首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural Hazards - Coseismic displacements estimated from comparison before-and-after satellite images suggest that the large and intermittently active landslide upon which the village of Laprak,...  相似文献   

2.
Wyss  Max 《Natural Hazards》2016,80(1):141-152

The number of fatalities in the Gorkha M7.8 earthquake of April 25, 2015, has been estimated at four different times as follows. In March 2005, the fatality estimate in this journal was 21,000–42,000 with an assumed magnitude of 8.1 (Wyss in Nat Hazard 34:305–314, 2005). Within hours after this earthquake, the estimated number of fatalities by QLARM was 2000–10,000 using a point source model and M7.9. Four hours later, the estimate was 20,000–100,000, based on a first approximation line source model and assuming children were in school. Children out of school, as this was a weekend day, reduced the fatalities by approximately a factor of two, but was not taken into account for the calculation. The final line source estimates based on M7.8 and M7.9 calculates 800–9300 and 1100–11,200 fatalities, respectively. The official count is about 10,000 fatalities. These estimates were performed using QLARM, a computer tool and world data set on the distribution of people in settlements and containing a model of the buildings present. It is argued here that the loss estimate 10 years before the event being within a factor of 2.1 of the eventual loss count is useful for mitigation planning. With varying quality of information on the source and the attenuation, the estimates of fatalities shortly after the earthquake are accurate enough to be useful for first responders. With full knowledge of the rupture properties and the regional attenuation of seismic waves, the numbers of human losses are estimated correctly.

  相似文献   

3.
4.
The Ms 8.0 Wenchuan earthquake of May 12, 2008 is one of the most disastrous earthquakes in China. The earthquake triggered tens of thousands of landslides over a broad area, including shallow, disrupted landslides, rock falls, deep-seated landslides, and rock avalanches, some of which buried large sections of some towns and dammed the rivers. The purpose of this study is to investigate correlations between the occurrence of landslides with geologic and geomorphologic conditions, and seismic parameters. Over 56,000 earthquake-triggered landslides, with a total area of 811 km2, are interpreted using aerial photographs and remote sensing images taken following the earthquake. The spatial distribution of these landslides is analyzed statistically using both landslide-point density (LPD), defined as the number of landslides per square kilometer, and landslide-area density (LAD), the percentage of the area affected by landslides, to determine how the occurrence of landslides correlates with distance from the epicenter, distance from the major surface rupture, seismic intensity and peak ground acceleration (PGA), slope angle, slope aspect, elevation, and lithology. It is found that both LAD and LPD have strong positive correlations with slope steepness, distance from the major surface rupture and seismic intensity, and that Pre-Sinian schist, and Cambrian sandstone and siltstone intercalated with slate have the most concentrated landslide activities, followed by the Permian limestone intercalated with shale, and Devonian limestone. Statistical analyses also indicate that the major surface rupture has influence on the spatial distribution of landslides, because LAD and LPD are relatively higher on the hanging wall than on the footwall. However, the correlation between the occurrence of landslides with distance from the epicenter of the earthquake is complicated, rather than a relatively simple negative correlation as found from other reported cases of earthquakes. This is possibly due to complicated rupture processes of the earthquake.  相似文献   

5.
许冲  徐锡伟 《地质通报》2012,31(04):532-540
以玉树地震滑坡为实例,选择高程、坡度、坡向、坡位、水系、地层岩性、同震地表破裂、地震动峰值加速度(PGA)8个因子,以地震滑坡面积百分比(LAP)与滑坡点密度(LND)为指标,研究走滑断裂型地震诱发滑坡在断裂两盘的空间分布差异。在分析这些影响因子的断裂两盘的差异的基础上,基于LAP与LND两个指标详细分析断裂两盘每个因子内部级别滑坡发育的情况。结果表明,总体上北盘的滑坡较南盘发育,除了个别因子级别内南北盘滑坡差别较大外,大部分表现为南北盘滑坡分布情况类似。总之,玉树地震滑坡在断裂两盘的空间分布基本类似,只是在某些因子分级内存在一定的差异。  相似文献   

6.
走滑断裂型地震诱发的滑坡在断裂两盘的空间分布差异   总被引:2,自引:0,他引:2  
许冲  徐锡伟 《地质通报》2012,31(4):532-540
以玉树地震滑坡为实例,选择高程、坡度、坡向、坡位、水系、地层岩性、同震地表破裂、地震动峰值加速度(PGA)8个因子,以地震滑坡面积百分比(LAP)与滑坡点密度(LND)为指标,研究走滑断裂型地震诱发滑坡在断裂两盘的空间分布差异。在分析这些影响因子的断裂两盘的差异的基础上,基于LAP与LND两个指标详细分析断裂两盘每个因子内部级别滑坡发育的情况。结果表明,总体上北盘的滑坡较南盘发育,除了个别因子级别内南北盘滑坡差别较大外,大部分表现为南北盘滑坡分布情况类似。总之,玉树地震滑坡在断裂两盘的空间分布基本类似,只是在某些因子分级内存在一定的差异。  相似文献   

7.
8.
High magnitude earthquakes trigger numerous landslides and their occurrences are mainly controlled by terrain parameters. We created an inventory of 15,551 landslides with a total area of 90.2 km2 triggered by the 2015 Mw 7.8 (Gorkha) and Mw 7.3 (Dolakha) earthquakes in Nepal, through interpretation of very high resolution satellite images (e.g. WorldView, Pleiades, Cartosat-1 and 2, Resourcesat-2). Our spatial analysis of landslide occurrences with ground acceleration, slope, lithology and surface defomation indicated ubiquitous control of steep slope on landslides with ground acceleration as the trigger. Spatial distribution of landslides shows increasing frequency away from the Gorkha earthquake epicentre up to 130 km towards east, dropping sharply thereafter, which is an abnormal phenomenon of coseismic landslides. Landslides are laterally concentrated in three zones which matches well with the seismic rupture evolution of Gorkha earthquake, as reported through teleseismic measurements.  相似文献   

9.
Zhou  Hanxu  Che  Ailan  Li  Guo 《Landslides》2022,19(1):165-176

On May 21, 2021, at 21:48, the Ms6.4 Yangbi earthquake struck Dali prefecture, Yunnan province, China; the maximum PGA reached 714.78 gal, causing 37 casualties and infrastructures damage. A field investigation demonstrated that seismic landslides were concentrated along the G56 Hangrui and Dayangyun highways, classified as local rock falls and shear slides. The shear slides were more severe than the local rock falls and were located along the Dayangyun highway, which was still under construction when the earthquake occurred, severely impacting following engineering activities. Typical shear slides caused by the earthquake were selected for detailed investigations; electrical resistivity topography (ERT) was conducted to study the failure mechanism. The ERT results indicated that the sliding surface was located at the interface between the overburden layer and the underlying rock stratum. The slope failures along the Dayangyun highway were characterized by several tensile cracks on the rear edge, a relatively short displacement, and an accumulation at the toe of the excavated slope where reinforcement measures had not yet been completed. The combined effect of engineering activities and a geological structure provided favorable conditions for slope failure. In addition, seismic motion triggered the landslides; however, engineering activity was a specific and significant factor contributing to the shear slides during the Yangbi earthquake. Excavation and incomplete construction reduced the stability of the overburden soil layer. Although the scale of the seismic landslides in the Yangbi earthquake was generally small, the coming rainy season after the earthquake may contribute for sliding again.

  相似文献   

10.
Xu  Yueren  Zhang  Yanbo  Liu  Runchao  Li  Wenqiao  Zhang  Weiheng  Du  Peng  Tian  Qinjian 《Landslides》2022,19(1):155-164

During the Maduo Earthquake (MDEq) (Mw 7.3), which occurred on 22 May 2021 in the northern Tibetan Plateau, coseismic surface ruptures, numerous land liquefaction instances and landslides, were triggered along the NW strike of the?~?160 km long aftershock zone. We performed three times emergency field surveys (22 May to 3 Jun., 28 Jun. to 14 Jul., 8–24 Oct., 2021) with unmanned aerial vehicle (UAV) orthophoto and digital elevation model (DEM) data. We found a discontinuous coseismic surface rupture zone along with loose sediment, severe sand liquefaction regions with an area of?~?103 km2 along the Yellow River and its tributaries. More than 23 coseismic landslides had been checked with relative small-size volume for limited local terrain relief. Three of those landslides had relatively small source areas and volumes and affected relatively large areas. We identified numerous tension cracks in and around the trailing edges, which could trigger more landslides in the future. Further detailed research into the occurrence of these three landslides will reveal the failure mechanism of the earthquake (shaking)–freeze–thaw effect–rainfall disaster chain. Here, we present basic information to aid the overall understanding of the preliminary characteristics of coseismic earthquake-triggered landslides, sand liquefaction, and possible follow-up disasters.

  相似文献   

11.
On October 23, 2004, an earthquake with a moment magnitude of 6.8 occurred in the Chuetsu area of Niigata prefecture in Japan. This earthquake is known as the 2004 Mid-Niigata prefecture earthquake; the event was followed by severe aftershocks and caused many types of landslides such as surficial slides, shallow slides, and deep slides. A large number of landslides occurred in the upland village of Yamakoshi, destroying the entire village; in addition, a huge number of houses collapsed in Kawaguchi town. This study investigates the correlations between each type of landslide and the bedding plane orientation and dip, and other geomorphologic conditions. The landslide occurrence ratio (LOR) is used as an index to determine the correlation between the 2004 Mid-Niigata prefecture earthquake-induced landslides and the slope angle, slope aspect, rock type, and bedding plane orientation and dip. This work also proposes a methodology to determine the geometric alignment between the topography and the orientation of geological bedding planes. The method provides an efficient means of estimating the topography/bedding plane relationship over large areas.  相似文献   

12.
Chong Xu  Xiwei Xu 《Natural Hazards》2014,72(2):871-893
The April 14, 2010 Yushu, China, earthquake (Mw 6.9) triggered a great number of landslides. At least 2,036 co-seismic landslides, with a total coverage area of 1.194 km2, were delineated by visual interpretation of aerial photographs and satellite images taken following the earthquake, and verified by field inspection. Based on the mapping results, a statistical analysis of the spatial distribution of these landslides is performed using the landslide area percentage (LAP), defined as the percentage of the area affected by the landslides, and landslide number density (LND), defined as the number of landslides per square kilometer. The purpose is to clarify how the landslides correlate the control factors, which are the elevation, slope angle, slope aspect, slope position, distance from drainages, lithology, distance from the surface rupture, and peak ground acceleration (PGA). The results show that both LAP and LND have strongly positive correlations with slope angle and negative correlations with distance from the surface rupture and distance from drainages. The highest LAP and LPD values are in places of elevations from 3,800 to 4,000 m. The slopes producing landslides are mostly facing toward NE, E, and SE. The geological units of Q4 al-pl, N, and T3 kn 1 have the highest concentrations of co-seismic landslides. No apparent correlations are present between LAP and LND values and PGA. On both sides of the surface rupture, the landslide distributions are almost similar except a few exceptions, likely associated with the nature of the strike-slip seismogenic fault for this event. The bivariate statistical analysis shows that, in descending order, the earthquake-triggered landslide impact factors are distance from surface rupture > slope angle > distance from drainages > lithology > PGA. Besides, as the detailed co-seismic landslides inventories related to strike-slip earthquakes are still few compared with that of thrusting-fault earthquakes, this case study would shed new light on the subject. For instance, the landslide spatial distribution on both sides of the strike-slip seismogenic fault is rather different from that of thrusting-fault earthquakes. It reminds us to take different strategies of measures for prevention and mitigation of landslides induced by earthquakes with different mechanisms.  相似文献   

13.
14.
The devastating Gorkha earthquake (M w 7.8) on April 25, 2015 and its aftershocks triggered numerous landslides across the Lesser and Higher Himalayas of central Nepal. This study aims to characterize these landslides, based on the local topography and geology, and to develop data for landslide hazard zoning. This study focused on a mountainous catchment of the Trishuli River, where a digital elevation model was used to examine hilllslope and river profiles, aerial photos were used to identify 155 coherent landslides, and satellite images were used to map 912 earthquake-induced landslides. The topography of this area is mainly characterized by incised V-shaped inner gorges and steep (> 35°) SW-facing scarp slopes. Although most of the coherent landslides were not reactivated by the earthquakes, the Gogane landslide was affected by the earthquake and partly failed. A majority of the earthquake-induced landslides (91%) were new landslides, while the others were enlarged old landslides. The earthquake-induced landslides occurred mainly on the steep slopes of V-shaped inner gorges and scarp slopes, in gneiss and quartzite strata of the Lesser Himalayas, and they were primarily associated with fractured rock masses. This analysis provides a framework for zoning areas vulnerable to earthquake-induced landslides.  相似文献   

15.
16.
One of the most significant effects of the 17 January, 1994 Northridge, California earthquake (M=6.7) was the triggering of thousands of landslides over a broad area. Some of these landslides damaged and destroyed homes and other structures, blocked roads, disrupted pipelines, and caused other serious damage. Analysis of the distribution and characteristics of these landslides is important in understanding what areas may be susceptible to landsliding in future earthquakes. We analyzed the frequency, distribution, and geometries of triggered landslides in the Santa Susana 7.5′ quadrangle, an area of intense seismic landslide activity near the earthquake epicenter. Landslides occurred primarily in young (Late Miocene through Pleistocene) uncemented or very weakly cemented sediment that has been repeatedly folded, faulted, and uplifted in the past 1.5 million years. The most common types of landslide triggered by the earthquake were highly disrupted, shallow falls and slides of rock and debris. Far less numerous were deeper, more coherent slumps and block slides, primarily occurring in more cohesive or competent materials. The landslides in the Santa Susana quadrangle were divided into two samples: single landslides (1502) and landslide complexes (60), which involved multiple coalescing failures of surficial material. We described landslide morphologies by computing simple morphometric parameters (area, length, width, aspect ratio, slope angle). To quantify and rank the relative susceptibility of each geologic unit to seismic landsliding, we calculated two indices: (1) the susceptibility index, which is the ratio (given as a percentage) of the area covered by landslide sources within a geologic unit to the total outcrop area of that unit; and (2) the frequency index [given in landslides per square kilometer (ls/km2)], which is the total number of landslides within each geologic unit divided by the outcrop area of that unit. Susceptibility categories include very high (>2.5% landslide area or >30 ls/km2), high (1.0–2.5% landslide area or 10–30 ls/km2), moderate (0.5–1.0% landslide area or 3–10 ls/km2), and low (<0.5% landslide area and <3 ls/km2).  相似文献   

17.
The characteristics of sources of the Gorkha earthquake’s mainshock (April 25, 2015, Nepal) and strongest aftershock are given. Macroseismic data and examples of seismic dislocations are provided. The course of seismic energy release during the aftershock process is analyzed. The data on seismological precursors of the mainshock and the strongest aftershock of May 12, 2015, are presented, which allowed the aftershock to be predicted in a short-term interval.  相似文献   

18.
四川汶川Ms 8 级地震引发的滑坡与地层岩性、坡度的相关性   总被引:10,自引:0,他引:10  
姚鑫  许冲  戴福初  张永双 《地质通报》2009,28(8):1156-1162
震后遥感影像解译与调查结果表明,在大约48678km2的区域内,汶川Ms 8.0级地震诱发了不低于48000处滑坡灾害。基于GIS的空间分析方法,使用滑坡面积百分比(LAR)与滑坡密度(LC)2个参数,对地震滑坡的空间分布与地层岩性、坡度之间的关系进行统计分析。在整个研究区范围内,滑坡面积百分比约为1.4622%,滑坡密度约为0.9862个/km2。结果表明,滑坡多发生在坡度25~50°的区域内,滑坡易发性随着坡度的增加而升高。寒武纪地层中滑坡易发性最大,LAR约10%,LC约6.5个/km2,震旦系、奥陶系和侵入岩次之,这些地层和岩石对地震滑坡的发生均是敏感的。综合分析坡度、地层岩性与滑坡空间分布的关系,结果表明,在以较破碎岩石为主的地层中,滑坡多发生在坡度小于30°的部位;在以较坚硬岩石为主的地层中,滑坡多发生在坡度大于40°的部位。  相似文献   

19.
姚鑫  许冲  戴福初  张永双 《地质通报》2009,28(08):1156-1162
震后遥感影像解译与调查结果表明,在大约48678km2的区域内,汶川Ms 8.0级地震诱发了不低于48000处滑坡灾害。基于GIS的空间分析方法,使用滑坡面积百分比(LAR)与滑坡密度(LC)2个参数,对地震滑坡的空间分布与地层岩性、坡度之间的关系进行统计分析。在整个研究区范围内,滑坡面积百分比约为1.4622%,滑坡密度约为0.9862个/km2。结果表明,滑坡多发生在坡度25~50°的区域内,滑坡易发性随着坡度的增加而升高。寒武纪地层中滑坡易发性最大,LAR约10%,LC约6.5个/km2,震旦系、奥陶系和侵入岩次之,这些地层和岩石对地震滑坡的发生均是敏感的。综合分析坡度、地层岩性与滑坡空间分布的关系,结果表明,在以较破碎岩石为主的地层中,滑坡多发生在坡度小于30°的部位;在以较坚硬岩石为主的地层中,滑坡多发生在坡度大于40°的部位。  相似文献   

20.
 Different models were developed for evaluating the probabilistic three-dimensional (3-D) stability analysis of earth slopes and embankments under earthquake loading using both the safety factor and the displacement criteria of slope failure. In the 3-D analysis, the critical and total slope widths become two new and important parameters. The probabilistic models evaluate the probability of failure under seismic loading and consider the different sources of uncertainties involved in the problem, i.e. uncertainties stemming from the discrepancies between laboratory-measured and in situ values of shear strength parameters, randomness of earthquake occurrence, and earthquake-induced acceleration. The models also take into consideration the spatial variabilities and correlations of soil properties. The developed models are incorporated in a computer program, PTDDSSA (probabilistic three-dimensional dynamic slope stability analysis). These developed analysis/design procedures are incorporated within a code named SARETL (stability analysis and remediation of earthquake-triggered landslides) that was developed in this study for stability analysis and remediation of earthquake-triggered landslides. In addition to the dynamic inertia forces; the developed system takes into consideration the local site effects. The code is capable of: 1. Prediction of permanent deformations that result from landslides under seismic loading using both probabilistic and deterministic approaches. 2. The assessment of landslide hazard that affects major transportation routes in the event of earthquakes, and the preparation of earthquake-induced landslide hazard maps (i.e. maps that show expected displacements and probability of slope/embankments failure) for different earthquakes magnitudes and environmental conditions. 3. Proposing a mitigation strategy against landslides and suggesting guidelines for remedial measures. The developed expert system is applied to a major highway case study. Design maps are developed for the highway under seismic loading. Received: 18 March 1999 · Accepted: 11 October 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号