterized by the opposite and have Eu/Eu* down to 0.86. Several incompatible trace element ratios in the rocks correlate with Mn/Feol and also reflect mixing of two geochemically distinct mantle sources. The peridotite melt end-member carries an arc signature that cannot solely be explained by fluid enrichment since these melts have relatively low Eu/Eu*, Ba/Th and high Th/La ratios, which suggest a component of upper continental crust (UCC) in the metasomatizing agent of the northern mantle. However, the addition to the mantle source of crustal materials or varying oxidation state cannot explain the variation in Mn and Mn/Fe of the melts and olivines along Payenia. Instead, the correlation between Mn/Feol and whole-rock (wr) trace element compositions is evidence of two-component mixing of melts derived from peridotite mantle source enriched by slab fluids and UCC melts and a pyroxenite mantle source with an EM1-type trace element signature. Very low Ca/Fe ratios (~1.1) in the olivines of the peridotite melt component and lower calculated partition coefficients for Ca in olivine for these samples are suggested to be caused by higher H2O contents in the magmas derived from subduction zone enriched mantle. Well-correlated Mn/Fe ratios in the wr and primitive olivines demonstrate that the Mn/Fewr of these basalts that only fractionated olivine and chromite reflects the Mn/Fe of the primitive melts and can be used as a proxy for the amount of pyroxenite melt in the magmas. Using Mn/Fewr for a large dataset of primitive Payenia rocks, we show that decreasing Mn/Fewr is correlated with decreasing Mn and increasing Zn/Mn as expected for pyroxenite melts.  相似文献   

18.
19.
Doklady Earth Sciences - The evolution of the stress–strain state of the Earth’s crust in Southern California during the preparation period (from January 1, 2019 until August 15, 2019)...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号